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Purpose: Model-based iterative reconstruction (MBIR) algorithms such as penalized-likelihood
(PL) methods exhibit data-dependent and shift-variant properties. Image quality predictors have been
derived to prospectively estimate local noise and spatial resolution, facilitating both system hardware
design and tuning of reconstruction methods. However, current MBIR image quality predictors rely
on idealized system models, ignoring physical blurring effects and noise correlations found in real
systems. In this work, we develop and validate a new set of predictors using a physical system model
specific to flat-panel cone-beam CT (FP-CBCT).
Methods: Physical models appropriate for integration with MBIR analysis are developed and param-
eterized to represent nonidealities in FP projection data including focal spot blur, scintillator blur,
detector aperture effect, and noise correlations. Flat-panel-specific predictors for local spatial resolu-
tion and local noise properties in PL reconstructions are developed based on these realistic physical
models. Estimation accuracy of conventional (idealized) and FP-specific predictors is investigated
and validated against experimental CBCT measurements using specialized phantoms.
Results: Validation studies show that flat-panel-specific predictors can accurately estimate the local
spatial resolution and noise properties, while conventional predictors show significant deviations in
the magnitude and scale of the spatial resolution and local noise. The proposed predictors show accu-
rate estimations over a range of imaging conditions including varying x-ray technique and regulariza-
tion strength. The conventional spatial resolution prediction is sharper than ground truth. Using
conventional spatial resolution predictor, the full width at half maximum (FWHM) of local point
spread function (PSF) is underestimated by 0.2 mm. This mismatch is mostly eliminated in FP-speci-
fic prediction. The general shape and amplitude of local noise power spectrum (NPS) FP-specific
predictions are consistent with measurement, while the conventional predictions underestimated the
noise level by 70%.
Conclusion: The proposed image quality predictors permit accurate estimation of local spatial reso-
lution and noise properties for PL reconstruction, accounting for dependencies on the system geome-
try, x-ray technique, and patient-specific anatomy in real FP-CBCT. Such tools enable prospective
analysis of image quality for a range of goals including novel system and acquisition design, adaptive
and task-driven imaging, and tuning of MBIR for robust and reliable behavior. © 2018 American
Association of Physicists in Medicine [https://doi.org/10.1002/mp.13249]
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1. INTRODUCTION

Recent years have been increased use of flat-panel cone-beam
CT (FP-CBCT) in both research and clinical settings. With a
large and high-resolution detector, FP-CBCT can acquire vol-
umetric information with a single rotation and can achieve
submillimeter spatial resolution. These capabilities have
made FP-CBCT popular for a number of clinical applications
including small animal imaging,1 three-dimensional (3D)
breast imaging,4–6 dental and maxillofacial studies,2,3 and
interventional procedures.7–11

Image quality assessment for FP-CBCT is an important
element of system design, optimization, and quality control.
A complete assessment evaluates the entire imaging chain
including both acquisition and reconstruction stages. A
wealth of literature has been devoted to retrospective image

quality measurement wherein physical measurements (often
of specialized phantoms) are collected and image quality met-
rics are subsequently computed based on an image recon-
struction.12,13 While retrospective assessment is valuable, it
can be time-consuming to collect and reconstruct specialized
data across a range of imaging conditions (e.g., different
patient sizes, reconstruction parameters, etc.). Moreover, ret-
rospective analysis is ill-suited to system design where hard-
ware has not yet been constructed and physical data are
unavailable.

Prospective performance analysis has been widely used in
detector and imaging system design.14,15 In particular, cas-
caded system analysis has been applied to model the end-to-
end performance of FP-CBCT, modeling the important
aspects of x-ray statistics, detection, and reconstruction. Char-
acterizations have included the analysis of spatial resolution
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and noise properties16–18 as well as task-based metrics like
detectability index that predict performance for specific clini-
cal goals.19 Such prospective methods have been used for CT
system design including optimized hardware and geometry
for FP-CBCT-based neuroimaging20 and extremities imag-
ing.21 Similarly, prospective methods permit adaptive imag-
ing where data acquisition is customized to the patient and
diagnostic task, for example, adaptation of x-ray fluence22,23

based on a predictive task-based performance metric.
Prospective analysis using cascaded systems has utilized

highly sophisticated acquisition models of the source, detector,
and scanner geometry. However, reconstruction models have
focused largely on filtered-back projection (FBP). Model-based
iterative reconstruction (MBIR) algorithms are now widely
available on commercial CT scanners24 and have become
increasingly widespread in recent years due to improved trade-
offs between x-ray exposures and image quality.25–31 MBIR
achieves these advantages through the use of a detailed physical
model, often including measurement statistics, as well as
sophisticated regularization strategies to control noise.

