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Abstract

John Tyler Bonner’s call to re-evaluate evolutionary theory in light of major transitions in life on 

Earth (e.g. from the first origins of microbial life, to the evolution of sex and the origins of 

multicellularity) resonate with recent discoveries on epigenetics and the concept of the 

hologenome. Current studies of genome evolution often mistakenly focus only on the inheritance 

of DNA between parent and offspring. These are in line with the widely accepted Neo-Darwinian 

framework that pairs Mendelian genetics with an emphasis on natural selection as explanations for 

the evolution of biodiversity on Earth. Increasing evidence for widespread symbioses complicates 

this narrative, as is seen in Scott Gilbert’s discussion of the concept of the holobiont in this series: 

organisms across the tree of life coexist with substantial influence on one another through 

endosymbiosis, symbioses and host-associated microbiomes. The holobiont theory, coupled with 

observations from molecular studies, also requires us to understand genomes in a new way -- by 

considering the interactions underlain by the genome of a host plus its associated microbes, a 

conglomerate entity referred to as the hologenome. We argue that the complex patterns of 

inheritance of these genomes coupled with the influence of symbionts on host gene expression 

make the concept of the hologenome an epigenetic phenomenon. We further argue that the 

hologenome challenges aspects of the modern evolutionary synthesis, which requires updating to 

remain consistent with Darwin’s intent of providing natural laws that underlie the evolution of life 

on Earth.
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Introduction

A common response to the question, ‘how many chromosomes are in a human cell?’ is 46, 

but this is inaccurate, as human cells actually have at least 47 when we include the circular 

chromosomes in our mitochondria. Similarly, every plant cell has three genomes that act in 

concert: in the nucleus, mitochondrion and chloroplast. These widely studied endosymbiotic 
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events demonstrate how genome interactions change the evolutionary trajectories of all 

organisms involved. In highly intimate endosymbiotic relationships, symbiogenesis creates a 

new individual from multiple lineages (Martin & Kowallik, 1999; Mereschkowsky, 1910; 

Nowack & Melkonian, 2010). Clearly in the case of mitochondria and plastids, host and 

symbiont genomes evolve and function together following endosymbiosis, changing the 

template for evolutionary processes.

Similar to the connections among genomes following endosymbiosis, the interactions 

between symbionts and hosts more broadly led to the concept of the hologenome (e.g. 

Rosenberg, Koren, Reshef, Efrony, & Zilber-Rosenberg, 2007; Zilber-Rosenberg & 

Rosenberg, 2008) and challenge our traditional understanding of an individual’s genome. 

Because symbionts can impact patterns of expression and inheritance of host genomes, we 

argue that these relationships are inherently epigenetic as they are consistent with Denise 

Barlow’s broad definition of epigenetics as “all the weird and wonderful things that cannot 

[yet] be explained by genetics” (McVittie, 2006). We do not mean to suggest that 

hologenomes are outside of evolutionary theory but instead, as Bonner (2019) reminds us, 

consideration of microbes as well as plants and animals provides valuable insights that 

expand evolutionary theory. Here, we discuss data on genome interactions between hosts 

and symbionts, highlighting the varying degrees of intimacies, to emphasize the importance 

of the hologenome concept and its implications for evolutionary biologists.

The hologenome

The concept of the hologenome (e.g. Rosenberg et al., 2007; Zilber-Rosenberg & 

Rosenberg, 2008) emerges in part from the concept of the holobiont (e.g. Gilbert, 2019; 

Gilbert et al., 2010; Herre, Knowlton, Mueller, & Rehner, 1999) because inherited 

symbionts change host gene expression and genomes over time. Symbioses are very 

common in nature (e.g. Gilbert et al., 2010; McFall-Ngai, 2002) and, as a result, many 

eukaryotes (e.g. plants, animals, ciliates, amoebae) contain heritable symbionts that 

“contribute to the anatomy, physiology, development, innate and adaptive immunity, and 

behavior and finally also to genetic variation and to the origin and evolution of species” 

(Rosenberg & Zilber-Rosenberg, 2016). To realistically encompass the genetic ‘individual’ 

created by a host and its microbiome, Rosenberg et al. (2007) first introduced the 

hologenome as the sum of the genomes of a host and its symbionts, in essence, a 

conglomerate genome. Within a hologenome, complex patterns of inheritance and epigenetic 

relationships drive the evolution of both a host and its symbionts (e.g. Gilbert et al., 2010; 

Herre et al., 1999; Zilber-Rosenberg & Rosenberg, 2008). In other words, eukaryotic 

genomes evolve in concert with the vast number of microbial symbionts (e.g. microbiomes) 

harbored within lineages, though at varying scales of interrelatedness.

