
ARTICLE

Genome-wide Associations Reveal Human-Mouse
Genetic Convergence and Modifiers of Myogenesis,
CPNE1 and STC2

Ana I. Hernandez Cordero,1 Natalia M. Gonzales,2 Clarissa C. Parker,3,4 Greta Sokolof,5

David J. Vandenbergh,6 Riyan Cheng,7 Mark Abney,2 Andrew Sko,8 Alex Douglas,9

Abraham A. Palmer,10,11 Jennifer S. Gregory,1 and Arimantas Lionikas1,*

Muscle bulk in adult healthy humans is highly variable even after height, age, and sex are accounted for. Lowmuscle mass, due to fewer

and/or smaller constituent muscle fibers, would exacerbate the impact of muscle loss occurring in aging or disease. Genetic variability

substantially influences muscle mass differences, but causative genes remain largely unknown. In a genome-wide association study

(GWAS) on appendicular lean mass (ALM) in a population of 85,750 middle-aged (aged 38–49 years) individuals from

the UK Biobank (UKB), we found 182 loci associated with ALM (p < 5 3 10�8). We replicated associations for 78% of these loci

(p < 5 3 10�8) with ALM in a population of 181,862 elderly (aged 60–74 years) individuals from UKB. We also conducted a GWAS

on hindlimb skeletal muscle mass of 1,867 mice from an advanced intercross between two inbred strains (LG/J and SM/J); this GWAS

identified 23 quantitative trait loci. Thirty-eight positional candidates distributed across five loci overlapped between the two species.

In vitro studies of positional candidates confirmed CPNE1 and STC2 as modifiers of myogenesis. Collectively, these findings shed light

on the genetics of muscle mass variability in humans and identify targets for the development of interventions for treatment of muscle

loss. The overlapping results between humans and the mouse model GWAS point to shared genetic mechanisms across species.
Introduction

Skeletal muscle plays key roles in locomotion, respiration,

thermoregulation, maintenance of glucose homeostasis,

and protection of bones and viscera. The loss of muscle

due to aging, known as sarcopenia, affects mobility and

can lead to frailty and deterioration of quality of life.1

The risk of disability is 1.5 to 4.6 times higher in the sarco-

penic elderly than in the age-matched individuals with

normal muscle mass.2 However, lean mass, a non-invasive

proxy for muscle mass, differs by more than two-fold be-

tween healthy adult individuals of the same sex, age, and

height.3 Therefore, we hypothesize that differential accre-

tion of muscle mass by adulthood may influence the risk

of sarcopenia and frailty later in life.

Genetic factors contribute substantially to the variability

in lean mass in humans, with heritability estimates of

40%–80%.4 A continuous distribution of the trait and

data obtained from animal models5–8 indicate a polygenic

causality. However, thus far, genome-wide association

studies (GWAS) have implicated fewer than a dozen genes,

explaining a small fraction of this heritability.9,10 Limited

sample size in early studies11–15 and the effects of con-

founders such as subject age,9 size of the skeleton, and

lean mass components (non-fat organs and tissues, hetero-
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geneity of muscle fibers) have hindered detection of genes.

The UK Biobank (UKB) is a resource of demographic,

phenotypic, and genotypic data collected on �500,000 in-

dividuals.16 It includes the arm and leg lean mass, body

composition, and morphometric information, providing

a model for improving our understanding of the genetic

basis for variability in muscle mass. Skeletal muscle mass,

however, changes over the course of an individual’s

lifespan. It reaches a peak around the mid-twenties and

remains largely stable through the mid-forties before suc-

cumbing to gradual decline, which accelerates after about

70 years of age.17 There is a substantial degree of individual

variability in the slope of muscle change across both the

increasing and decreasing phases of the lifespan trajec-

tory.18 Both the trajectory itself and the slope of individual

variability may impede identification of genes.

Indirect estimates of lean mass impose limitations

because muscle mass is not an exclusive contributor to

this variable. Furthermore, the cellular basis of variability

in muscle mass (i.e., if it is caused by the differences in

the number of constituent muscle fibers, their size, or

both) remains poorly understood. Using the laboratory

mouse circumvents a number of those limitations. The

mouse shares approximately 90% of the genome with hu-

mans,19 and dissection permits analyses of traits that are
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difficult to study directly in humans, such as the mass of

individual muscles6,7,20 and whole-muscle fiber character-

istics.21,22 The phenotypic differences between the LG/J

and SM/J mouse strains make them particularly attractive

for complex trait analyses.23–25 LG/J mice were selected

for large body size,26 while SM/J mice were selected for

small body size.27 The second filial generation (F2) of inter-

cross derived from the LG/J and SM/J strains (LGSM)6,28

and an advanced intercross line (AIL) of the LGSM

(LGSM AIL), developed using a breeding strategy proposed

by Darvasi and Soller,29 led to multiple quantitative trait

loci (QTLs) for hindlimb muscle mass.6,28 However, these

QTLs still encompass tens or even hundreds of genes and

require further prioritizing. We hypothesized that the

detection power of a modest sample size of the LGSM

AIL and the superior resolution of a human cohort will

facilitate identification of the quantitative trait genes

(QTGs) underlying muscle QTLs.

The aim of this study was to identify the genomic loci

and the underlying genes for variability in skeletal muscle

mass and to assess their effects in the elderly. We addressed

this in three stages: (1) we conducted a GWAS in a human

cohort of middle-aged individuals from the UKB, and we

tested the effect of the identified set of loci in an elderly

cohort; (2) we conducted a GWAS on hindlimb muscle

mass in a population of LGSMAILmice; and (3) in the final

stage, we nominated candidate genes by comparing mouse

and human loci, and we validated the myogenic role of

selected candidates in vitro.
Material and Methods

Stage One: Genome Mapping in Human Populations
UK Biobank Cohort

The population in this study consisted of 316,589 adult individ-

uals of 37 to 74 years of age (project ID: 26746). We drew this

cohort from the UK Biobank (UKB) project;16 all participants

recruited were identified from the UK National Health Service

(NHS) records and attended a baseline visit assessment between

2006 and 2010. During the assessment, participants gave written

consent, answered a questionnaire, and were interviewed about

their health and lifestyle. Blood samples and anthropometric mea-

surements were collected from each participant. Assessments were

conducted at 22 facilities in Scotland, England, and Wales.

We divided the sample into middle-aged and elderly cohorts.

The middle-aged cohort consisted of 99,065 adults ranging from

38 to 49 years of age; based on previous studies, we assumed

that these individuals were not affected by sarcopenia.30 We

excluded 3,520 participants who were reported to be ill with can-

cer, were pregnant, or had undergone a leg amputation procedure,

as well as individuals with discordant genetic sex and self-reported

sex records. In addition, we excluded non-white Europeans (self-

reported) from the analyses (n ¼ 9,599) and individuals without

imputed genotypes.We retained a total of 85,750 adult individuals

(46,353 females and 39,397 males) for further analyses.

The elderly cohort consisted of 217,524 adults ranging from 60

to 74 years of age. We selected this cohort to test if the effect of the

genetic variants identified in middle-aged individuals could also
The American Jour
influence phenotypes later in life. We excluded 35,662 individuals

based on the same criteria used for the middle-aged cohort. After

exclusions, the elderly cohort included 181,862 individuals of

60 to 73 years of age (94,229 females and 87,633 males; Table S1).

