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A Fast and Accurate Method for Genome-wide Scale
Phenome-wide G 3 E Analysis and Its
Application to UK Biobank

Wenjian Bi,1,2 Zhangchen Zhao,1,2 Rounak Dey,1,2,3 Lars G. Fritsche,1,2 Bhramar Mukherjee,1

and Seunggeun Lee1,2,*

The etiology of most complex diseases involves genetic variants, environmental factors, and gene-environment interaction (G 3 E)

effects. Compared with marginal genetic association studies, G 3 E analysis requires more samples and detailed measure of environ-

mental exposures, and this limits the possible discoveries. Large-scale population-based biobanks with detailed phenotypic and environ-

mental information, such as UK-Biobank, can be ideal resources for identifying G3 E effects. However, due to the large computation cost

and the presence of case-control imbalance, existing methods often fail. Here we propose a scalable and accurate method, SPAGE (Sad-

dlePoint Approximation implementation of G 3 E analysis), that is applicable for genome-wide scale phenome-wide G 3 E studies.

SPAGE fits a genotype-independent logistic model only once across the genome-wide analysis in order to reduce computation cost,

and SPAGE uses a saddlepoint approximation (SPA) to calibrate the test statistics for analysis of phenotypes with unbalanced case-control

ratios. Simulation studies show that SPAGE is 33–79 times faster than the Wald test and 72–439 times faster than the Firth’s test, and

SPAGE can control type I error rates at the genome-wide significance level even when case-control ratios are extremely unbalanced.

Through the analysis of UK-Biobank data of 344,341 white British European-ancestry samples, we show that SPAGE can efficiently

analyze large samples while controlling for unbalanced case-control ratios.
Introduction

Most complex diseases, such as type 2 diabetes and can-

cers, have an etiology influenced by genetic variants, life-

styles, and environmental factors. Besides their marginal

effects, the gene-environment interaction (G 3 E) also

plays an important role for complex diseases and is worthy

of comprehensive investigation. Identifying G 3 E effects

is particularly important for personalized and stratified

prevention and treatment. However, compared to identi-

fying genetic marginal effects, more samples and detailed

environmental exposure information are required in order

to identify G 3 E effects, and this limits the possible

discoveries.1–9

The advances in genotyping technologies and electronic

health records (EHRs) make it possible to genotype hun-

dreds of thousands of samples and identify a large number

of traits.10–15 For example, UK Biobank includes 500,000

genotyped samples and more than 1,000 phenotypes and

exposures from ICD billing codes, web surveys, and lab

measurements.16 Through genome-wide 3 phenome-

wide association analysis, these massive datasets have re-

sulted in a considerable number of new genetic associa-

tions across different phenotypes, and the associations

could provide evidence for pleiotropy or shared pathways

for disease pathogenesis.17–19 All these motivate the devel-

opment of genome-wide scale phenome-wide G 3 E study

(PheWIS).

Currently, however, no scalable statistical methods exist

for a genome-wide scale G 3 E study of thousands of
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phenotypes in large biobanks. For the analysis of genetic

marginal effects, the score test has provided fast computa-

tion. In contrast to Wald and likelihood ratio tests, the

score test does not require us to fit the model under the

alternative hypothesis. Score tests use the parameter esti-

mates under the null hypothesis to calculate test statistics

and p values. Because the null model for marginal genetic

effects does not include genetic variants, for a single

phenotype, score tests require fitting one null model

only and use it for the genome-wide tests.20,21 However,

for the analysis of G 3 E, because the null model includes

genetic variants to adjust for genetic marginal effects, the

same trick cannot be used. Score tests for G 3 E need to

fit a separate model for each variant, which results in

tens of millions of model fittings, like Wald and likelihood

ratio tests.22 For example, suppose that fitting a single

model takes �1.7 s (as in Supplementary Methods in the

Supplemental Data: a standard logistic regression with

400,000 samples and five covariates); in that case, fitting

20 million models would take more than 1 year. Although

more optimized tools such as CGEN23 and GxEScan24 have

been developed, because these tools mainly implement the

Wald test, the computation burden is still very high.

Alternatively, a two-step procedure which screens out

variants based on marginal genetic associations can be

used instead.25–30 However, because this approach ex-

cludes a majority of variants in the screening step, it can

miss potential G 3 E and cannot generate genome-wide

summary statistics of G 3 E; these summary statistics

can be useful resources for phenome-wide analysis, for
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meta-analysis, or as a validation dataset.31–33 Another