Before exploring the various degrees of intimacy between hologenome partnerships, we will 

address a few misconceptions about hologenomes themselves. Some have questioned the 

concept of the hologenome as a unit of selection because of the variation in both the nature 

of interactions and patterns of inheritance among its members (reviewed in Moran & Sloan, 

2015). To view a hologenome as a single evolving unit would be inaccurate, as interactions 

between members are not necessarily mutualistic and hence, a hologenome may have 
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negative or neutral consequences for one or more of the organisms involved (see ‘intimacy’ 

section below). Additionally, there is confusion between the concepts of the hologenome and 

the metagenome: the hologenome implies an interaction between a host and its symbionts 

whereas a metagenome can also describe a community within a non-living environment like 

soil (Bordenstein & Theis, 2015). Douglas and Werren (2016) go further to suggest that the 

focus should not be on the individual players; we should instead focus on host-microbe 

interactions through a wider ecological lens. We disagree with this view and instead believe 

that the concept of the hologenome expands our views on the genetic complexity of 

‘individuals’. As the hologenome has been extensively reviewed elsewhere (e.g. Brucker & 

Bordenstein, 2013; Dale & Moran, 2006; Zilber-Rosenberg & Rosenberg, 2008), we provide 

only a few examples here to explore how different hologenomes function along a continuum 

of intimacy as a way to exemplify the power of the concept.

Hologenomes: A Spectrum of Intimacy

Hologenomes vary in intimacy and complexity, as the impact of symbiotic relationships on 

the survival of its members can be seen to vary across a sliding scale (Fig. 1). Here, we array 

interactions based on the degree of intimacy and the potential impact on fitness for the 

organisms involved. Hologenome symbioses range from the least intimate hologenomes, like 

the human microbiome (Kumar et al., 2014; Stilling, Bordenstein, Dinan, & Cryan, 2014), to 

moderately intimate hologenomes, including bacteria that provide heat resistance in plants 

(Gilbert et al., 2010; McLellan et al., 2007), to the most intimate hologenomes like those in 

aphids that have outsourced portions of the production of their protein building-blocks to 

their symbionts (Fig. 1; Wilson et al., 2010). Because the microbiome may be able to react 

more quickly to the environment than the host, microbiomes have the potential to impact 

host adaptation and evolution (Romano, 2017; Rosenberg & Zilber-Rosenberg, 2016; 

Stilling, Bordenstein, et al., 2014; Stilling, Dinan, & Cryan, 2014), though at varying 

degrees depending on the intimacy of the relationship such as the pattern of inheritance.

At the less intimate end of the spectrum, host genomes interact with and respond to 

relationships with other organisms in the holobiont and are not fully interdependent (Fig. 1 a 

& b). One example of this type of casual symbiosis includes digestion adaptations in the 

human gut microbiome (Fig. 1a, Postler & Ghosh, 2017). For example, gut symbionts (e.g. 

Bifidobacterium) fluctuate in response to changing levels of lactose and impact the 

expression of the human LCT gene, a gene that also contributes to lactose digestion 

(Blekhman et al., 2015). Further, expressions of immunity-related human genes like HLA-
DRA and TLR1 have been respectively linked to the abundance of Selenomonas in the 

throat and Lautropia on the tongue (Blekhman et al., 2015). Another ‘relaxed’ hologenome 

relationship is the bioluminescent predator defense in squid. The squid allows colonies of a 

bioluminescent bacteria, Vibrio fischeri, to colonize and illuminate its light organ to ward off 

predators (Fig. 1b, Gilbert et al., 2010; McFall-Ngai, 2002). Genetic mechanisms in the 

squid’s immune defense system are hypothesized to regulate this bacterial defense 

mechanism, allowing the colonization of the light organ by helpful V. fischeri and preventing 

against pathogenic bacteria (McFall-Ngai, 2002).

Collens et al. Page 3

J Exp Zool B Mol Dev Evol. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As we move to the right on the spectrum of symbiotic intimacy (Fig. 1 c–i), products 

expressed by each member of the holobiont are essential to host and endosymbiont survival. 