UK Biobank Traits

We used the data for standing height (UKB field ID: 50), sitting

height (UKB field ID: 20015), whole body fat (UKB field ID:

23100), arm lean mass (UKB field IDs: 23121 and 23125), and

leg lean mass (UKB field IDs: 23113 and 23117) measured as part

of the UKB project. Body composition measurements were taken

using bioelectric impedance. (This was preferred to the dual en-

ergy X-ray absorptiometry [DXA] scan data because of the substan-

tially larger number of phenotyped individuals.) We calculated leg

length by subtracting sitting height from standing height (all mea-

surements were recorded in cm). Because lean mass in the limbs

primarily consists of skeletal muscle tissue, we used appendicular

lean mass (ALM) as a proxy for muscle mass. We calculated ALM

as the sum of the muscle mass of two arms and two legs. We

checked that all traits were normally distributed by examining

the QQ-plot and histogram of residuals from a simple linear model

that included sex as a covariate. Residuals were normally distrib-

uted, and we did not transform any of the traits.

UK Biobank Genotypes

We obtained genotype data for all participants from the UKB v3

genotypes release,31 which includes genotype calls from the Affy-

metrix UK BiLEVE Axiom array and the Affymetrix UKB Axiom

array, as well as imputed genotypes from the UK10K and 1000 Ge-

nomes Phase 3 reference panels.32 We kept all imputed genotype

data (21,375,087 genetic variants [SNPs, Indels, and structural var-

iants]) with minor allele frequency (MAF)> 0.001 and imputation

quality > 0.30. The software (BOLT-LMM v2.3.4)33 we used to

perform GWAS was developed for large datasets (i.e., UKB cohort)

and it was only tested for human cohorts, which have different

linkage disequilibrium (LD) patterns from animals; BOLT-LMM

uses a linear mixed model (LMM), a type of model which has

been shown to successfully control for confounding due to popu-

lation structure or cryptic relatedness in individuals (related

and unrelated) from the UKB.34–37 For these reasons, we used

BOLT-LMM v2.3.4 for the analyses of human data only.
Appendicular Lean Mass GWAS
We used BOLT-LMM (v2.3.4)38 to perform a GWAS for ALM in the

middle-aged cohort. The LMM approach implemented in BOLT-

LMM is capable of analyzing large datasets while also accounting

for cryptic relatedness between individuals. Specifically, BOLT-

LMM calibrates the association statistics using an LD score regres-

sion approach;39 this allowed us to evaluate the impact of con-

founding factors on the GWAS test statistics39 and calibrate

them accordingly. In the absence of confounding factors, p values

should not be inflated, and the LD score regression intercept

should be equal to 1.39 The LD score regression intercept in this

study was 1.0515 0.007, suggesting minimal inflation of p values

due to linkage between markers. After we calibrated the test statis-

tics, the mean c2 of the ALM GWAS was 1.29 and lambda (lGC) or

genomic control inflation factor was 1.20 (Figure S1), a result

which indicated polygenicity of the trait as described by Bulik-

Sullivan and colleagues.39

We also assessed population structure by running principal

component analysis on the genotype calls. We included sex, leg

length, whole body fat, and the first four principal components

as fixed effects in the LMM used for the ALM GWAS. Sex was
nal of Human Genetics 105, 1222–1236, December 5, 2019 1223



included to account for differences in muscle mass caused by

higher testosterone levels inmales.40 Testosterone is a potent stim-

ulator of muscle growth, and if systematically varied in males, it

can also influence muscle mass (e.g., as a result of hypogonad-

ism41). However, if there was a common genetic basis for such vari-

ability, it could be captured in the association analysis. It needs to

be noted that inclusion of sex as a covariate would not permit

capturing sex-by-locus interactions. Identification of sex-specific

loci, albeit of interest, was not attempted due to the complexity

posed by the number of genetic markers and the sample size. An

outcome of a GWAS would also depend of the complexity of

mechanisms affecting the phenotype and adjustments included

in a model.9,42 Leg length and whole body fat were included

because they are biologically related to muscle mass: longer bones

result in longer muscles, while fat shares part of its developmental

origin with skeletal muscle tissue.43 Furthermore, each of these

traits is correlated with muscle mass. An association was consid-

ered statistically significant if it had a p < 5 3 10�8 (a ¼ 0.05).

This threshold is the standard for GWAS of complex traits.44,45

We obtained variance components and SNP heritability esti-

mates of ALM from the middle-aged cohort through the use of

BOLT-REML.38 The BOLT-REML method robustly estimates the

variance of genotyped SNPs and fixed effects on the LMM. As

described by Loh et al.,46 BOLT-REML partitions SNP heritability

across common alleles; hence, the additive variance is calculated

as the cumulative variance of genotyped SNPs.

Phenotypic Variance Explained by ALM Loci

We defined ALM genomic loci by using the web-based platform

Functional Mapping and Annotation of Genome-Wide Associa-

tion Studies (FUMAGWAS47). A key feature of this tool is the iden-

tification of genomic regions and independent genomic signals

based on the provided summary statistics of a GWAS depending

on LD structure; this process is automated using pairwise LD of

SNPs in the reference panel (1000 Genomes Project Phase 3

EUR48) previously calculated by PLINK.49 We provided FUMA

GWAS with the summary statistics of our GWAS on ALM with

the following parameters: 250 kb window (maximum distance

between LD blocks), r2 > 0.6 (minimum r2 for determining LD

with independent genome-wide significant SNPs used to deter-

mine the limits of significant genomic loci), MAF > 0.001 (mini-

mum minor allele frequency to be included in the annotation),

and p < 5 3 10�8 (threshold of significantly associated variants).

We refer to the identified regions and the independent signals as

loci throughout the text.

To estimate the proportion of phenotypic variance explained by

each locus, we used the top variant (based on the outcome from

FUMA47) of each locus identified. We estimated phenotype resid-

uals by using a model that included the fixed effects and principal

components described above. We then regressed the residuals on

the genotype of the top SNP in a linear model. We estimated the

coefficients of determination and reported them as the proportion

of phenotypic variance explained by each locus.

Genetic Effects in the Elderly Cohort

We used the top SNP at each locus to test the combined effect of all

182 genome-wide significant ALM loci identified in the middle-

aged cohort in the elderly cohort. We used PLINK249 to extract

genotype dosages for each variant identified in the middle-aged

GWAS in the elderly cohort. We then estimated a ‘‘genetic lean

mass score’’ for each individual by using the following procedure.

First, we estimated the contribution of each variant to the pheno-

type as a product of the SNP effect size obtained from BOLT-LMM

(b, calculated based on the reference allele) and the genotype
1224 The American Journal of Human Genetics 105, 1222–1236, Dec
dosage. Second, we calculated the ‘‘lean mass score’’ for each indi-

vidual as the sum of the products for all selected variants. We

ranked the resulting distribution of lean mass scores in ascending

order and partitioned the result into five quantiles. We used ALM

without any adjustment (raw ALM) because estimates of effects

size already accounted for sex, whole body fat, and leg length dif-

ferences. However, because the raw ALM did notmeet the assump-

tion of normality, we used a Kruskal-Wallis test (non-parametrical)

to evaluate the difference in the median of the phenotypes

between the quantiles, and a Wilcoxon test (non-parametrical)

for pairwise comparisons between quantiles. We conducted five

replicates of a negative control test that consisted of randomly se-

lecting a subset (n �185) of non-significant SNPs in the middle-

aged cohort and then generating the lean mass score as described

above for the elderly cohort; this set of SNPs had an MAF > 0.001.

We also aimed to replicate the individual variants effects on the

ALM of the elderly cohort. We checked normality of ALM in the

elderly cohort as described for the middle-aged cohort. We tested

a subset of genetic variants (n ¼ 17,914,406) selected based on

their MAF > 0.001 and imputation quality > 0.3, and we used

the same LMM, fixed covariates, and genome-wide significance

threshold (p < 5 3 10�8) as described for the middle-aged cohort.