In general, CT image quality is data-dependent and image
properties are nonstationary. For example, like traditional
FBP reconstruction, there are often noticeable differences in
noise level and correlations throughout the image volume.
While FBP tends to provide relatively uniform spatial resolu-
tion properties, MBIR tends to exhibit more complex data-
dependent and shift-variant spatial resolution, in addition to
nonstationary noise.32 Thus, local image quality assessment
within a small region and with respect to small intensity vari-
ations is important to capture overall performance. For exam-
ple, spatial resolution properties may be measured locally
using metrics like the local point spread function (PSF) or
modulation transfer function (MTF).33,34 Noise metrics such
as local variance, spatial domain covariance, and noise power
spectrum (NPS) have been computed for local region of inter-
ests (ROIs)35,36 presuming local stationarity. Retrospective
image quality assessment for MBIR is impotent to estimate
through the complexities of data, location, and parameter
dependence (e.g., regularization strength). Specifically, com-
puting metrics like local PSF or NPS typically requires speci-
fic image features (e.g., a wire or edge, or uniform region in
the object). Since MBIR has data-dependent image proper-
ties, metrics derived from a specialized phantom do not nec-
essarily translate to patient data and are limited to regions
where those features are present. This is in contrast to FBP
where the underlying estimator is linear (though a nonlinear
transformation of the data is required for transmission tomog-
raphy) and it is easier to relate imaging performance between
phantom and patient studies.

FBP has a closed-form expression of the reconstruction as
a function of the measurements, which is convenient for theo-
retical analysis, permitting integration within an end-to-end
cascaded model of a FP-CBCT system. In contrast, MBIR is
typically defined implicitly as the optimizer of an objective
function that is solved with iterative methods. Despite this,
predictors for local spatial resolution and noise properties
have been derived for one widely used class of MBIR —

quadratically PL reconstruction. Such predictors are able to
compute data-dependent and nonstationary local image prop-
erties based on knowledge of the system geometry, patient
anatomy, and regularization.37,38 Moreover, approximate
expressions using Fourier methods have been derived for fast
computation of local PSF and covariance.39–41 These tools
have found applications in regularization design to encourage
uniform spatial resolution42–44 or image properties optimized
for specific tasks.45 Similarly, such predictors have been used
for task-driven adaptive imaging to optimize noncircular
source–detector orbits46,47 and dynamic x-ray fluence.23,48

While the prospective predictors discussed above have
demonstrated utility in characterizing and controlling image
properties, the system models are highly idealized. Specifi-
cally, conventional predictors for transmission tomography
presume an idealized system without detector blur, source blur,
or noise correlation between detector pixels. Exceptions to
such idealizations include work in emission tomography on
the influence of a radial detector blur on spatial resolution
properties in PWLS reconstruction.49 Related MBIR work has
sought to develop improved system models for reconstruction
of tomosynthesis data with correlated noise50 and FP-CBCT
data which exhibits source and detector blur as well as spatial
correlations.51 The importance of the high-fidelity models of
source and detector in FP-CBCT cascaded systems analysis
and successful integration of such models into MBIR suggests
that improved image properties predictors are not only crucial
for accurate performance evaluation but also feasible to derive
and compute. In this work, we derive spatial resolution and
noise predictors for the evaluation of quadratic PL perfor-
mance wherein the reconstruction model is mismatched with
the physical data acquisition. Specifically, a typical idealized
system model is used in reconstruction while a more realistic
data model is integrated into prospective image property pre-
dictors as part of the end-to-end system model. This corre-
sponds to the common scenario in FP-CBCT, where a
nonideal source and a detector constitute the imaging chain,
but the MBIR data model is presumed to have Poisson noise,
lacks a blur model, and neglects other nonidealities intrinsic to
the real imaging chain.

Preliminary work in the development of FP-specific spa-
tial resolution predictors showed significant improvements in
the accuracy of local PSF52 (especially in high-resolution
applications). In this work, predictors for both spatial resolu-
tion and noise properties in PL reconstructions are developed,
incorporating system blur and correlations specific to FP-
CBCT. The predictors include parameterized models of
source blur, detector scintillator blur, and aperture blur as
well as flat-panel detector noise correlations. These physical
parameters are estimated from FP-CBCT test bench measure-
ments. This new set of FP-specific predictors is validated
using phantom reference measurements on the same test
bench. Accuracy of the predictors is assessed over a range of
imaging scenarios including different x-ray techniques (in-
cluding standard/low exposure levels, and with or without
fluence modulation) and regularization strength. Initial
results from these studies were presented in SPIE Medical
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Imaging Conference (2018).53 This work includes a complete
and detailed mathematical derivation of the new predictors
and additionally demonstrates the prediction accuracy across
a greater variety of acquisition conditions (e.g., automatic
exposure control).