For example, extracellular fungi express genes that inhibit a heat shock protein in the 

Christmas cactus Opuntia leptocaulis, preventing the cactus’s cells from deteriorating in hot 

environments (Fig. 1c, Gilbert et al., 2010; McLellan et al., 2007). Additionally, the survival 

of an amoebae host ensures the survival of its amoebae-resistant bacterial symbionts (Greub 

& Raoult, 2004; Loret & Greub, 2010). Pathogenic bacteria Legionella pneumophila has 

adapted its surface protein expression and other aspects of its genome to avoid digestion and 

instead to survive inside both free-living amoebae and human macrophage hosts (Fig 1f, 

Greub & Raoult, 2004).

In some cases, acquired symbiont genomes can increase host fitness by changing the 

methods of metabolic function and inflicting harm on non-hosts. Single-celled foraminifera 

switch from heterotrophy to phototrophy in nutrient-poor environments by stealing 

chloroplasts from their food (Fig. 1h, Clark, Jensen, & Stirts, 1990; Jauffrais et al., 2016; 

Pillet, de Vargas, & Pawlowski, 2011). Other holobionts make themselves more dangerous 

by inflicting harm on non-hosts. Caedibacter taeniospiralis, a bacterial symbiont of ciliate 

Paramecium tetraurelia, release a toxin that kills ciliates without the bacterium while 

genetically protecting their host from the toxin’s harm (Fig 1g, Grosser et al., 2018). 

Caedibacter taeniospiralis also up-regulates heat shock genes and metabolism enzymes for 

an additional fitness advantage to P. tetraurelia hosts (Grosser et al., 2018).

Some of the most intimate symbiotic relationships involve bidirectional interactions 

whereby host and symbiont genomes each provide different pieces of genetic pathways 

necessary for survival (Fig. 1 i & j). This is seen in sap-eating insects and their bacterial 

symbionts where gene pathways for metabolism, replication, transcription and translation 

are derived from products of endosymbiotic bacteria that are vertically inherited (Fig 1j, 

Bennett & Moran, 2013; Gilbert et al., 2010; Husnik et al., 2013; Provorov & Onishchuk, 

2018). For example, Buchnera protein HisC can replace the function of the branched‐chain 

amino acid transaminase in the aphid, while phenylalanine 4‐monooxygenase and aspartate 

transaminase in the aphid may replace Tyrosine A and Tyrosine B enzymes absent in 

Buchnera (Wilson et al., 2010). The hologenome of the aphid and bacteria require each to 

contribute pieces to the other’s genome for the organisms to survive, and inheritance is 

vertical in this intimate relationship.

The genetic dependencies in hologenomes can be complicated by interactions among many 

players. The endosymbiotic Wolbachia bacteria in pea aphids gained the wCle gene from 

another endosymbiont, Cardinium or Rickettsia, through lateral gene transfer (Nikoh et al., 

2014). This wCle gene synthesizes biotin for the host, which is now essential to the aphid’s 

survival and ability to reproduce (Nikoh et al., 2014). Some eukaryotic symbionts even live 

within other symbionts, like a Russian nesting doll. Neoparamoeba sp. parasitize salmon and 

other marine animals, and the amoeba themselves are host to Perkinsela sp., a kinetoplastid 

that has evolved in tandem with the amoeba, possibly due to metabolic relationships (Nowak 

& Archibald, 2018).
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Some vertically-inherited symbiont phylogenies trace the evolution of their hosts from 

vertical inheritance for more than 100–200 million years (Dale & Moran, 2006; Douglas, 

2011). This intimacy can also be observed in parasitic wasps (Asobara tabida). These wasps 

pass down their endosymbiotic bacteria through their eggs to the next generation because, 

without the bacteria, the wasp ovaries cannot develop properly (Fig. 1i, Gilbert et al., 2010). 

The wasps are trapped in an epigenetic hostage situation, ensuring the Wolbachia are passed 

onto future generations. Intriguingly, there are parallels in the mechanisms that the 

Wolbachia uses to destroy cells the wasp as bacterium Legionella pneumophila uses to burst 

its host cells. Wolbachia, the wasp’s bacterial symbiont, programs a similar apoptosis in the 

wasp’s ovaries, ensuring any non-hosts are unable to reproduce (Pannebakker, Loppin, 

Elemans, Humblot, & Vavre, 2007).