We conducted a Fisher’s exact test to evaluate whether overlapping

loci between the middle-aged and elderly cohorts were signifi-

cantly different from random. The null hypothesis was rejected

at p < 0.05 (two-tailed).

Genomic Regions Tagged by Loci

We used the biomaRT package in R50,51 to retrieve gene and

regulatory element annotations at the genomic position of each

statistically significant SNP (p < 5 3 10�8) and PolyPhen 252 and

SIFT53,54 to predict the functional consequences of each SNP.

We retrieved additional information about the positional

candidate genes and their expression levels from Ensembl55

(release 94 - October 2018) and the Genotype Tissue Expression

Project (GTEx) portal56 (See Web Resources).
Stage Two: LGSM AIL Mouse Cohort and GWAS
To maximize QTL detection power, we combined three cohorts of

LGSM AIL mice from our previous reports6,8,28 for the second stage

of this study (n ¼ 1,867). The LGSM AIL was initiated by Dr. James

Cheverud at Washington University in St. Louis.57 Cohort 1

included 490 mice (253 males and 237 females) from LGSM filial

generation 34 (F34). Phenotype data were collected from these

mice when they were between 80 and 102 days of age. Cohort 2

consisted of 506malemice (�84 days of age) from filial generations

50–54 (F50–54). Cohort 3 included 887 mice (447 males and 440 fe-

males) from filial generations 50–56 (F50–56); phenotype data were

collected from these mice when they were between 64 and

111 days of age. Mice were housed at room temperature (70–

72�F) on a 12:12 h light-dark cycle, with one to four same-sex ani-

mals per cage and with ad libitum access to standard lab chow and

water. All procedures were approved by the Institutional Animal

Care and Use Committee at the University of Chicago (cohorts 1

and 3) and at the Pennsylvania State University (cohort 2).

Mouse Traits and Genotypes

We collected muscle phenotypes after the animals were sacrificed

and frozen. We dissected four muscles and one long bone (tibia or

femur) from each mouse at the Pennsylvania State University

(n ¼ 584) and the University of Aberdeen (n ¼ 1,283). Each of

the four muscles exhibits a different proportion of muscle

fiber types and often revealed muscle-specific QTLs.6,7,20,28The
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dissection procedure involved defrosting the carcasses and

removing the muscles (tibialis anterior [TA], extensor digitorium

longus [EDL], gastrocnemius, and soleus) and tibia from the hin-

dlimbs under a dissection microscope. We weighed the muscles

to 0.1 mg precision on a Pioneer balance (Pioneer, Ohaus) and

measured long bone length of the hindlimb (mm) using an elec-

tronic digital calliper (Powerfix, Profi). We quantile normalized

all LGSM AIL traits before mapping QTLs.

Cohort 1 was genotyped through the use of a custom SNP

genotyping array.58 These SNPs (n ¼ 2,965) were evenly distrib-

uted along the autosomes (Mus musculus genome assembly

MGSCv36 [mm8]). The median distance between adjacent

SNPs was 446 Kb, and the maximum was 18 Mb. Large gaps

are due to regions identical by descent between the LG/J and

SM/J founders.59 Cohort 2 was genotyped at 75,746 SNPs

(73,301 on the autosomes and 2,386 on X and Y) using the

MEGA Mouse Universal Genotyping Array (MegaMUGA; Mus

musculus) genome assembly MGSCv37 (mm9); after removing

SNP markers that are not polymorphic between the LG/J and

SM/J strains, we retained 7,168 autosomal SNPs for subsequent

analyses. The median distance between adjacent SNPs was

126.9 Kb and the maximum distance was 15 Mb for all chromo-

somes except for chromosomes 8, 10, and 14, which had dis-

tances of 19, 16, and 16 Mb, respectively. We used a conversion

tool in Ensembl to convert SNP positions from mm8 and mm9

to Mus musculus genome assembly GRCm38 (mm10). Cohort 3

genotypes were obtained from Gonzales and colleagues.8 These

genotypes were generated through the use of genotyping by

sequencing. This approach has recently been used and described

in detail.20 Only autosomal SNPs known to be polymorphic in

the LG/J and SM/J founder strains (n ¼ 523,027; mm10, build

38) were retained for subsequent analyses. We combined the ge-

notype data from cohorts 1–3 by using PLINK v.1.9, and we

imputed missing genotypes by using BEAGLE v.4.1.60 For these

steps, we used a reference panel obtained from the whole-

genome sequencing data of the LG/J and SM/J strains.59 Dosage

estimates (expected allele counts) were extracted from the

output and used for the GWAS; these estimates captured the de-

gree of uncertainty from the imputation procedure. To ensure

the quality of the genotype data, we excluded SNP genotypes

with MAF < 0.20 (Because it is an AIL, almost all SNPs have

MAF > 0.20.) and dosage R2 < 0.70. (Dosage R2 corresponds to

the estimated squared correlation between the allele dosage

and the ‘‘true allele dosage’’ from the genetic marker, and dosage

R2 is used as a measure of imputation quality). After applying

these filters, we retained 434,249 SNPs.

Mouse Association Analyses

Population structure can potentially lead to a rise in false positive

associations.61,62 The LMM approach is used to map QTLs while

dealing with confounding effects due to relatedness.58,63,64 We

used the LMM method implemented in the software GEMMA

(genome-wide efficient mixed-model association)65 to analyze

the mouse phenotypes. In our LMMmodel, we included the geno-

types, a set of fixed effects described later in this section, and a

polygenic effect to deal with population structure.

The polygenic effect is a random vector which was derived from

a multivariate normal distribution with mean zero and a n3 n

covariance matrix s2lK; where n is the number of samples. The

relatedness matrix K was defined by the genotypes. The two pa-

rameters, s2 and l, were estimated from the data by GEMMA;

they represent the polygenic and residual variance components

of the phenotypic variance, respectively.
The American Jour
Relatedness Matrix and Proximal Contamination

We used the genotype data to estimate the relatedness matrix K;

which was part of the covariance matrix. Although genotype-

based and pedigree-based K matrices yield very similar

results,66,67 we have shown that in general, genotype-based esti-

mates are more accurate.66,68–70 We constructed the relatedness

matrix as K ¼ XX
0
=p, where X is the genotype matrix of entries

xij and n3p dimensions, and p is the number of SNPs.

The relatedness matrix K was estimated while taking into ac-

count the potential problem of proximal contamination,67 which

involves loss of power due to including genetic markers in multi-

ple components of the LMM equation. Furthermore, because of

LD, markers in close proximity to the genetic marker that is being

tested can also lead to deflation of the p values.8,68 To avoid this

problem, the K matrix was estimated by excluding from the calcu-

lations the SNPs within the chromosome that was analyzed. (This

approach is termed leave one chromosome out [LOCO].) There-

fore, the K matrix was slightly different for each chromosome.

Genetic and Fixed Effects

We did not include non-additive effects in the LMMs used for

GWAS in the LGSMAIL. Our previous studies6 suggest that muscu-

loskeletal traits in this population are mostly influenced by addi-

tive loci, and by ignoring dominance effects, we avoid introducing

an additional degree of freedom, hence potentially avoiding a

decrease of power to detect QTLs.

To analyze the muscle weights of the combined data, we used

four fixed effects in the LMM: sex, dissector of the samples, age,

and long bone length of the hindlimb. We selected these variables

after using a linear model to estimate their effect on the four mus-

cles; only statistically significant effects were included (p < 0.01).