2. METHODS

2.A. Flat-panel-specific CBCT system model

To develop image quality predictors for MBIR, one must
have an accurate data model. The data model has two main
elements: (a) the mean measurement model and (b) the noise
model. The following subsections discuss each of these ele-
ments in detail.

2.A.1. Mean measurement model including system
blur

There are two main physical sources of blur in FP-CBCT:
(a) source blur from the finite size of the x-ray focal spot and
(b) detector blur from physical effects including light spread
in the scintillator and the aperture integration. One can
express a full discretized monoenergetic acquisition model as

�yacqðlÞ ¼ S~Bsc

X
k

~Gk expð�~AklÞ (1)

where l 2 RN
þ is a vector representing the attenuation volume

with N voxels and y 2 RP
þ is a vector of P projection mea-

surements over detector elements and projection angles.
Focal spot blur is modeled through a discretized sum over k
sourcelets. For each sourcelet, ~Ak 2 RPsub�N

þ is the projection
matrix defined on a fine virtual detector grid with Psub sub-
pixels total (Psub [ P). The gain term ~Gk models focal spot
intensity variations for each sourcelet. Detector scintillator
blur is denoted by the matrix ~Bsc and is applied to the finely
sampled source-blurred signal, which is subsequently
summed over physical detector pixels with the matrix
S 2 RP�Psub , modeling the detector pixel aperture function.

However, the model above involves a fairly complicated
formulation that is not well suited to fast implementation of
image property predictors. Following related work,54 one can
make a series of approximations to rewrite the acquisition
model in a form without the sum over sourcelets. Specifically,
we write the model as

�yacq; jðlÞ � BscB
j
fsI0 expð�AlÞ (2)

using a standard (non-sourcelets) projection matrix,
A 2 RP�N

þ , and individual models of detector scintillator blur
and source blur effects with

A � S ~Lj
k

� ��1 ~Ak (3)

Bsc ¼ 1
d
S~BscST (4)

Bj
fs ¼

1
dI0

X
k

S~Gk ~L
j
kS

T : (5)

In the above expressions, ST denotes an upsampling opera-
tion, d is the number of virtual subpixels per pixel (based on
the original model), I0 represents an average x-ray fluence
level (x-ray quanta/detector pixel), and ~Lj

k is a sourcelet-spe-
cific shift operator. The shift operator uses the assumption
that neighboring sourcelet rays may be approximated by a
simple shift and (weighted) sum of projection values. Since
focal spot blur is depth dependent (i.e., dependent on the
position of the object with respect to the source and detector),
the amount of shift varies by position in the field of view (as
indicated by index j). Note that the detector aperture is now
included in A via the downsampling operator S within the
exponent of the forward model. For the blur operators, Bsc is
a resampled version of detector scintillator blur ~Bsc that is
applied directly to the sampled projection image on the detec-
tor pixel grid, and Bj

fs approximates local source blur as an
additional projection blur. A complete focal spot model can
be obtained by experimentally measuring the system blur
using a test object at multiple positions or through shape
models of the focal spot on the anode of the x-ray tube.55

We can further simplify the acquisition model by approxi-
mating focal spot blur and considering the source blur exhib-
ited by one point in the field of view, for example, the center
of the field of view. Defining B ¼ BscBcenter

fs then permits us
to write:

�yacq;FPðlÞ ¼ BI0 expð�AlÞ: (6)

We will use this mathematically compact model in subse-
quent derivations of local resolution predictor; however, we
note that it is straightforward to use the shift-variant blur
model of Eq. (2) as well. Again, note that the blur kernel B
does not contain aperture blur, which is included in the
projector A using the separable footprints method.56

2.A.2. Measurement noise model

CT measurements are often regarded as independent with
a Poisson or Gaussian distribution. However, the indepen-
dence assumption is not necessarily suited to flat-panel
detector modeling. In indirect detectors, a scintillator
absorbs primary x-ray photons and converts the energy to
hundreds or thousands of visible light photons. These light
photons can spread within the scintillator and are, in turn,
converted to an electronic signal by the detector. The statis-
tics of the secondary quanta are somewhat complex, com-
bining a compound Poisson noise process with spatial
correlations. Rabbani et al. theoretically analyzed the behav-
ior of stochastic amplification and scattering mechanisms in
imaging systems and developed a stochastic blur model.57