possible two-step procedure is a case-only (CO) analysis

for screening followed by a case-control test to validate

the association.34–36 This is a computationally efficient

approach, especially when case-control ratio is low. How-

ever, as shown in our simulation studies, CO analysis can

be less powerful than case-control analysis for a cohort

study design. In addition, when the gene-environment in-

dependence assumption is violated, CO analysis can be

biased.5

Given that the data are collected in large cohorts, unbal-

anced case-control ratios are commonly observed. For

example, most binary phenotypes in UK Biobank (1,431

out of 1,688; 84.8%) have case-control ratios lower than

1:100.15 These unbalanced case-control ratios will result

in incorrect type I error rates. For the genetic marginal ef-

fect test, saddlepoint approximation (SPA) has been used

to control the type I error rates in such situations.12–15,37

However, the effect of case-control imbalance for the G

3 E analysis has not been well studied.

In this paper, we propose a SaddlePoint Approximation

implementation of G3 E analysis (SPAGE), a fast and accu-

rate method that is scalable for a genome-wide scale single-

variant G3 E analysis and is well calibrated for controlling

type I error rates even under unbalanced case-control ra-

tios. The proposedmethod fits a genotype-independent lo-

gistic model only once for the genome-wide analysis and

then uses a conditional expectation to exclude the mar-

ginal genetic effect. The SPA, instead of normal approxima-

tion, is used to calibrate p values so that type I error rates

can be controlled under unbalanced case-control ratios.

The method is valid for analyzing both hard-called geno-

types and imputed dosage values. Through simulation

studies and applications to UK Biobank data of 344,341

unrelated samples from white British participants, we

demonstrate that SPAGE is computationally feasible, can

control type I error rates, and is sufficiently powerful to

identify several G 3 E signals for a number of diseases

including chronic airway obstruction (CAO), cardiac dys-

rhythmias (CDR), and hyperlipidemia (HLD).
Material and Methods

Logistic Regression Model and Score Statistics
For a single-variant test, we consider the following logistic model

HQ:

logit
�
mQ
i

�¼XT
i bX þ EibE þGibG þGiEibG3E; i ¼ 1;2;.;N;

where mQ
i ¼ PrðYi ¼ 1jXi;Gi;EiÞ is the probability of a binary

phenotype (e.g., disease status) Yi ¼ 1 for subject i, conditional

on the covariates, genotypes, and an environmental factor. We

let Xi denote a p31 vector of covariates including the intercept;

Gi the hard-called genotypes ðGi ¼ 0; 1; 2Þ, genotypes

ðGi ¼ 0; 1Þ following a dominant or recessive model,38 or dosage

values of the genetic variant to be tested; Ei the environmental fac-

tor of interest; bX a p31 coefficient vector corresponding to cova-

riates; bG the marginal genetic effect; bE the marginal environ-
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mental effect; and bG3E the G 3 E effect. N is the total number

of all samples. Suppose that covariates matrix X, genotype vector

G, and G 3 E interaction vector GE are

X¼
0
@XT

1 E1

« «

XT
N EN

1
A; G ¼

0
@ G1

«
GN

1
A; GE ¼

0
@ G1E1

«
GNEN

1
A;

then the matrix form of the model HQ is

logitðmQÞ ¼ XaþGbG þGEbG3E where a ¼ ðbTX;bEÞ
T
.

Under the model HQ, we are interested in testing for the mar-

ginal G 3 E effect. The classic score test first fits the null model

H0 : bG3E ¼ 0 to estimate ðbaH0 ; bbH0

G Þ, and then calculates

bmH0 ¼ logit�1ðXbaH0 þGbbH0

G Þ and uses SH0 ¼ GT
E ,ðY �bmH0 Þ as a test

statistic with a mean of zero. Because the null models H0 vary

for different variants, this strategy requires a separatemodel fitting

for each variant, which is computationally expensive for a

genome-wide analysis.

Instead of fitting the null model H0, we fit a genotype-indepen-

dentmodel,Hc : bG ¼ bG3E ¼ 0, to estimate bac, and thenwe calcu-

lated bmc ¼ logit�1ðXbacÞ as the estimated probability of being a case

under the model Hc. Suppose that W is an N3N matrix with

bmc
i ð1�bmc

i Þ as the ith diagonal element, and

~G¼G�X
�
XTWX

��1
XTWG; ~GE ¼ GE �X

�
XTWX

��1
XTWGE;

are covariate-adjusted vectors in which covariate effects are pro-

jected out from genotype and G 3 E interaction vectors, respec-

tively. We propose a test statistic S ¼ ð~GT

E � l~G
T Þ,ðY � bmcÞ, where

l ¼ ~G
T

EW
~G=~G

T
W ~G. In Appendix A, we use Taylor expansion to

show that S approximates SH0 , and the variance of S, VarðSÞ, is
approximated by ð~GT

E � l~G
T ÞWð~GE � l~GÞ.

Using statistic S to approximate SH0 greatly reduces the computa-

tion time because S requires fitting the genotype-independent

model Hc only once for a genome-wide analysis. However, because

the approximation is based on Taylor expansion around ða ¼ bac;b ¼
0Þ, it can provide inaccurate results when the marginal genetic ef-

fect is large. To avoid possible inflated type one error rates caused

by an inaccurate approximation, we use a hybrid strategy to deter-

mine the appropriate test statistic. We first conduct a standard score

test to test for the marginal genotype effect by using score test sta-

tistic SG ¼ ~G,ðY � bmcÞ. If the score test p value is greater than a

pre-selected cutoff ε, we use S as the test statistic. Otherwise, we es-

timate bmH0 and calculate SH0 as the test statistic. This hybrid strategy

is a pragmatic compromise between efficiency and accuracy. We set

the cutoff ε ¼ 0:001 in simulation studies and real data analyses.