Sex and dissector were included as binary variables, whereas age

and long bone were included as continuous variables. Including

long bone length of the hindlimb allowed us to capture genetic ef-

fects associated with variation in muscle weight per se (as opposed

to genetic effects on bone length).20 In other words, failing to

include long bone as a covariate would yield QTLs that are more

likely to be genetic contributors to general growth of the skeleton

instead of muscle specifically. We used two bones for the long

bone variable: femur for cohort 1, and tibia for cohorts 2 and 3.

The length of femur and tibia bones is highly correlated (r ¼
0.88) in LGSM AIL71. We did not include generation (r ¼ 1) and

bone type of each cohort (r ¼ 1) as fixed effects because the

dissector variable functioned as a proxy for these two variables.

Body weight was not used as a fixed effect because muscle weight

accounts for a considerable amount of the body weight.

SNP Heritability

To estimate the SNP heritability or proportion of phenotypic

variance explained by all genotypes, we used the n3n realized

relatedness matrix K, whichwas constructed using all the available

genotypes. We extracted the SNP heritability from the QTL map-

ping outputs of the LGSM AIL cohort described before; GEMMA

provides an estimate of the heritability and its standard error.65

The SNPs available to estimate the heritability do not capture all

genetic causal variants, hence the SNP heritability underestimates

the true narrow sense heritability.

Threshold of Significance and QTLs Intervals

The p values estimated from the likelihood ratio test statistic

performed by GEMMA were transformed to �log10 p values. We

calculated a threshold to evaluate whether or not a given SNP

significantly contributes to a QTL. We estimated the distribution

of minimum p values under the null hypothesis and selected the

threshold of significance to be 100ð1� aÞth percentile of this
nal of Human Genetics 105, 1222–1236, December 5, 2019 1225



distribution, with a ¼ 0:05. In order to estimate this distribution,

we randomly permuted phenotypes 1,000 times, as described pre-

viously.6,7,20,72 We did not include the relatedness matrix in the

permutation tests due to computational restrictions and because

past studies have found that relatedness does not have a major

effect on the permutation test.6,7

We estimated QTL intervals in three steps: 1) We used Man-

hattan plots to identify the top SNP within each statistically sig-

nificant region (SNP with highest �log10 p values), which we

refer to as the peak QTL position. 2) We transformed p values

from each analysis to LOD scores (base-10 logarithm of the like-

lihood ratio). 3) We applied the LOD interval function imple-

mented in the r/qtl package73 to the regions tagged by each

peak SNP, and we obtained the QTL start and end positions

based on the 1.5 LOD score interval. 1.5 LOD intervals are

commonly used to approximate the �95% confidence interval

of mouse QTLs.5,74 The 1.5 LOD interval estimation is compara-

ble to the 95% confidence interval in the case of a dense marker

map;75 hence, its coverage depends on the location of the peak

QTL marker relative to the adjacent genotyped markers. We esti-

mated the direction of the QTL effect by calculating the pheno-

typic mean of each allele based on the peak SNP of each QTL.

We adjusted the phenotypic means and standard errors by

fitting the fixed effects used in the association analyses in a

linear model.

We explored the QTL intervals to identify genes that potentially

affect hindlimb muscle mass. We retrieved the genomic locations

of all genes located within the intervals by using the BioMart data-

base through the ‘‘biomaRT’’ package implemented in R.50,51

Meta-Analysis in the LGSM AIL Mice

Although we adjusted our GWAS analyses on the LGSM AIL mice

for confounding effects, it was possible that uncontrolled factors

could have affected the phenotypes. Therefore, we conducted an

additional meta-analysis on the three LGSM AIL cohorts. We first

analyzed each cohort separately using the same approach we used

for the combined data, except that the dissector variable was not

used as a covariate because it was largely confounded with the

cohort. We extracted p values, estimated SNP effects, and standard

errors at each scanning locus. We considered two popular meta-

analysis approaches: the inverse variance-weighted average and

the weighted sum of Z scores.76–78 For the weighted sum of Z

scores, we tried two weighing schemes, i.e., the sample size and

the square root of the sample size, and we found that the results

were very similar; they were slightly better than the results of

the inverse variance-weighted average. Therefore, we chose to

report the result of the weighted sum of Z scores with the square

root of the sample size being the weight as suggested inmeta-anal-

ysis literature.79 The test statistic ðZÞ for each SNP was constructed

as follows:

Z¼ z1w1 þ z2w2 þ z3w3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þw2
2 þ w2

3

p

where zi is the Z score that was obtained by transforming the likeli-

hood ratio test p value, and wi is the square root of the sample size

in cohort i ¼ 1 to 3. We compared this result with the combined

GWAS of the LGSM AIL. This statistical analysis was performed

in R.80

Overlap of Mouse and Human Results

The significantly associatedmuscle QTLs (mice) and leanmass loci

(humans) were compared by exploring the genomic regions and

genes tagged in each analysis. We used a Fisher’s exact test to eval-
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uate whether the number of overlapping loci from the human and

mouse analyses exceeded the number expected by chance; the

null hypothesis was rejected at p < 0.05.

Gene Validation Using siRNA in C2C12 Myoblasts

To validate efficiency of siRNA-mediated gene knockdown,

the C2C12 cells were lysed and RNA isolated using RNeasy mini

kit (QIAGEN) following manufacturers recommendations. Con-

centration was assessed using NanoDrop (Thermo Scientific) spec-

trophotometer and �1.5 mg of RNA was applied to 1.5% agarose

gel to validate its integrity. The cDNA was synthesized using

random primers (Invitrogen) and SuperScript II reverse transcrip-

tase (Invitrogen). Quantitative PCR for expression of the targets

Cpne1, Sbf2, and Stc2 and the reference Actb was carried out in du-

plicates on LightCycler 480 II (Roche) using SYBR green Master

mix (Roche), 10 ng cDNA, and 0.5 mM forward and reverse primers

(Table S2). Quantification of gene expression was performed using

the comparative Ct method.81

C2C12 myoblasts, validated for differentiation, were seeded on

eight-chamber slides (Lab-Tek II), batch 1, and 13 mm diameter

Thermanox Plastic coverslips (Thermo Fisher Scientific), batch 2,

at 100 cells/mm2 in high-glucose growth medium (D5671, Sigma)

containing 10% fetal calf serum and 2% glutamine. The next day,

the cells were washed with phosphate-buffered saline (PBS) and

transferred to differentiation medium (D5671, Sigma) supple-

mented with 10 nM siRNA and Lipofectamine RNAiMAX (Invitro-

gen) as per manufacturer protocol. We used the following siRNAs

(Life Technologies): negative control #1, s113938 and 93494

(Cpne1), 151885 and 151886 (Stc2), and s115441 and s115442

(Sbf2). The treatment achieved expression knockdown by

55%–70%. The differentiation medium with 10nM siRNA and

Lipofectamine RNAiMAX were replaced once, after 3 days of incu-

bation. After 6 days of incubation, cells were fixed in 4% parafor-

maldehyde (PFA). We examined eight cultures for Stc2 and 12 for

the remaining genes (equally divided between the two siRNAs)

and negative control that were generated in two batches on

separate occasions.