Such models have been validated in flat-panel detector
experiments58,59 and are appropriate for local noise analysis.
We adopt the following model from cascaded system
analysis:60
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Sdet ¼ a4pd�q0�g1 �g2�g4 1þ �g4PKT
2
3

� �
T2
a þ Sro (7)

where Sdet is the NPS flat-panel detector neglecting aliasing,
and �q0 is the mean of primary x-ray quanta. The factors
�g1; �g2; �g4 are the average gains for x-ray photon interaction,
optical conversion, and coupling stages, respectively. The
transfer function T3 accounts for optical photon spread, and
PK is the transfer function associated with K-fluorescence.61

Scintillator blur may be defined as Tsc ¼ T3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK=PKð0Þ

p
accounting for both optical photon and k-fluorescence
spread. The aperture MTF is denoted by Ta, apd is the aper-
ture size, and Sro is the additive readout electronic NPS. The
magnitude of the quantum NPS (Sdet � Sro) is proportional to
the incident quanta �q0. The quanta-normalized NPS
(ðSdet � SroÞ=q0) is independent of total fluence and has a
fixed profile. Noise can be generally categorized into noise
that is correlated via the scintillator transfer function Tsc, and
noise that remains uncorrelated. Thus, we parameterize the
noise model using two factors G0 and cc that summarize the
noise propagation in the detector:

Sdet ¼ �q0G0 1þ ccT
2
sc

� �
T2
a þ Sro: (8)

with the total gain G0 ¼ a4pd�g1 �g2�g4 and a factor that charac-
terizes the amount of noise that is correlated, cc ¼ �g4PKð0Þ.
This noise model will be used in the local noise predictor
derivations.

2.A.3. Reconstruction models and penalized-
likelihood estimation

In this work, we focus on PL estimation of attenuation
coefficients. The PL estimator is defined implicitly as the
optimizer of an objective function. Generally, there is no
closed-form solution, so the estimate is approximated itera-
tively. Mathematically, we may write

l̂ðyÞ ¼ argmax
l

Uðl; yÞ (9)

where l̂ 2 RN
þ is the estimate of attenuation coefficients based

on noisy projection data y 2 RP
þ. The PL objective function

Φ(l;y) combines a statistical data fidelity term based on the
log-likelihood L(l;y) with a roughness penalty term R(l).

Uðl; yÞ ¼ Lðl; yÞ � bRðlÞ (10)

The penalty term attributes higher cost for large local image
differences to encourage smoothness. The relative balance
between data fidelity and regularization is controlled by the
scalar, b. In this work, we focus on a quadratic roughness
penalty with the first-order neighborhood and pairwise voxel
differences written as

RðlÞ ¼
X
j

X
k2N j

1
2
ðlj � lkÞ2 (11)

whereN j denotes a neighborhood of voxels around location j.
As mentioned previously, PL methods often adopt inde-

pendent Poisson models for measurements. In this case, the

data fidelity term can be expressed as a sum over measure-
ments, i, with

Lðl; yÞ ¼
X
i

yi log½�yreconðlÞ�i � ½�yreconðlÞ�i: (12)

Again, the traditional mean measurement model for recon-
struction, �yreconðlÞ, ignores system blur and uses the follow-
ing simple transmission model:

�yreconðlÞ ¼ I0 expð�AlÞ (13)

We note the explicit differences between the more accurate
physical model of acquisition in Eq. (6) and the idealized
reconstruction model in Eq. (13). These mismatched models
are indicated by the subscripts on y. Similarly, the indepen-
dent and Poisson noise model implicit in the log-likelihood
in Eq. (12) is mismatched with the correlated noise model of
Eq. (8).

2.B. Image properties prediction

2.B.1. Local spatial resolution predictors

Previous studies have shown that PL reconstructions yield
shift-variant resolution properties. However, such resolution
properties are locally linear and locally shift-invariant with
quadratic roughness penalties.39 In this case, analysis using
local PSFs is appropriate for image quality assessment. The
local PSF is defined as the expected relative change in the
reconstruction image when a small local impulse is intro-
duced into the image volume. Mathematically, the local PSF
may be written as

PSFj ¼ lim
d!0

1
d

l̂ �yacq lþ dej
� �� �� l̂ �yacqðlÞ

� �� �

¼ @

@lj
l̂ �yacqðlÞ
� � (14)