For the subset of variants whose marginal genetic effect p value

< ε, we use a method developed by Dey et al. to calculate SH0 .

Instead of fitting the model H0, this method estimates the genetic

effect bbH0

G based on score statistics SG while adjusting for covari-

ates.39 Compared to the Firth’s method, this method reduces the

computational complexity from O(Nk2þk3) to O(N), where k is

the number of non-genetic covariates. In this paper, we first use

this method to estimate the marginal genetic effect bbH0

G . Then

we update baH0 ¼ bac � ðXTWXÞ�1XTWGbbH0

G and estimate

bmH0 ¼ logit�1ðXbaH0 þGbbH0

G Þ and SH0 ¼ GT
E ,ðY � bmH0 Þ.

The hybrid strategy above is different from the conventional

two-step methods. The two-step methods only calculate G 3 E p

values of the variants whose marginal genetic effect p values are

below the threshold, but the proposed approach obtains G 3 E p

values across the whole genome regardless of their marginal
nal of Human Genetics 105, 1182–1192, December 5, 2019 1183



genetic effects. Compared to the constrained marginal G 3 E test

under a constrained model bG ¼ 0, the proposed test statistic ad-

justs for the marginal genetic main effect (see Appendix A).
p Value Calculation with Saddlepoint Approximation
The classical likelihood-based test approximates the null distribu-

tion of statistics S through the use of a normal distribution with a

mean EðSÞ and a variance VarðSÞ. The normal approximation

works well when the statistic S is near themean of the distribution,

but it performs poorly at the tails, especially when the underlying

distribution is highly skewed, such as in an unbalanced case-con-

trol setting. In this situation, SPA performs well because higher

moments can be incorporated. Because our test statistic can be

written as a weighted sum of mean adjusted Yi given bmc
i ,

S¼
XN
i¼1

��
~GE

�
i
� l~Gi

�
,
�
Yi � bmc

i

�

and Yi � Bernoulliðbmc
i Þ, the entire cumulant-generating function

(CGF) of S is

KðtÞ¼
XN
i¼1

log
�
1� bmc

i þ bmc
i e

Di t
�� t

XN
i¼1

Di,bmc
i ;

where Di ¼ ð~GEÞi� l~Gi. The distribution of S at the observed statis-

tic s can be approximated by PrðS < sÞz~FðsÞ ¼ Ffu þ
1 =u ,logðn =uÞg, where u ¼ sgnðbt Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðbt s� Kðbt ÞÞq
; n ¼ bt ffiffiffiffiffiffiffiffiffiffiffiffi

K00ðbt Þq
, bt

is the solution to the equation K
0 ðbt Þ ¼ s, and F is the distribution

function of a standard normal distribution. When the testing is

based on the classic score statistic SH0 , i.e., marginal genetic effect

p value < ε, we can simply follow the SPA proposed by Dey et al.12
Implementation Details and Approaches to Reducing

Computation Time
Because the normal approximation behaves well near the mean of

the distribution, we can use it to obtain the p values when the

observed score statistic lies close to the mean of 0.12 We apply

the normal approximation to obtain a p value if the absolute value

of the observed score statistic jS j < rs, where s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞp

and r is

a pre-specified value. For example, we use r ¼ 2 in our simulation

studies and real-data analyses. When jS jRrs, we use the SPA to

obtain calibrated p values in tail areas. Because using the normal

approximation takes less time than using the SPA, this approach

also reduces the computation time.12

Similar to the fastSPA method12 designed for genetic marginal

effects, the SPA method requires only OðNÞ computations and

can be further decreased to OðmÞ computations, in which m is

the number of non-zero elements in G. Since N3ðpþ1Þ matrix

XðXTWXÞ�1 can be pre-calculated, and matrix W is diagonal,

the calculations of ~G and ~GE require OðpNÞ multiplications. Given
~G and ~GE, the calculations of the score statistics S and the corre-

sponding variances VarðSÞ take OðNÞ multiplications. Hence, the

total computation complexity is still OðpNÞ.
Numeric Simulations
We carried out extensive simulation studies to evaluate computa-

tion time, type I error rates, and powers of SPAGE. Three case-con-

trol ratios were considered: balanced (case:control ¼ 1:1), moder-

ately unbalanced (case:control ¼ 1:9), and unbalanced

(case:control ¼ 1:99). For each choice of case-control ratios, a
1184 The American Journal of Human Genetics 105, 1182–1192, Dec
binary phenotype for individual i was simulated from the

following logistic model:

logit½PrðYi ¼1Þ� ¼a0 þ 0:5 X1i þ 0:5 X2i þ 0:5 Ei þ GibG

þ ðGEÞibG3 E (1)

where a binary covariate X1i was simulated following a Ber-

noulli(0.5) distribution, a continuous covariate X2i was simulated

following a standard normal distribution, an environmental factor

Ei was simulated following a standard normal distribution, and a

genotype Gi was simulated following a binomialð2; pÞ distribution
where p is the minor allele frequency (MAF). Parameters bG and

bG3E are log odds ratios of the marginal genetic effect and the G

3 E effect, respectively. Intercept a0 was chosen to correspond to

the given case-control ratio.