Cells were washed in PBS, fixed in 4% PFA for 15 min, PBS

washed again, and permeabilized for 6 min with 0.5% Triton X-

100 in PBS. The cells were then blocked for 30 min in blocking

buffer (10% fetal calf serum in PBS) and incubated overnight at

4�C with primary anti-myosin heavy chains antibody (Mono-

clonal Anti-Myosin skeletal, Fast, Clone My-32, Mouse Ascities

Fluid, M4276, Sigma-Aldrich) diluted (1:400) in PBS. After three

washes in 0.025% Tween-20 in PBS at room temperature, second-

ary donkey anti-mouse IgG H&L antibody (ab150109, abcam)

conjugated to fluorescent dye (Alexa Fluor 488) in PBS (1:400)

was applied and incubated for 90 min. Following three washes

in 0.025% Tween-20 in PBS, cells were incubated in 300 nM

DAPI in PBS for 15 min. After that, cells were covered with a cover-

slip using Mowiol 4-88 (Sigma-Aldrich), sealed with nail polish,

and stored at 4�C in the dark.

Slides were scanned using Axioscan Z1 slide scanner (Zeiss) us-

ing 320 magnification. The entire 0.7 cm2 chamber of a slide or

a coverslip was imaged using the wavelength spectrum band of

353–465 nm and 493–517 nm and exposure time 4 ms and

100 ms for DAPI and Alexa Fluor, respectively, at 50% Colibri

7 UV-free LED light source intensity. Alexa Fluor and DAPI chan-

nel images of a rectangular area free of artifacts and covering at

14%–91% of a chamber of batch 1 and 70% of a coverslip of batch

2 were exported separately for analyses with Fiji.82 Note that the

rectangle area of the majority of batch 1 samples (88%) covered

more than 40% of the cell culture. A sensitivity analysis testing
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Table 1. Summary of the Middle-Aged Cohort

Sex n Min Max Average SD SNP Heritability 5 SE

Age (years)

Females ¼ 46,353 39.67 49.00 44.98 2.43 n/a

Males ¼ 39,397 38.83 49.00 44.89 2.46 n/a

ALM (kg)

Females ¼ 46,307 12.20 41.60 20.05 2.57 0.36 5 0.003

Males ¼ 39,353 15.30 54.50 30.17 3.95 0.36 5 0.003

Arm Lean Mass (kg)

Females ¼ 46,314 1.00 5.10 2.29 0.31 0.32 5 0.003

Males ¼ 39,362 1.60 7.10 3.85 0.57 0.32 5 0.003

Leg Lean Mass (kg)

Females ¼ 46,323 4.60 16.60 7.77 0.98 0.36 5 0.003

Males ¼ 39,373 6.20 20.00 11.31 1.42 0.36 5 0.003

WBF (kg)

Females ¼ 46,308 5.00 109.80 25.54 10.63 0.33 5 0.006

Males ¼ 39,171 5.00 88.50 21.12 8.29 0.33 5 0.006

Leg (cm)

Females ¼ 46,302 43.00 113.00 76.57 4.27 0.59 5 0.010

Males ¼ 39,353 40.00 122.00 83.87 4.68 0.59 5 0.010

Column description from left to right: 1) Sex, 2) Number of records, 3) Minimum value within the distribution of each trait, 4) Maximum value within the dis-
tribution of each trait, 5) Average value of each trait, 6) Standard deviation, 7) SNP heritability of the ALM across sex. All summary statistic values were calculated
for each sex group. ALM: appendicular lean mass. WBF: whole body fat. n/a: no applicable.
the exclusion of small coverage images (14%–31%) from the statis-

tical analyses described below showed results comparable to those

from the analysis of all samples; therefore, we reported signifi-

cance values (p values) corresponding to the statistical analysis

of all samples.

Three indices characterizing the effect of treatment onmyogene-

sis were quantified in an unbiased, automated analysis of the entire

exported area: 1) percentage of fluorescent area in the Alexa Fluor

channel, reflecting the level of myosin expression, 2) the longest-

shortest-path reflecting the length, and 3) number of myotubes

(Figure S2). The longest-shortest-path analysis was carried out using

the Analyze Skeleton plugin83 and the shortest path calculation

function84 implemented in Fiji.82We carried out the image analyses

on a Linux computer, andwe allocated 190GB of RAM for these an-

alyses. Themyotube thresholdwas set at 103.97 mm for batch 1 and

191.63mmfor batch2, i.e., themean (batch1 at 54.34 mmandbatch

2 at 100.95 mm) plus three standard deviations (batch 1 SD ¼
16.54 mm, batch 2 SD¼ 30.23 mm) of the length of mononucleated

andmyosin expressingmyocytes (n¼ 35)measured in the negative

control #1 cells. The myotube length variable did not follow

normality, therefore quantile normalization was applied to the var-

iable. All statistical analyseswere adjusted for the image area of each

sample and batch of cells by fitting a linear model on the three

indices investigated; all subsequent statistical analyses were con-

ducted on the residuals, which met the assumptions of normality

and homoscedasticity of residuals. The effect of gene knockdown

on these indices was assessed using ANOVA. After this, a t test was

carried out to evaluate the mean differences between the control

group and the gene knockdown groups. In addition, we used
The American Jour
ANOVA to evaluate the myosin expressing area (as percentage of

the total) present within each knockdown versus control groups.
Results

Over 180 Genomic Loci Associated with ALM in Humans

The ALM ranged from 12.2 to 41.6 kg and 15.3 to 54.5 kg

in healthy middle-aged females and males, respectively

(Table 1). SNP heritability estimates indicated that 36%

of phenotypic variability was due to genetic factors. The

GWAS analysis results presented in Figure 1 revealed

6,693 autosomal variants (MAF > 0.001) associated (p <

5 3 10�8) with ALM (Table S3). The associated variants

tagged 331 genes and 753 regulatory elements. We used

the Functional Mapping and Annotation of Genome-

Wide Association Studies (FUMA GWAS47) to define

genomic regions containing the associated variants, and

we identified 77 of them that on average were 0.40 Mb

long and contained 182 independent signals (Table S4).

We refer to the identified regions and the independent sig-

nals as ‘‘loci’’ throughout the text. The 182 loci identified

indicate that ALM is influenced by multiple genetic ele-

ments. The LD score intercept that we estimated during

this ALM GWAS (1.05 5 0.007 (mean 5 SE)) provides

further evidence suggesting polygenicity. Cumulative

effects of these loci explained 24% of SNP heritability.
nal of Human Genetics 105, 1222–1236, December 5, 2019 1227



Figure 1. Map of Genome Associations with the Appendicular
Lean Mass (ALM) of Humans
Genome-wide association study on the ALM ofmiddle-aged adults
from the UK Biobank. Significance level is presented on the verti-
cal axis, while the chromosomal position of each genetic marker is
shown on the horizontal axis. Red line across the plot represents
the genome-wide threshold of significance (p < 5 3 10�8). This
plot shows the association of variants with minor allele frequency
>0.001.

Figure 2. Genetic Lean Mass Score Affects the Appendicular
Lean Mass (ALM) in Elderly Humans
The plot shows the ALM (kg) of the elderly cohort on the vertical
axis. The elderly cohort was ranked by genetic leanmass score and
clustered in five quantiles (Q1–Q5) (horizontal axis). The average
genetic lean mass score (5standard error) of each quantile is
shown in parentheses below the horizontal axis. The overall quan-
tile effect of the genetic lean mass score on ALM was tested with
the Kruskal-Wallis test, and the resulting p value is presented on
the top horizontal line above the bars. The ALM median differ-
ences between the groups were tested using a Wilcoxon test; the
significance level of each comparison is presented above the hor-
izontal lines with a Holm adjusted p value.
78% of the Same Loci Affect ALM in Older Adults

As expected due to the effect of aging on skeletal muscle,

the ALM in the cohort of elderly adults declined by 4%

and 8% in comparison to the middle-age cohort of females

andmales, respectively (p< 23 10�16). A more prominent

decline in males is consistent with earlier reports.85 We

then used a ‘‘genetic lean mass score’’ (see Material and

Methods for details) to test whether the identified 182

loci contribute to ALM variability in the elderly popula-

tion. The genetic lean mass score had a statistically signif-

icant overall effect (c2 ¼ 376.13, df ¼ 4, p ¼ 3.99 3 10�80)

on ALM variability in the elderly population (Figure 2). On

average, individuals with the highest genetic lean mass

score had 0.73 kg, or 3.2%, more ALM compared to those

with the lowest scores (Figure 2). Negative controls showed

no statistically significant effects (Table S5 and Figure S3).