Note that this expression can be interpreted as a difference
between PL reconstructions of noiseless projection data
based on objects with and without a small local impulse
change at location j. The magnitude of change is denoted by
scalar d, ej denotes a vector representing a Kronecker delta
with unity in the j element, and lj is the j

th element of image
vector l. Following previous work39 and applying the chain
rule, we can separate the local PSF into two factors:

@

@lj
l̂ �yacqðlÞ
� � ¼ @

@lj
�yacqðlÞ � r�yrecon l̂ð�yreconðlÞÞ (15)

The first term is a derivative of the acquisition model for
physical signal propagation. Previously derived local PSF
estimators used an acquisition model matched to the recon-
struction model such that

@

@lj
�yacq;ideal ¼ �DfI0 expð�AlÞgAej (16)

where D[�] denotes the operator that places the argument of a
vector in RN along the main diagonal of a matrix in RN�N .
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Using the more sophisticated acquisition model in Eq. (6),
one finds

@

@lj
�yacq;FP ¼ �BDfI0 expð�AlÞgAej: (17)

Note that the difference between the old and new terms is in
the addition of the system blur operator in Eq. (17).

The second term in Eq. (15) is a gradient of the estimator
with respect to the measurements. This term relies on the
measurement model for reconstruction in Eq. (13) and may
be written as

r�yrecon l̂ �yrecon lð Þð Þ
¼ � ATDfI0 expð�Al̂ðyÞÞgAþ R

� ��1
AT

(18)

where R ¼ r2RðlÞ is the Hessian of the penalty term.
In Eqs.(16-18), diagonal weighting terms are based on

idealized projections of the true attenuation volume or of the
reconstruction of measurement data. It is important to note
that the dependencies on patient anatomy and x-ray technique
are introduced through this diagonal weighting term. More-
over, the expression depends only on the object through pro-
jections of the object. Thus, even if ground truth volumes are
not generally available, we can approximate these weights
with the measurements themselves, W = D{y}.39 Thus, we
can express traditional and FP-specific resolution predictors
as

PSFidealj ¼ ATWAþ R
� ��1

ATWAej (19)

PSFFPj ¼ ATWAþ R
� ��1

ATBWAej: (20)

Note that the difference between these resolution predictors
lies in the right-hand side of the expressions where the Fisher
information term ATWA derived from the reconstruction
process is mismatched with ATBWA that also contains the
system blur operator.

To avoid the computational complexity of matrix inverses
in Eqs. (19) and (20), Fourier approximation in a local ROI
around j may be applied to accelerate prediction. This results
in the following closed-form predictors:

PSFidealj ¼ F�1f FfROIjfATWAejgg
FfROIjfATWAej þ Rejgg

g (21)

PSFFPj ¼ F�1f FfROIjfATBWAejgg
FfROIjfATWAej þ Rejgg

g (22)

where F and F�1 denote the discrete Fourier transform
and inverse transform, respectively, and ROIjf�g denotes tak-
ing a cubic ROI centered at the jth voxel. Note that both pre-
dictors may be computed given projection data alone (via
W) without the need for explicit reconstruction. Moreover,
the expression above captures the dependencies on patient
anatomy, exposure, geometry, regularization, and location.

Performance of both predictors will be evaluated and com-
pared in this work.

2.B.2. Local noise predictors

Various noise metrics are often used in CT image quality
assessments. While simple measures of variance are often
used for the purposes of basic quality or consistency checks,
NPS or covariance metrics are desirable since they quantify
the structure and frequency content of the noise. In PL recon-
struction, noise properties are generally nonstationary; how-
ever, quadratic penalties generally induce smooth variations
in noise statistics. Thus, we can assume local stationarity
within reasonably small ROIs to facilitate noise analysis.

Following previous work,39 we derive the first-order Tay-
lor expansion of a PL reconstruction about noise-free projec-
tions such that

l̂ðyÞ � l̂ð�yÞ þ r�yrecon l̂ �yreconðlÞð Þðy� �yacqÞ: (23)

Note the mismatch between acquisition and reconstruction
forward models. Taking the covariance of both sides, one
finds

Covfl̂g ¼ r�yrecon l̂ �yrecon lð Þð ÞCovfyacqg r�yrecon l̂ �yrecon lð Þð Þ� �T
(24)

where Cov{y} is the covariance of noisy measurements. The
term r�yl̂ð�yðlÞÞ represents noise propagation through recon-
struction based on the idealized forward model �y ¼ �yrecon
which was previously stated in Eq. (18).