The epigenetic implications of the hologenome

The hologenome is, by definition, epigenetic; interactions within the hologenome can both 

lead to changes in gene expression without changes in DNA sequences (a textbook 

definition of epigenetics) and be interpreted in light of Denise Barlow’s definition of ‘weird 

and wonderful things’ (see above and McVittie, 2006). Regardless of the definition one 

adheres to, the impact of symbionts on host genomes is clearly outside of our traditional 

Mendelian view of transmission genetics.

The connection between the hologenome and epigenetics has been suggested by others 

either because of the influence of symbionts on host genetics (e.g. Douglas, 2011; Moran & 

Sloan, 2015; Zilber-Rosenberg & Rosenberg, 2008), or in light of the intergenerational 

impacts of symbionts on human phenotypes (e.g. Romano, 2017; Stilling, Dinan, et al., 

2014). This interaction led Stilling, Dinan, et al. (2014) to introduce the term ‘holo-

epigenome’ to explicitly acknowledge the epigenetic qualities of genomic interactions 

between hosts and symbionts.

Some canonical epigenetic functions have been observed in the human hologenome. For 

example, the diverse community of microbes within the human gut has been found to 

modulate host DNA methylation, changing patterns of gene expression (reviewed in Cureau, 

AlJahdali, Vo, & Carbonero, 2016). Further, in a preliminary study on the microbiota of 

pregnant women, significant differences in DNA methylation patterns were found based on 

the dominant bacteria that made up their microbiota (Kumar et al., 2014). As just one 

example, women whose predominant microbiotic fauna were in the phyla Firmicutes 
experienced differential methylation with regards to lipid metabolism and the inflammatory 

response, with downstream implications for obesity and cardiovascular disease (Kumar et 

al., 2014).

Symbiont-expressed microRNAs (miRNAs), have also been identified as a potential 

epigenetic mechanism between the microbiome and the host genomes (Liu, Du, Huang, 

Gao, & Yu, 2017; Williams, Stedtfeld, Tiedje, & Hashsham, 2017; Xue et al., 2011). Small 

non-coding RNAs of symbionts can regulate gene expression by repressing the translation of 

target mRNAs from the host genome (Cannell, Kong, & Bushell, 2008). For example, 

miRNA-10a levels, which coordinate the innate immune response, were shown to be 
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downregulated by the presence of certain microbiota in mice (Xue et al., 2011). This is 

thought to promote homeostasis and prevent an immune response to commensal gut bacteria 

(Xue et al., 2011). Recent evidence also indicates that the miRNA-coordinated epigenetic 

communication between the host and microbiome is reciprocal, with host genetics able to 

shape the gut microbiome (Liu et al., 2017; Williams et al., 2017). For example, host 

extracellular miRNAs secreted by epithelial intestinal cells of mice may be regulating 

bacterial gene expression and ultimately bacterial growth within the intestine, (Liu et al., 

2017; Williams et al., 2017), serving as a potential mechanism for molecular communication 

within the hologenome.

The concept of the hologenome is at odds with some aspects of Neo-

Darwinism

The interwoven, epigenetic relationship between the genomes of host and symbionts 

complicates our current understanding of evolutionary theory. Today, when students open 

introductory biology textbooks, they will likely find the definition of evolution referred to as 

the Modern Evolutionary Synthesis, a combination of Darwin’s natural selection and 

Mendel’s particulate inheritance genetics. As a main proponent of this evolutionary lens, 

Mayr (1980) rejects the effect of any “soft inheritance”, defined as “the belief in a gradual 

change of the genetic material itself, either by use and disuse, or by some internal 

progressive tendencies, or through the direct effect of the environment” (Mayr, 1980). In 

contrast to this view, we argue that by excluding soft inheritance, the Modern Evolutionary 

Synthesis cannot account for the robust observations of epigenetics resulting from symbiotic 

relationships involving diverse lineages from across the Tree of Life (Table 1). Instead, we 

believe understanding evolution through the hologenome provides a more complete 

depiction of genome evolution, one that expands the traditional views on evolutionary 

theory.

Our discussion of how hologenomes epigenetically shape evolution is only one component 

of the broadening of the Modern Synthesis. New information from current explorations of 

non-genetic inheritance calls for a multidimensional reshaping of the Modern Synthesis. 