We also asked if the variants identified in the middle-

aged cohort were associated with ALM in the elderly. A

GWAS in the elderly cohort replicated 5,291 variants based

on their p values (p < 5 3 10�8) and allelic effects (beta);

moreover, the replicated variants tagged 78% of the ALM

loci of the middle-aged cohort (two-tailed Fisher test p

value < 2.2 3 10�16). Overall, the set of genomic loci in

the elderly cohort appeared similar to that of the middle-

aged adults, with the exception of an approximately

5 Mb region on chromosome 5 (Figure S4). This

region showed a very strong association with the ALM vari-

ability in older adults (lowest p value ¼ 4.50 3 10�56,

beta ¼ 0.125 0.01 kg), and had a modest albeit significant

association with the ALM of middle-aged individuals

(lowest p value ¼ 3.30 3 10�11) in which it had an effect

size of 0.07 5 0.01 kg.

23 QTLs Contribute to Muscle Weight Variability in LG/J

and SM/J Strain-Derived Advanced Intercross Lines

We examined the weight of four hindlimb muscles of the

LGSM AIL (F34 and F50–F56): TA, EDL, gastrocnemius, and

soleus. The LGSM AIL muscles showed extensive individ-

ual variability (Table 2); furthermore, the SNP heritabilities

of the TA, EDL, gastrocnemius, and soleus muscles were

0.39, 0.42, 0.31, and 0.30, respectively (Table 2). The
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genome mapping of LGSM AIL muscles yielded 23 QTLs

(p < 6.45 3 10�06). The TA, EDL, and gastrocnemius

QTLs explained more than the 50% of the SNP heritability

of each trait (Table S6). The soleus muscle phenotypic vari-

ability explained by QTLs was 23% of its SNP heritability.

Three QTLs were shared among the four hindlimb muscles

(chromosomes 7, 11, and 13; Figure 3); the QTL on

chromosome 13 resulted in the strongest association

(EDL p ¼ 2.95 3 10�21), with its peak position at

104,435,003 bp, and the percentage of phenotypic vari-

ance explained by this locus was 5.2%; and the SM/J allele

conferred increased muscle mass (Figure 3). Furthermore,

six QTLs were shared between two or three hindlimb mus-

cles, while fourteen identified QTLs were each associated

with just one specific hindlimb muscle (Figure 3).

Themapping resolution was comparable to that attained

in the previous study in the LGSM AIL cohort.8 On

average, mouse QTLs spanned 2.80 Mb (based on the 1.5

LOD interval) and encompassed 2,267 known genes

(Table S7). The median number of genes per QTL was 55,

andmore than half of the mouse QTLs contained amodest

number of genes; however, 7 QTLs contained more than

100 genes each, and a single QTL located on chromosome

7 contained as many as 644 genes (Table S6). Although all

mouse QTLs identified in the LGSMAIL contained SNPs, at

least seven QTLs covered long genomic regions character-

ized as identical by descent between the LG/J and SM/J

strains.59 We also analyzed the LGSM AIL by using a

meta-analysis approach, and we identified 14 QTLs that

on average were 3.78 Mb long. The majority of the QTLs

from the meta-analysis, 12 out of the 14, overlapped
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Table 2. Summary of the LGSM AIL Muscle Traits

n Min Max Average SD SNP Heritability 5 SE

Tibialis Anterior (mg)

Females ¼ 675 26.60 57.20 42.22 5.34 0.39 5 0.03

Males ¼ 1,186 31.60 70.80 50.11 6.73 0.39 5 0.03

Extensor Digitorum Longus (mg)

Females ¼ 675 4.60 10.40 7.52 0.94 0.42 5 0.03

Males ¼ 1,184 5.90 13.30 9.31 1.30 0.42 5 0.03

Gastrocnemius (mg)

Females ¼ 675 64.00 133.00 93.15 10.68 0.31 5 0.03

Males ¼ 1,187 70.20 174.90 119.32 16.32 0.31 5 0.03

Soleus (mg)

Females ¼ 671 3.20 10.30 6.34 1.18 0.30 5 0.03

Males ¼ 1,187 4.00 13.50 7.78 1.64 0.30 5 0.03

Column description from left to right: 1) Number of records, 2) Minimum value within the distribution of each trait, 3) Maximum value within the distribution of
each trait, 4) Average or mean value of each trait distribution, 5) Standard deviation of the mean, 6) SNP heritability for each trait across sex. Summary statistic
values were calculated for each sex group.
with the findings of the mega-analysis (Figure S5). The

meta-analysis results are shown in Table S8.

Interspecies Overlap between ALM Loci and Muscle

Weight QTLs

The ALM mainly consists of the skeletal muscle of the ex-

tremities; however, other tissues also contribute. To test

the hypothesis that ALM-associated genetic variants pri-

marily affect skeletal muscle mass, we overlaid human

ALM findings with those from the mouse in which skeletal

muscle was weighed directly. Specifically, we overlaid the

captured genomic regions restricted by the significant

SNPs used in the GWAS of each species. The mouse QTL re-

gions were notably larger, partially due to the median

distance between adjacent genetic markers of 126.9 Kb.

Our analysis identified five syntenic regions associated

with ALM in humans and hindlimb muscle mass in mice

(Table 3). We used Fisher’s exact test to discover that the

number of overlapping regions significantly (p ¼ 0.0019;

Table S9) exceeded that which could be expected by

chance. This analysis permitted us to shorten the list of

positional candidates. Assuming the same causative entity

for an overlapping mouse and human locus, these five loci

harbor 38 homologous genes (Table 3). Encouragingly,

four of these five genomic loci, which were tagged by

rs148833559, rs9469775, rs4837613, and rs57153895

SNPs (Table S3), were replicated in the ALM of the elderly

cohort (Table S10).

Modifiers of in vitro Myogenesis

We used siRNA-mediated gene knockdown in C2C12 cells

to test whether candidate genes affected myogenic differ-

entiation. STC2,86 CPNE1,5 and SBF287 were prioritized

for this assay because they were highlighted by both

mouse and human GWAS. We assessed indices of
The American Jour
myogenic differentiation (the number and length of the

myotubes and the expression of myosin) of C2C12

cells. In total, 34,989 myotubes were identified and

measured in 44 cell cultures (see Material and Methods

for details). The gene knockdown had a significant effect

on myotube length, with Cpne1 (p ¼ 0.001, 95% confi-

dence interval ¼ 0.019–0.068, effect size ¼ 0.024) and

Stc2 (p¼ 0.015, 95% confidence interval¼ 0.007–0.066, ef-

fect size ¼ 0.017) showing an increase in length compared

to the control cells (Figure 4). There was no significant dif-

ference for Sbf2. The pattern of the effect on myosin ex-

pressing area was similar to that of myotube length, but

it was not statistically significant (p ¼ 0.21). The number

of myotubes was also unaffected.
Discussion

The key findings of the present report are as follows: 1) We

identified a set of over 180 loci associated with ALM; this is

a substantial expansion in comparison to previous human

studies. 2) There is a substantial overlap of the genetic ef-

fects between middle-aged and elderly subjects. 3) Integra-

tion of mouse and human GWAS indicates that skeletal

muscle is the primary component affected by the ALM

loci, facilitates prioritization of candidate genes, and helps

predict those genes’ effect on cellular mechanisms under-

lying muscle mass variation. 4) In vitro studies validated

two genes, CPNE1 and STC2, as modifiers of muscle mass

in humans.