To evaluate computation time in realistic scenarios, we

randomly sampledMAFs from theMAF distribution in the UK-Bio-

bank dataset and then simulated 10,000 variants with bG ¼
bG3E ¼ 0. Two scenarios were considered in order to compare

computation time for differentmethods. First, we fixed the sample

size at 400,000 and increased the total number of covariates from 5

to 30. Then, we fixed the number of covariates at 15 and increased

the sample size from 10,000 to 400,000. Besides the two covariates

X1i and X2i in Equation (1), the other covariates were simulated

following a standard normal distribution. We compared the

computation time of six different tests: Wald test for the logistic

regression that fits a complete model for each variant (Wald),

Firth’s penalized likelihood ratio test (Firth’s test), the normal-

approximation-based test (SPAGE-NoSPA), the fast SPA-based test

with a standard deviation threshold r ¼ 2 (SPAGE), the con-

strained maximum likelihood method (CML) implemented in R

package CGEN (version: 3.18.0), and the CO approach imple-

mented in GxEScan (version: 1.0). As the same as CO, CML as-

sumes the gene-environment independence. The CO approach

in GxEScan uses a polytomous logistic regression to adjust for co-

variates. We modified the core codes (C in CGEN and Cþþ in

GxEScanR) to suppress the unnecessary parts so that we can accu-

rately record the computation time of CML and CO.

To evaluate type I error rates under the null model bG3E ¼ 0, we

fixed the sample size at 50,000 and simulated 109 variants of which

99.9% had no marginal genetic effect and the other 0.1% had mar-

ginal genetic effects with an odds ratio of 1.4. This corresponds to

having1,000causalvariants inananalysiswithonemillionvariants.

We compared empirical type I error rates ofWald, Firth’s test, SPAGE-

NoSPA, and SPAGE at significance levels a ¼ 5310�5 and 53 10�8.

In addition, we also evaluated SPAGE when the marginal genetic

odds ratio ranged from 1.1 to 1.5. Due to the heavy computational

burden, it is practically impossible to perform Wald and Firth’s test

109 times. Following Dey et al.,12 we performed a hybrid approach

in which we used Wald and the Firth’s test to calculate p values

only when the SPAGE p values were smaller than 53 10�3.

To evaluate powers under the alternative model, we fixed the

sample size at 50,000, considered a wide range of ðbG; bG3EÞ, and
simulated 105 variants for each choice of ðbG; bG3EÞ. We compared

the empirical powers of SPAGE, Wald, and Firth’s tests at signifi-

cance levels a ¼ 5310�5 and 53 10�8. We also evaluated CML

and empirical Bayes (EB) implemented in CGEN. Note that all

datasets were simulated following a cohort study design.
Application to UK Biobank Data
To illustrate the performance in a real-data application, we applied

the proposed methods to UK Biobank. Environmental factors and
ember 5, 2019



Figure 1. Projected Computation Time (CPU Years) for Testing 1,500 Phenotypes across 20 Million Variants
The time is projected based on a simulated dataset with 10,000 variants. For example, suppose that it takes a h to analyze 10,000 variants;
then the projected computation time for 20 million variants would be 2,000 3 a h. The computation is performed on a CPU of an
Intel(R) Xeon(R) E5-2680 v3 @ 2.50GHz processor. Three case-control ratios: balanced with 50% cases and 50% controls, moderately
unbalanced with 10% cases and 90% controls, and unbalanced with 1% cases and 99% controls. Minor allele frequencies are sampled
from a minor allele frequency distribution of the UK Biobank dataset.
phenotypes were defined based on UK Biobank field ID (FID) and

PheWAS codes (PheCodes), respectively.12,13,15,16,18,40 We selected

79 pairs of environmental factors and phenotypes (see Table S3)

including five environmental factors: smoking status (FID:

20116), vigorous physical activity (FID: 904), moderate physical

activity (FID: 804), gender (FID: 31), and alcohol intake frequency

(FID: 1558). More details about these environmental factors can be

seen in Supplementary Methods in the Supplemental Data.

We randomly selected 344,341 unrelated samples from white

Britishparticipantsandrestrictedouranalysis tomarkersdirectlygen-

otyped or imputed by theHaplotype Reference Consortium (HRC)41

panel due to quality control issues of non-HRCmarkers reported by

UK Biobank. Approximately 28 million markers with minor allele

counts (MAC) R 20 and imputation info scores > 0.3 were used in

the analysis. For eachbinaryphenotype,we further removedmarkers

with less than five minor alleles in the cohort of cases.