The local covariance between l̂j and the entire image vol-
ume l̂ is represented by the jth column of the covariance
matrix Covfl̂g. That is,

Covfl̂; l̂jg ¼ Covfl̂gej (25)

Under the conventional assumption of CT measurements
that are presumed to be statistically independent with variance
equal to their mean (e.g., Poisson distributed). The covariance
matrix for ideal measurements is a diagonal matrix

Covfyg ¼ Df�yacqg � W (26)

Thus, an idealized predictor of covariance may be written as

Covidealfl̂; l̂jg
¼ ATWAþ R

� ��1
ATWA ATWAþ RT

� ��1
ej

(27)

This model ignores the more sophisticated FP detector
noise model in Eq. (8). To use the FP model, one must esti-
mate the locally incident primary x-ray photons �q0 and the
general detector gain term G0. However, the projection data
including the simplified I0 factor in the reconstruction model
is proportional to the total detector response �q0G0 in a locally
uniform region. An empirical gain term G is introduced to
account for the conversion between the primary x-ray photon
distribution and projection data. Details of the Poisson equiv-
alent fluence I0 calculation and the relationship between gain
terms in both models are described in Appendix A. With the
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empirical gain G and reconstruction model, the local detector
NPS (in the absence of aliasing) can be written as

Sdet; i ¼ G½I0 exp ð�½Al�iÞ½1þ ccT
2
sc�T2

a þ Sro (28)

where ½Al�i denotes the line integral associated with the ith

measurement. Presuming local stationarity, it is straightfor-
ward to find a covariance function using the inverse Fourier
transform. To model structured projection data, we presume
that the predetection signal is globally nonuniform, indepen-
dent, Poisson distributed, and locally smooth. Under this
local stationarity assumption, we take the inverse Fourier
transform of Eq. 28 and write the following model:

CovFPfyg ¼ 1
auav

½BaðccBscGWBT
sc þ GWÞBT

a þKro�:
(29)

Here, Ba is the aperture blur, Kro denotes the additive elec-
tronic noise covariance matrix, and au; av are the detector
pixel sizes along u,v direction, respectively.

Combining Eqs. (19) and (29) into (25) yields

CovFPfl̂; l̂jg
¼ ATWAþ R

� ��1
ATCovFPfygA ATWAþ RT

� ��1
ej:

(30)

Again, the idealized and FP-specific noise predictions
may be computed with Fourier methods. Moreover, if one
wishes to focus on the local NPS instead of local covariance,
there is no need for an inverse Fourier transform operation.
As such, we arrive at the following idealized and FP-specific
predictors for local NPS:

NPSidealj ¼ FfROIjfATWAejgg
FfROIjfATWAej þ Rejgg
� �2 (31)

NPSFPj ¼
FfROIjfAT GBaðccBscWBT

sc þWÞBT
a þKro

� �
Aejgg

auav FfROIjfATWAej þ Rejgg
� �2 :

(32)

Note that the difference lies in the numerators as deriva-
tions from the idealized or FP-specific acquisition noise mod-
els. Again, object dependency is captured in both of these
expressions through the data weighting term, W = D{y}. As
with the resolution predictors, both of the above expressions
may be computed without explicit reconstruction and encom-
pass dependencies on not only patient anatomy but also expo-
sure, geometry, regularization, and location.

2.C. Validation of predictors in physical
experiments

2.C.1. FP-CBCT system characterization

In this work, we evaluated predictors of spatial resolution
and noise on a CBCT test bench shown in Fig. 1(a). The
bench includes an x-ray tube (Varian Rad-94 Sappire) and a
flat-panel detector (Varex PaxScan 4343CB, 1536 9 1536
pixels, pixel size 0.278 mm 9 0.278 mm, fill factor
cpix ¼ 60:7%). The system geometry was identical for all
scans with source-to-axis distance of 912 mm and source-to-
detector distance of 1150 mm.

Characterization and validation of the underlying system
blur and flat-panel detector noise models are essential before
validation of the predictors of reconstructed FP-CBCT image
properties. To this end, system blur associated with the detec-
tor and x-ray focal spot was estimated. As in previous work,62

we used a tungsten plate (50 mm 9 50 mm 9 5 mm) with
a sharp, straight edge to measure detector blur. A presampled
edge response function (ESF) was estimated by interleaving
200 edge measurements along the angled edge and differenti-
ated to obtain a one-dimensional (1D) line spread function
(LSF). Fourier transformation of the 1D-LSF yields the MTF
associated with the direction perpendicular to the edge. The
tungsten plate was placed along different orientations to eval-
uate MTF along different directions (e.g., a possibly anisotro-
pic detector blur). To measure the effects of focal spot blur,
the tungsten plate was placed at axis-of-rotation (e.g., the
center of the field of view) to measure the total system blur.
We note that the source blur effects can be isolated by
dividing the total blur MTF by the detector MTF, though the