We estimated SNP heritability for ALM to be of 0.36,

which is lower than heritability estimates previously re-

ported (0.44);9 this difference could be due to different

fixed effects used to estimate variance components. In to-

tal, we mapped 182 loci that collectively explain 24% of
nal of Human Genetics 105, 1222–1236, December 5, 2019 1229



Figure 3. Muscle Weight Quantitative
Trait Loci (QTLs) Identified in Mice of
the LGSM AIL and Density Plot of the
Genotypes
The circle plot (A) shows from the outer to
the inner ring the GWAS of the tibialis
anterior, extensor digitorium longus
(EDL), gastrocnemius, and soleus muscle
weights. The chromosomal position of
each SNP is shown in the outer black circle
of the plot; chromosome names are shown
outside as ‘‘Chr.’’ Dots within each chro-
mosome space represent the association
(–log10 p value) of each SNP tested. Dotted
blue lines represent the genome-wide
threshold (p < 6.45 3 10�06) of signifi-
cance, and red dots above the genome-
wide threshold are significantly associated
SNPs.
(B) Plots of the allelic effect of the Skmw34,
Skmw55, and Skmw46 QTLs on the EDL
muscle mass. These QTLs were identified
for the four muscles investigated. The ver-
tical axis represents the residual muscle
mass adjusted for sex, age, dissector, and
long bone length of the hindlimb, and
the horizontal axis shows the genotypes
(LG/J homozygote, heterozygote, and
SM/J homozygote). Below the horizontal
axis, the number of individuals with a
given genotype is provided. The violin
shapes within the plot area represent the
distribution of individuals with the geno-
types. Box whiskers represent minimum
and maximum values, distance between a
whisker and the top or bottom of the box
contains 25% of the distribution, the box
captures 50% of the distribution, and the
bold horizontal line represents the me-
dian. Pairwise comparison p value (t test)
is shown above horizontal lines at the
top of the plots.
the SNP heritability of ALM. The most recent report, a

meta-analysis of 47 independent cohorts (dbGAP), which

were comparable in sample size but had a varied range of

subject ages from 18 to 100 years, reported five significant

associations with lean bodymass.9 Even fewer associations

were detected in the earlier, small sample size studies.11–15

However, our results indicate that ALM is a highly poly-

genic trait in humans. We hypothesize that multiple fac-

tors contributed to the improved locus detection in the

present GWAS. We restricted subjects’ age to a narrow

range, 38 to 49 years, minimizing the effects of the devel-

opmental and aging-related processes on phenotypic vari-

ance. Skeletal muscle is a dynamic tissue that reaches its

peak mass by a person’s late 20s, and then a trend of

decline emerges after the 40s and accelerates about two

decades later.1 An estimated 30%–50% decline in muscle

mass can be expected between 40 and 80 years of age.88

These developmental and aging-related changes are not

linear in progression and therefore would hamper detec-

tion of loci even if accounted for in a linear model. In addi-
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tion, unlike the research by Zillikens and colleagues,9 we

used a dataset that was systematically collected as

described by the UKB project,16 and we only employed

bioelectric impedance measurements of lean mass.

Furthermore, we used an LMM to test the effects of >21

million variants (MAF > 0.001), and our analysis was

adjusted for a different set of fixed effects than in previous

research.9,11,13,15 Our analysis captured three loci identi-

fied by Zillikens and colleagues,9 containing VCAM,

ADAMTSL3, and FTO; these data suggest that the effects

of these variants are not influenced by age.We hypothesize

that a combination of a homogeneous age group, the opti-

mized genomic coverage, and the method used to conduct

this association analysis contributed to improved detec-

tion of loci in the present study.

The analyses presented here shed light on the complex

genetic mechanisms behind the appendicular muscle

mass of humans. In the past, concern was expressed about

the reproducibility of association analyses of complex

traits; however, an increasing number of human GWAS
ember 5, 2019



Table 3. Syntenic Regions between Human ALM Loci and Mouse Muscle QTLs and Positional Candidate Genes

Human Locus
Peak Pos

Mouse QTL
Peak Pos
(Syntenic To
Human)

Elderly Cohort
p Value

Gene
Symbol Human Gene Name

Differential
Expression in
Mouse Soleus

5:64555615 13:104435003 NS ADAMTS6 ADAM metallopeptidase with thrombospondin type 1
motif 6

0.44

5:172755066 11:31680504 5.6 3 10�11 STC2 stanniocalcin 2 0.97

6:34335091 17:34968724 7.1 3 10�09 HLA-B Major histocompatibility complex, class I, B 0.77

- - - HLA-DQB1 major histocompatibility complex, class II, DQ beta 1 0.76

- - - BTNL2 butyrophilin like 2 n/a

- - - TSBP1 testis expressed basic protein 1 n/a

- - - PBX2 PBX homeobox 2 n/a

- - - ATF6B activating transcription factor 6 beta 0.74

- - - TNXB tenascin XB 0.63

- - - C4B complement C4B (Chido blood group) 0.37

- - - STK19 serine/threonine kinase 19 0.43

- - - SKIV2L Ski2 like RNA helicase 0.83

- - - NELFE negative elongation factor complex member E n/a

- - - AL645922.1 novel complement component 2 (C2) and complement
factor B (CFB) protein

0.99

- - - C2 complement C2 0.43

- - - EHMT2 euchromatic histone lysine methyltransferase 2 0.78

- - - SLC44A4 solute carrier family 44 member 4 n/a

- - - NEU1 neuraminidase 1 0.15

- - - HSPA1L heat shock protein family A (Hsp70) member 1 like 0.04

- - - LSM2 LSM2 homolog, U6 small nuclear RNA and mRNA
degradation associated

0.93

- - - VARS valyl-tRNA synthetase 0.95

- - - VWA7 von Willebrand factor A domain containing 7 n/a

- - - MSH5 mutS homolog 5 n/a

- - - CLIC1 chloride intracellular channel 1 0.48

- - - AL662899.1 novel transcript n/a

- - - ABHD16A abhydrolase domain containing 16A 0.95

- - - AL662899.2 novel protein n/a

- - - CSNK2B casein kinase 2 beta 0.43

- - - GPANK1 G-patch domain and ankyrin repeats 1 0.02

- - - APOM apolipoprotein M n/a

- - - BAG6 BCL2 associated athanogene 6 0.86

- - - PRRC2A proline rich coiled-coil 2A 0.5

- - - ATP6V1G2 ATPase Hþ transporting V1 subunit G2 0.88

- - - DDX39B DExD-box helicase 39B 0.46

9:119309525 4:65416188 1.2 3 10�08 ASTN2 astrotactin 2 0.01

11:10322720 7:109218379 6.6 3 10�17 SBF2 SET binding factor 2 0.76

(Continued on next page)
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Table 3. Continued

Human Locus
Peak Pos

Mouse QTL
Peak Pos
(Syntenic To
Human)