Because of our newfound appreciation of complex epigenetic mechanisms and their impact 

on evolution, we suggest use of a more inclusive and dynamic theory called the Extended 

Modern Synthesis – a conceptual expansion to the classical Modern Synthesis theories that 

includes an understanding of “soft inheritance” (Danchin et al., 2011; Pigliucci & 

Finkelman, 2014). As new discoveries broaden our understanding of evolutionary theory 

(Mendelian inheritance, natural selection), Novick and Doolittle (2019) implore us to 

expand our evolutionary theory ‘toolbox’ to account for the complexity of hologenomes and 

other epigenetic phenomena. Darwin’s original theory was built on understanding the natural 

world he observed. By excluding certain truths, like those we observe from symbiosis, we 

stray from Darwin’s original aim of an evolutionary model that captures the whole of nature 

(Raoult & Koonin, 2012). We need to remain open-minded and allow new evidence to 

reshape our theories. As Bonner (2019) points out, evolution has been evolving since the 

beginning of time. If our goal is to truly understand it, we must continue evolving our 

understanding of evolution as well.
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Figure 1: 
Symbiotic relationships exist on a spectrum of intimacy and contribute to the concept of the 

hologenome. This spectrum is simply a tool to compare relative intimacies of symbiotic 

relationships. a) Human health is dependent on the microbiomes in the gut and other places 

on the body (Postler & Ghosh, 2017); b) Animals acquire fitness advantages from bacterial 

symbionts like Vibrio fischeri which cause Euprymna to glow (Gilbert et al., 2010); c) 

Symbiotic fungi provide a protein inhibitor that prevents Heat Shock Protein (HSP-90) in the 

Christmas Cactus Opuntia leptocaulis, allowing the plant to maintain its cells in various heat 

conditions (Gilbert et al., 2010; McLellan et al., 2007); d) Diversity of the communities of 

eukaryotic excavate symbionts in termite guts reflects the environment of their host 

communities (Duarte et al., 2018); e) Hermatypic coral are dependent on dinoflagellate 

Symbiodinium for 95% of their energy (Gilbert et al., 2010). f) Acanthamoebae are hosts to 

amoeba-resistant-bacteria like Legionella pneumophila which have evolved to resist 

digestion and become resistant to human macrophages (Greub & Raoult, 2004; Loret & 

Greub, 2010); g) Ciliate Paramecium tetraurelia hosts bacteria Caedibacter taeniospiralis in 

its cytoplasm which can kill non-host P. tetraurelia and protect current hosts from its killer 

mechanism (Grosser et al., 2018); h) Single-cellular foraminifera can ‘steal’ chloroplasts 

from the diatoms and algae they eat to use for photosynthesis -- a phenomenon known as 

kleptoplasty (Clark et al., 1990; Jauffrais et al., 2016); i) Parasitic wasp Asobara tabida 
needs Wolbachia bacteria to develop into adulthood and form its ovaries properly (Gilbert et 

al., 2010). j) Acrythosiphon pisum, otherwise known as pea aphids, need endosymbiotic 

bacterium Buchnera aphidicola to make essential amino acids it doesn’t get from its diet of 

sap (Wilson et al., 2010).
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Table 1:

Example of hologenomes exist among organisms in many eukaryotic clades, in diverse lineages of eukaryotes 

(See also figure 1).

Host Clade Host(s) Example symbiont Reference

Opisthokonta

Homo sapiens Various including Bifidobacterium (Blekhman et al., 2015; Romano, 2017; Stilling, 
Dinan, et al., 2014)

Euprymna (Bobtail squid) Vibrio fischeri (Gilbert et al., 2010)

Asobara tabida (Wasp) Wolbachia (Gilbert et al., 2010),

Acrythosiphon pisum (Pea 
aphid)

Buchnera aphidicola (Wilson et al., 2010)

Corals Symbiodinium (Alveolata) (Pillet et al., 2011; Rosenberg et al., 2007)

Termites Various Excavata (Duarte, Nobre, Borges, & Nunes, 2018)

Plantae Opuntia leptocaulis (Christmas 
cactus)

Paraphaeosphaeria. Chaetomium, 
(Fungi)

(Gilbert et al., 2010; McLellan et al., 2007)

Legumes Rhizobia (Bacteria in root nodules) (Gage, 2004; Oldroyd, Murray, Poole, & Downie, 
2011)

Amoebozoa Acanthamoeaba Diverse bacteria (Greub & Raoult, 2004; Loret & Greub, 2010)

Neoparamoeba sp Perkinsela sp. (Excavata) (Nowak and Archibald, 2018)

Rhizaria Foraminifera Dinoflagellates, diatoms (Jauffrais et al., 2016; Pillet et al., 2011)

Alveolata Paramecium tetraurelia Caedibacter taeniospiralis (Grosser et al., 2018)
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