FIG. 1. Materials used in physical experiments including: (a) the CBCT test bench setup. (b) The resolution phantom with a positionable tungsten wire. Resolu-
tion properties at three positions (marked with crosses) were investigated. (c) The noise phantom with two uniform cylindrical inserts. Noise properties in three
uniform materials (polyethylene, acetal, and water) were investigated. [Color figure can be viewed at wileyonlinelibrary.com]
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source blur alone is not required for the predictor models.The
aperture blur is divided out to fit the blur kernel
in derivations, characterized by detector parameters
(pixel size and fill factor), and modeled by a 2D sinc function
using

Taðfu; fvÞ ¼ sincð ffiffiffiffiffiffiffi
cpix

p
aufuÞsincð ffiffiffiffiffiffiffi

cpix
p

avfvÞ
���

��� (33)

For flat-panel noise modeling, the 2D detector NPS was
measured using six flat fluence exposures.58 Each set of data
was gain and offset corrected, and was multiplied by fluence
intensity I0 presuming uniform fluence field at each view,
which was estimated by computing the mean divided by the
variance (over an ROI) to yield the number of noise equivalent
photons to match the Poisson reconstruction model. The read-
out noise Sro was measured in dark images and subtracted.
Estimates of NPS were divided by I0 which normalized the
area under the spectrum and divided by T2

a to eliminate detec-
tor aperture effect. Since we observed that the area-normalized
presampled 2D NPS (ðSdet � SroÞ=ðI0T2

a Þ) was highly isotro-
pic, each was radially averaged for noise reduction.

The scintillator MTF was calculated by dividing the detec-
tor MTF (as estimated from edge responses) by the aperture
MTF. The parameters G and cc from the detector noise model
in Eq. (28) were determined by linear regression fitting of
area-normalized presampled NPS profiles to the squared 1D
scintillator MTF.

2.C.2. Data acquisition and reconstruction

To investigate the accuracy of the resolution and noise pre-
dictors, local PSF and NPS estimates were computed in
reconstructed images of specialized phantoms and an anthro-
pomorphic chest phantom. The measurements are compared
with the analytical predictions as references.

We used a water-filled 3D-printed phantom [Figs. 1(b)
and 1(c)] to emulate typical patient quantum noise variations
(e.g., in a thorax) as a function of projection angle. The phan-
tom was elliptical with a major axis of 26 cm and minor axis
of 14 cm. Different inserts were used for the spatial resolu-
tion and noise predictor validations, and are discussed in the
following sections.

In the specialized phantom experiments, two technique
protocols commonly employed in FP-CBCT systems were
investigated. Specifically, we considered two x-ray exposure
techniques:

(1) Unmodulated x-ray technique. The tube current was
constant for all frames at a reference exposure level.

(2) Automatic exposure control (AEC). The approxi-
mately constant fluence at the center of the detector63

at a quarter of reference dose level was delivered. On
the FP-CBCT test bench, AEC was achieved by pulse
width modulation to control the mAs/frame. (Other
CT systems achieve the same effect via tube current
modulation.)

In addition to the specialized phantoms, a custom anthro-
pomorphic chest phantom (Fig. 3) with human bone and tis-
sue-equivalent plastic was used to verify the prediction
accuracy in a more realistic case. In the anthropomorphic
phantom scans, only the unmodulated x-ray technique was
applied.

The PL reconstruction algorithm was coded in MATLAB
with external calls to CUDA-based libraries implementing
separable footprints projectors and backprojectors. The sepa-
rable paraboloidal surrogates (SPS) algorithm64 was chosen
to minimize the PL objective function Eq. (13) with quadra-
tic penalty design as in Eq. (11). Curvature precomputation65

and varying numbers of ordered subsets (18 subsets for the
first 50 iterations, 10 subsets for the following 50 iterations,
and 1 subset for 500 iterations)66 were used to ensure highly
converged solutions with 600 iterations total. Images were
reconstructed using a 750 9 1350 9 200 volume with
0.2 mm cubic voxels.

Fluence levels (I0) were estimated as discussed in Sec-
tion 2.C.1. For unmodulated scans, I0 was 6:0� 104 pho-
tons/pixel for the specialized phantom experiments and
7:7� 104 photons/pixel for the anthropomorphic phantom
experiments; for AEC scans, I0 changed from frame to frame
as shown in Fig. 2, but was approximately 1:5� 104 pho-
tons/pixel averaged over all frames. All projection data used
360 projection frames equally spaced over 360�. Varying reg-
ularization strengths b between 104 and 106:5 were investi-
gated to leverage between the data fidelity term and image
roughness penalty term.