We incorporated the first four principal components plus birth

year, gender, and the environmental factor of interest as covariates

to fit null models. Smoking status was encoded to numeric vari-

ables of 0, 1, and 2 to represent never, former, and current smoker,

respectively. Vigorous and moderate physical activities were en-

coded to categorical variables ranging from 0 to 7 based on the

number of days per week the individual exercised for 10þ
minutes. Alcohol intake frequency was encoded to categorical var-

iables ranging from 1 (daily or almost daily) to 6 (never). When

fitting a null model, we considered the physical activities and

alcohol intake frequency as categorical variables in order to avoid

inaccurate type I error rates because most complex diseases were

not additively affected by these variables.42 On the other hand,

when calculating G 3 E interaction vector GE, we considered the

physical activities and alcohol intake frequency as numeric vari-
The American Jour
ables in order to avoid testing with multiple degrees of freedom.

We applied the SPAGE-NoSPA and SPAGE methods to the

genome-wide analyses for all 79 pairs of environmental factors

and phenotypes, and we used Wald and Firth’s test for only one

pair of alcohol and colorectal cancer. In addition, we also used

Wald and Firth’s test for all variants identified by SPAGE method

at a significance level of 53 10�8.
Results

Comparison of Computation Time

The projected computation time for testing 1,500 pheno-

types across 20 million variants via different methods is

presented in Figure 1 and Table S1, which shows that

SPAGE performed 72–439 times faster than Firth’s test

and 33–79 times faster than Wald test. CO took similar

time as SPAGE did when the case-control ratio was 1:99,

and both were much faster than CML. This is because

CO uses case samples only, but CML uses both case and

control samples. For example, in an unbalanced case-con-

trol setup of 4,000 cases and 396,000 controls, when

analyzing 20 million variants across 1,500 phenotypes

while adjusting for 15 covariate variables, Firth’s test,

Wald test, and CML would require 13,032, 3,010, and

4,517 CPU years, respectively, whereas SPAGE and CO

would require only 48.7 and 40.9 CPU years. Hence,

SPAGE and CO required 18 days and 15 days (without

data reading) on a cluster with 1,000 CPU cores, but Firth’s
nal of Human Genetics 105, 1182–1192, December 5, 2019 1185



Figure 2. Empirical Type I Error Rates of SPAGE, SPAGE-NoSPA, Wald, and Firth Tests
Empirical type I error rates were estimated based on 109 simulated variants, of which 99.9% had nomarginal genetic effect and the other
0.1% had marginal genetic effects with an odds ratio of 1.4. From left to right, the plots consider case-control ratios of 25,000:25,000
(balanced), 5,000:45,000 (moderately unbalanced), and 500:49,500 (unbalanced).
test, Wald, and CML needed 12.96, 3, and 4.5 years, respec-

tively. Interestingly, when case-control ratio was 1:9,

SPAGE was 3.5 times faster than CO (47.57 versus 166.34

CPU years), although CO used only 10% of samples. This

may be due to the fact that the model fitting of a polyto-

mous regression is generally slow. Both Wald and Firth’s

test took more time when case-control ratio was more un-

balanced. This is because the regression took more itera-

tion steps to get a converged parameter estimation (see

Supplementary Methods in Supplemental Data).
Type I Error Simulation Results

The results of empirical type I error rates based on 109

simulated variants with bG3E ¼ 0 are presented in Figure 2

and Table S2. Note that 0.1% of variants (106 variants) were

simulated with nonzero bG ¼ logð1:4Þ:Under balanced and

moderately unbalanced case-control ratios, SPAGE and

Firth’s test controlled type I error rates regardless of com-

mon, low-frequency, or rare variants. Meanwhile, Wald

had deflated type I error rates and SPAGE-NoSPA had in-

flated type I error rates, especially when testing rare vari-

ants with a MAF of 0.001. Under an unbalanced case-con-

trol ratio, Wald and SPAGE-NoSPA had more deflated and

inflated type I error rates, respectively, while SPAGE and

Firth could still control type I error rates reasonably well.

The results of empirical type I error rates based on 106

simulated variants with bGs0 are presented in Figure S1.

If the hybrid strategy was not used to adjust for statistics

(denoted as RAW SPAGE and RAW SPAGE-NoSPA), as an in-

crease inmarginal genetic effect bG, the type one error rates

of p values increased slowly but constantly. Meanwhile, in

these situations, the hybrid strategy provided a better type

I error rates control.
Power Simulation Results

Next, we compared the empirical powers of SPAGE, Wald,

Firth’s test, CML, CO, and EB. Because SPAGE, Wald and
1186 The American Journal of Human Genetics 105, 1182–1192, Dec
Firth’s test areallbasedonaprospective likelihood, theempir-

ical powers of these three methods were similar (see Figure 3

and Figure S2). Only when we tested low-frequency or rare

variants under an unbalanced case-control ratio, Firth’s test

was more powerful than SPAGE; both of these were more

powerful than Wald. Although more powerful, Firth’s test

and SPAGE still required very a large effect size to detect a

low-frequency or rare variant in G3 E analysis; this result is

not commonly observed in a practical application.