Elderly Cohort
p Value

Gene
Symbol Human Gene Name

Differential
Expression in
Mouse Soleus

- - - ADM adrenomedullin n/a

- - - AMPD3 adenosine monophosphate deaminase 3 0.06

Column description from left to right: 1) Human appendicular lean mass (ALM) locus peak position as ‘‘chromosome: base pair position,’’ 2) LGSM muscle QTL
peak position as ‘‘chromosome: base pair position’’ (syntenic to human), 3) Elderly cohort p value (NS: not significant), 4) Human gene symbol, 5) Human gene
name, 6) Adjusted p value of differential expression between the soleus muscle of the LG/J and SM/J mouse strains (n/a: data not available).25
have shown that their findings are remarkably reproduc-

ible.89 The present study provides further support for the

reliability of association studies, demonstrating replication

of 78% of ALM loci in the elderly cohort. Furthermore, we

show that the genetic profile characterized by depletion

of ALM-increasing alleles leads to a lower ALM in elderly

individuals (Figure 2). Hence, it is conceivable that

genetic architecture predisposing individuals to lower

muscle mass may lead to elevated risk of sarcopenia.1

Combining two experimental models, mouse and hu-

man, facilitated prioritization of candidate genes for func-

tional validation and indicated that skeletal muscle is the

primary component of lean tissues affected by the identi-

fied loci. Furthermore, the mouse model revealed that ge-

netic effects may not all be uniform across skeletal muscle

tissue; instead, some of the effects can be muscle type- or

muscle-specific. To establish the association between the

QTGs of the identified loci and the muscular phenotype,

we focused on the overlapping human and mouse results.

Integration of results from these two species permitted

circumvention of the limitations imposed by the individual

models. While human GWAS often identify loci containing

single genes, it is often unclear which tissue ismost relevant

to the phenotype. Although mouse QTLs often contain

multiple positional candidate genes, mice can be used as

experimental models to identify loci specifically associated

with skeletal muscle. In this study, we used a mouse model

to show that the association with hindlimb skeletal muscle

mass was specifically related to differences in the cross-

sectional area of the constituent muscle fibers, rather than

to the number of fibers in the muscle. This is because be-

tween the two founders of the LGSM AIL, the LG/J strain

compared to the SM/J strain shows over 50% larger cross-

sectional area of muscle fibers, but no difference in the

number of fibers in soleusmuscle.22 Hence, it is conceivable

that the QTGs of the majority of the overlapping loci

affected hindlimbmusclemass specifically via the hypertro-

phy of muscle fibers. Such prioritization between the two

cellularmechanisms ofmusclemass variability is important

because genes specifically influencing cross-sectional area

of muscle fibers can be targeted pharmacologically to pre-

vent and reverse atrophy of muscle fibers in aging mus-

cle.90 In humans, the bone, muscle, and skin tissues

contribute to lean mass determined by bioelectric imped-

ance. Approximately 1–2 mm thick skin91 constitutes a

rather minor component of lean mass compared to the
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size of human extremities. The long bones determine axial

dimensions of a limb, but we adjusted for that to minimize

bone effect on variation of lean mass. Magnetic resonance

imaging (MRI) assessed muscle mass accounts for �38%

of body weight in humans, and the MRI data strongly

and positively correlate with the estimates of bioelectric

impedance.92 This, collectively with the overlap of the

ALM loci and mouse muscle QTLs, provides strong support

for the notion that skeletal muscle is the primary tissue

affected by the ALM loci.

For the functional validation, we prioritized three candi-

date genes (STC2, SBF2, andCPNE1) implicated by both hu-

man andmouse analyses. STC2had the largest effect size on

the ALM (beta ¼ 0.88 5 0.13 kg; Table S3), and it had the

minor allele, A, of a missense SNP (rs148833559; A/C) asso-

ciated with the increase in ALM. Prediction algorithms

(SIFT,54 PolyPhen,52 CADD,93 and REVEL94) suggested a

detrimental consequence of rs148833559 on STC2 struc-

ture. SBF2 has been linked to Charcot-Marie-Tooth heredi-

tary motor and sensory neuropathy,87 and it is expressed

in skeletal muscle and associated with a cis-eQTL.56

Although little is known about CPNE1, it is an intriguing

candidate because the minor allele of the missense variant

(rs12481228) is predicted by SIFT54 and PolyPhen53 to be

detrimental to the structure of CPNE1. That allele was asso-

ciated with increased ALM in the middle-aged cohort, and

a frameshift variant (rs147019139) leading to premature

stop codon was also associated with an increase in ALM in

the elderly cohort (Table S10). Furthermore, in a previous

GWAS using outbred CFW mice,5 Cpne1 was implicated in

hindlimb muscle mass. To validate these QTGs for their ef-

fects on skeletal muscle, we tested the siRNA-mediated

knockdown effect on myogenesis in vitro. A knockdown of

two genes,CPNE1 and STC2, increased the lengthof themy-

otubes. Although it is not completely understood how

changes in the indices of in vitro myogenesis correlate with

the fiber hypertrophy and/or hyperplasia in vivo, our find-

ings implicate an upregulation of myogenic differentiation.

We interpret this invitroobservationasbeingconsistentwith

the allelic effect of the two loci identified in human GWAS.

CPNE1 encodes Copine 1, a soluble calcium-dependent

membrane-binding protein95 expressed in skeletal mus-

cle.25 STC2 encodes Stanniocalcin 2, a homodimeric glyco-

protein hormone abundantly expressed in skeletal56 and

cardiacmuscle96 and involved in regulationof IGF1 through

interaction with pregnancy-associated plasma protein-A.97
ember 5, 2019



Figure 4. Gene Knockdown Effect on C2C12 Myotube Length
This figure shows the gene knockdown effect of the Cpne1, Sbf2,
and Stc2 genes on myotube length. The overall effect of the gene
knockdown on myotube length was tested through the use of
ANOVA, and the resulting p value was 0.00017 (F3, 34985 ¼ 6.63).
The vertical axis represents the myotube length (quantile normal-
ized) residuals (adjusted for area analyzed and batch of cells), and
the horizontal axis shows control and knockdown gene groups.
Boxes represent the distribution of the myotube length for each
group. Box whiskers represent minimum and maximum values
within 1.5-fold interquartile range above the 75th percentile and
below the 25th percentile; the box captures 50% of the distribu-
tion, and the bold horizontal line represents the median value of
the myotube length normalized residuals distribution for each
knockdown group. Each dot represents a single cell culture sample
for each knockdown group. Statistically significant t–test p values
between control and knockdown genes are presented above hori-
zontal lines. Effects without a statistically significant difference be-
tween the control and gene knockdown are presented as ‘‘ns.’’
Cpne1 and Stc2 knockdown groups were not different from each
other (p > 0.05). Sbf2 knockdown differed from Cpne1 (p ¼
0.002) and Stc2 (p ¼ 0.043).
A suppressive role of STC2 is consistentwith reducedmuscle

mass in the STC2-overexpressing mice.86 Hence, our ana-

lyses and recent reports provide support for the possibility

that CPNE1 and STC2 are suppressors of muscle mass devel-

opment and/or maintenance in humans.

In conclusion, the present study integrated human and

mouse GWAS and used in vitro validation to further inter-

rogate a subset of the genes implicated in both species.

Our results revealed over 180 genomic loci contributing

to ALM inmiddle-aged humans. The effects of themajority

of these loci persist in the elderly human population. Inte-

gration of human and mouse data also highlighted candi-

date genes affecting skeletal muscle mass in mammals.

Two genes, CPNE1 and STC2, were confirmed to be modi-

fiers of in vitro myogenesis.
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