Table 2.
Optimal Choices of C+T Parameters
Trait | wc | INFOT | pT | |
---|---|---|---|---|
Breast cancer (BRCA) | 2,500 | 0.2 | 0.95 | 2.2×10-4 |
Rheumatoid arthritis (RA) | 200 | 0.5 | 0.95 | 7.5×10-2 |
Type 1 diabetes (T1D) | 10K–50K | 0.01 | 0.90 | 2.6×10-5 |
Type 2 diabetes (T2D) | 625 | 0.8 | 0.95 | 1.1×10-2 |
Prostate cancer (PRCA) | 10K–50K | 0.01 | 0.90 | 4.2×10-6 |
Depression (MDD) | 625 | 0.8 | 0.95 | 1.0×10-1 |
Coronary artery disease (CAD) | 526 | 0.95 | 0.95 | 3.5×10-2 |
Asthma | 2,500 | 0.2 | 0.90 | 2.2×10-4 |
Choice of C+T parameters is based on the maximum AUC in the training set. Hyper-parameters of C+T are the squared correlation threshold and the window size wc of clumping, the p value threshold pT and the threshold on the quality of imputation INFOT. Choosing optimal hyper-parameters for C+T use 63%–90% of the individuals reported in Table 1. Resulting predictions of maxCT in the test set are reported in Figure 2.