The results of power comparisons of SPAGE, CML, and EB

are presented in Figure 4 and Figure S3. Interestingly, the po-

wer of SPAGE was generally larger than that of CML and EB.

The differences among SPAGE, CML, and EB depended on

the case-control ratio, e.g. the prevalence of disease in the

cohort. When the case-control ratio was 1:1 or 1:9, SPAGE

was more powerful than CML regardless of minor allele fre-

quencies and effect sizes. When the case-control ratio was

1:99, the powers of CML, EB, and SPAGE were similar. The

advantage of SPAGE over CML and EB was mainly due to

the fact that the data are from a cohort study design instead

of a case-control study design. Figure S4 compared empirical

powers of SPAGE, CML, and EB methods under different

study designs. Under a case-control study design, CML

and EBweremore powerful than SPAGE, and under a cohort

study design, SPAGE was more powerful than EB and CML.

We do not show CO because it had a nearly identical power

as CML. When testing low-frequency or rare variants with

moderate or high G 3 E effects, CO was generally unstable,

especially when case-control ratio was 1:99 (see Figure S5).

In terms of powers (assuming G-E independence), under a

case-control study design, we still recommend CML and

EB methods, and under a cohort-based study design, we

recommend the SPAGE method.
Application to UK Biobank Data

Weapplied theproposed SPAGE toUKBiobank toanalyze 79

combinations of environmental factors and phenotypes.
ember 5, 2019



Figure 3. Power Comparison of SPAGE,
Wald, and Firth Tests
Empirical powers were estimated based on
105 simulated variants with bG ¼ 0 and
bG3Es0. From top to bottom, the plots
show empirical powers when testing vari-
ants with MAFs of 0.01, 0.05, and 0.3.
From left to right, the plots consider case-
control ratios of 25,000:25,000 (balanced),
5,000:45,000 (moderately unbalanced),
and 500:49,500 (unbalanced). Round
points are for powers at a ¼ 5310�5 and tri-
angle points are for powers at a ¼ 53 10�8.
Under a genome-wide level a ¼ 53 10�8, 34 significantG3

E signalswere identified (see Table S4 for a complete list). Un-

der a Bonferroni corrected threshold 53 10�8=79 ¼ 6:333

10�10, there was one signal (rs1906609, p ¼ 1.423 10�12,

environmental exposure is gender, and phenotype is CDR)

left. Since somephenotypes are strongly correlated, the Bon-

ferroni correctionwould be over-conservative. Three combi-

nations are highlighted: smoking status and CAO (8,701

cases and 314,750 controls), vigorous physical activity and

HLD (27,622 cases and 299,859 controls), and gender and

CDR (20,754 cases and 320,152 controls). The complete

genome-wide summary statistics for all 79 combinations

can be found on our website (see Web Resources).

The Manhattan plots (Figure 5) and the QQ-plots

(Figure S6) showed that SPAGE-NoSPA produced a large

number of potentially spurious associations for G 3 E asso-

ciation analyses, especially when testing low-frequency and

rare variants, whereas the p values of SPAGE closely fol-

lowed a uniform distribution. Under a significance level

a ¼ 5 3 10�8, we identified several G 3 E signals. The top

SNPs and a complete list of SNPs whose p values less than

53 10�8 are presented in Table 1 and Table S5, respectively.

For each of the top SNPs, the overall and stratified associa-

tions of phenotype 3 genotype and phenotype 3 environ-

mental factors are presented in Figure 6 and Figure S7,

respectively. In addition, we reported the p values of Wald

and Firth’s test for the top SNPs. For common and low-fre-

quency variants, the p values of Wald and Firth’s test were

similar to the p value of SPAGE, and for rare variants, the

p values of Wald were larger than the p values of SPAGE
The American Journal of Human Genetics
and Firth’s test. For the pair of Alcohol

3 Colorectal Cancer, QQ-plots and

Manhattan plots of Wald and Firth’s

test can be seen in Figure S8, from

which we can see that the Wald test

was conservativewhen testing low-fre-

quency and rare variants, and p values

of the Firth’s test closely followed a

uniform distribution. These results

are consistent with the simulation

results.

In the analysis of CAO, we identi-

fied a significant G3 E effect of smok-

ing status and a variant rs55781567 in

CHRNA5 (MIM: 118505). The allele G
of the variant rs55781567 is a risk allele in the whole pop-

ulation, and its risk effect will increase significantly for

smoker. Smoking is an important risk factor to the CAO,

and CHRNA5 is well known to be associated with the

smoking behavior and some smoking-related diseases

such as chronic obstructive pulmonary disease.43–45 In

the analysis of CDR, we identified a significant G3 E effect

of gender and a variant rs1906609 near PITX2 (MIM:

601542). The allele G of the variant rs1906609 is a protec-

tive allele in the whole population (p < 1 3 10�100), and

its effect in males (p < 1 3 10�100) is significantly larger

than that in females (p ¼ 6.7 3 10�8). The gene PITX2

plays an important role in cardiac development and dis-

eases, and the incidence of cardiac arrhythmias is known

to be different for males and females.46,47 In the analysis

of HLD, we identified a significant G 3 E effect of vigorous

physical activity and a variant rs10950866 in DNAH11

(MIM: 603339). This variant is not significantly associated

with HLD in the whole population (p ¼ 0.28), but its G

allele is a protective allele for people who take vigorous ex-

ercise more than two days per week (p ¼ 4.1 3 10�6). The

gene DNAH11 has been reported to be associated with

serum lipid levels.48,49

Discussion

In this paper, we have proposed SPAGE, an accurate and

scalable method to perform a genome-wide scale phe-

nome-wide G 3 E analysis for binary phenotypes in large

cohorts. SPAGE can adjust for covariates and accurately
105, 1182–1192, December 5, 2019 1187



Figure 4. Power Comparison of SPAGE,
CML, and EB Tests
Empirical powers were estimated based on
105 simulated variants with bG ¼ 0 and
bG3Es0. From top to bottom, the plots
show empirical powers when testing vari-
ants with MAFs of 0.01, 0.05, and 0.3.
From left to right, the plots consider case-
control ratios of 25,000:25,000 (balanced),
5,000:45,000 (moderately unbalanced),
and 500:49,500 (unbalanced). p values of
CML (constrained maximum likelihood)
and EB (empirical Bayes) were calculated
via an R package CGEN. Round points
are for powers at a ¼ 5310�5 and triangle
points are for powers at a ¼ 53 10�8.
calibrate p values regardless of minor allele frequencies

even in extremely unbalanced case-control settings.

Through extensive numerical studies, we have demon-

strated that SPAGE can perform 33–79 times faster than

the Wald test and 72–439 times faster than the Firth’s

test while retaining similar powers and well-controlled

type I error rates. Because SPAGE is based on a prospective

likelihood method, the genotype-environment indepen-

dence assumption is not required. The UK Biobank data

analysis illustrates that SPAGE can identify G 3 E signals

while controlling for type I error rates, even for binary phe-

notypes with a small number of cases and a large number

of controls.

The current G 3 E approaches need to fit a null model

or a complete model, both of which require adjusting

for genotypes separately for each variant. Our method

fits a genotype-independent logistic model only once

across a genome-wide analysis and then uses a hybrid

strategy to exclude marginal genetic effects from the G

3 E effect. This strategy greatly reduces the computation

time so that it is computationally feasible for SPAGE to

analyze a large cohort. To calibrate p values, we utilize

the SPA when the test statistics deviate from the mean

value by more than a pre-specified standard-derivation

threshold. Here, we follow the recommendation of Dey

et al. to use a threshold of two.12 Both simulations

and application to UK Biobank data showed that the

SPA (i.e, SPAGE) performs better than the normal

approximation (i.e, SPAGE-NoSPA), so we recommend

using SPAGE.
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The three commonly used methods

for G 3 E analysis include case-con-

trol, CO (or CML), and EB ap-

proaches.5 Of these, the powers of

the case-control approaches increase

as the control group size increases.

Following a cohort study design, large

biobanks collect far more controls

than cases formost diseases. In this sit-

uation, as a case-control approach,

SPAGE can be more powerful than
the other methods while remaining computationally effi-

cient. A case-only approach can be a scalable method if

the number of cases is moderate or small. However, because

the case-only approach requires the gene-environment in-

dependence assumption, it cannot be as robust as SPAGE.

Several two-step approaches have been proposed to

improve the efficiency of G 3 E analysis. However, if the

screening step is to test the marginal genetic effect or

gene-environment independence, it could miss some po-

tential G 3 E and cannot generate the genome-wide sum-

mary statistics. As an accurate and scalable solution, the

proposed SPAGE can calculate the genome-wide summary

statistics of G 3 E, which can be of great value for the G 3

E community. First, phenome-wide G 3 E analysis can uti-

lize the G 3 E statistics across multiple phenotypes to pro-

vide evidences for pleiotropy. Second, meta-analysis can

use the G 3 E statistics across different studies to improve

the power. Third, the genome-wide summary statistics can

also facilitate a two-stage discovery-validation study.

Family relatedness is commonly observed in large bio-

bank datasets. To adjust for the sample relatedness, a gener-

alized linear mixed model (GLMM) is widely used.50–52

BOLT-LMM and SAIGE methods used several optimization

strategies so that the GLMM could be computationally

feasible for large cohorts.15,52 In the future, we plan to

extend the current method to a genome-wide scale G 3 E

analysis with related samples. Another future research

area of interest is to design an accurate and fast algorithm

to identify rare variants with G3 E effect based on gene- or

region-based multiple-variant tests.



Figure 5. Manhattan Plots for Three
Combinations of Environmental Factors
and Phenotypes from UK Biobank
The left panels showManhattan plots based
on SPAGE-NoSPA and the right panels show
Manhattan plots based on SPAGE. The red
line represents the genome-wide signifi-
cance level a ¼ 53 10�8.
In summary, we have proposed an accurate and scalable

method for genome-wide scale phenome-wide G 3 E

analysis. Large-scale biobanks can be great resources for

identifying G 3 E effects across the genome-wide scale.

Our SPAGE method provides a scalable solution for this

large-scale problem and contributes to finding novel G 3

E effects of complex disease. All of our tests are imple-

mented in an R package SPAGE.
Appendix A. The Approximation of SH0

A naive approach is to use ScG3E ¼ GT
E ,ðY �bmcÞ to approxi-

mate SH0 and then to test the G 3 E marginal effect

bG3E ¼ 0. However, this strategy ignores the main genetic
Table 1. Top SNPs Identified from UK Biobank G 3 E Analyses

Environ.
Factor Phenotype RSID CHR

Imputation
Info MAF

Smoking
status

chronic airway
obstruction

rs55781567 chr15 1 0.3343

Gender cardiac
dysrhythmias

rs1906609 chr4 0.99 0.1612

Vigorous
physical
activity

hyperlipidemia rs10950866 chr7 0.99 0.4230

*p value of the marginal genetic effect

The American Jour
effect on phenotype and is only valid under a constrained

model bG ¼ 0. To better approximate SH0 , we adjust for the

main genetic effect by deducting l~G
T
,ðY � bmcÞ. From the

first-order Taylor expansion,

bmH0 ¼ logit�1
�
XbaH0 þ GbbH0

G

�
zlogit�1

ðXbacÞ þW
�
XbaH0 � Xbac þ GbbH0

G

�

¼ bmc þW
�
XbaH0 � Xbac þ GbbH0

G

�
:

since XTðY � bmcÞ¼XT
�
Y � bmH0

� ¼ 0;

0¼XT
�bmH0 � bmc�zXTWX

�baH0 � ba�þ XTWGbbH0

G ;
p Value
(G effect)*

p Value
(SPAGE)

p Value
(Firth)

p Value
(Wald)

Func.ref
Gene

Gene.ref
Gene

7.76E-12 2.87E-08 2.55E-08 2.64E-08 UTR5 CHRNA5

3.06E-68 1.42E-12 9.12E-13 1.11E-12 intergenic PITX2;
C4orf32

0.2568 3.64E-09 3.82E-09 3.75E-09 intronic DNAH11

nal of Human Genetics 105, 1182–1192, December 5, 2019 1189



from which; baH0 � baz� �
XTWX

��1
XTWGbbH0

G : Thus; bmH0 � bmc can be

approximated as bmH0 � bmczW
�
XbaH0 � Xba þ GbbH0

G

�
zW ~GbbH0

G and
S ¼
�
~G
T

E � l~G
T
�
,
�
Y � bmH0 þ bmH0 � bmc�

¼
�
~G
T

E � l~G
T
�
,
�
Y � bmH0

�þ �
~G
T

E � l~G
T
�
,
�bmH0 � bmc

�
z
�
~G
T

E � l~G
T
�
,
�
Y � bmH0

�þ �
~G
T

E � l~G
T
�
,W ~GbbH0

G

¼
�
~G
T

E � l~G
T
�
,
�
Y � bmH0

� ¼ GT
E ,

�
Y � bmH0

� ¼ SH0

The above equation also implies that EðSÞzEðSH0Þ ¼ 0.

We assume that the weight matrix W changes slowly

with respect to the conditional mean (following Breslow

and Clayton53), then our estimate of the variance of S is

VarðSÞzð~GT

E � l~G
T ÞWð~GE � l~GÞ.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2019.10.008.
Figure 6. Associations between Phenotypes and Top SNPs
p values and odds ratios (with 99% confidence interval) were
calculated from the Firth’s test. Note that p ¼ 0 means that
the Firth’s test p value < 13 10�100. N is the sample size.
CAO, chronic airway obstruction; CDR, cardiac dysrhythmias;
HLD, hyperlipidemia; CRC, colorectal cancer; VPA, vigorous
physical activity; Never VPA: 0 days/week VPA; Low-frequency
VPA: %2 days/week VPA; High-frequency VPA: >2 days/week
VPA.
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Web Resources

CGEN R package, https://bioconductor.org/packages/release/bioc/

html/CGEN.html

Genome-wide summary statistics, https://www.leelabsg.org/

resources

GxEScan R Package, https://github.com/USCbiostats/GxEScanR

OMIM, https://www.omim.org

SPAGE R package, https://github.com/WenjianBI/SPAGE

UK Biobank, https://www.ukbiobank.ac.uk/
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