2.C.3. Spatial resolution predictor validation

In spatial resolution studies, a tungsten wire [Fig. 1(b)]
was used as a resolution probe.67 The wire was thin
(/ = 127 lm smaller than the voxel size), making it a good
physical approximation to a local impulse. The wire was
immersed in water or in casting resin to emulate surrounding
attenuation from patient anatomy. To estimate a local PSF, a
local ROI in the reconstructed volume (71 9 71 9 51 voxels)
including the wire was selected. A background water attenua-
tion value was calculated using an annulus surrounding the

FIG. 2. Tube current modulation profiles. [Color figure can be viewed at
wileyonlinelibrary.com]
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wire and subtracted from the ROI. The wire center in 20 con-
secutive slices was estimated using Gaussian fitting to align
slices with subpixel translation. The 2D wire response
PSFwireðx; yÞ was approximated by interleaving samples from
the centered slices. Blur due to the 2D wire response was
removed using a wire cross section model (fwireðx; yÞ, equal to
a disc with diameter / = 127 mm) via Fourier methods.
After normalization, a 2D in-plane PSF estimate was
achieved.

To compare measured PSF values with the predictor
requires forming a similar 2D in-plane PSF from the 3D PSF
prediction. Specifically, the 2D in-plane PSF corresponds to
an integral of the 3D PSF over the axial direction. Thus, the
following integration was computed using a finite sum over
PSF samples:

PSFpredðx; yÞ ¼
Z
z
PSFpredðx; y; zÞdz: (34)

The spatial resolution predictor was validated at the three
locations marked with crosses in Fig. 1(b). This was achieved
with the wire probe fixed at each location in three scans. Both
unmodulated and AEC x-ray techniques were applied for
each set of acquisitions.

Influence of regularization strength was investigated
through varying beta. The FWHM was calculated by averag-
ing the diameter of the half-maximum contour of the 2D
PSF. In each reconstruction, multiple samples of measured
PSFs were calculated, each integrating ten slices at varying z
locations.

2.C.4. Local noise predictor validation

For noise validation studies, two uniform cylinders (/
77 mm 9 H 40 mm) made of polyethylene and acetal were
inserted in the elliptical phantom (Fig. 1). In the anthropo-
morphic phantom, the noise properties are investigated in
two locally uniform locations [see Fig. 3(a)]. Two scans
were acquired, reconstructed, and subtracted to form a
noise-only image volume. Presuming local stationarity, a
local 3D NPS was calculated using a sliding window tech-
nique with nine 3D ROIs, each 71 9 71 9 31 voxels,

aligned axially, and half-overlapped in the z-direction. The
NPS was computed as

NPSðfx:fy; fzÞ ¼ 1
2
axayaz
nxnynz

hjDFT½DROIðx; y; zÞ�j2i (35)

where a is the voxel size and nx, ny, and nz are the number of
voxels in each direction of the ROI. The 3D NPS predictions
were compared with estimates based on measurements and
the central NPS slices (fz ¼ 0) are displayed.

Local noise estimates and prediction were compared at
three selected locations marked with crosses in Fig. 1. Each
location was within a uniform region (though each material
— polyethylene, water, acetal had a different mean attenua-
tion). Both unmodulated and AEC x-ray techniques were
investigated and two regularization parameters were applied.

3. RESULTS

3.A. FP-CBCT system characterization

The results of CBCT system blur characterization are
shown in Fig. 4. Detector blur estimates consist of the scintil-
lator blur and the aperture blur given by 1D-MTFs over five
orientations. No significant angular differences were
observed. Investigation at different locations on the panel
(not shown) obtained nearly identical 1D-MTF curves, sug-
gesting that the detector response was also highly shift-invar-
iant (e.g., obliquity effects were not significant for this
geometry). We found that FWHM of 2D detector blur kernel
was approximately 0.37 mm. The total blur measured with
the edge at the axis of rotation is only slightly blurrier than
detector blur suggesting limited focal spot blur with a total
system blur FWHM of approximately 0.40 mm. In all stud-
ies, we used a focal spot whose size was nominally 0.4. With
a system magnification of 1.26 and anode size smaller, the
expected FWHM of focal spot blur should be less than
0.1 mm. With the total system blur dominated by scintillator
blur, the system is approximated well using a shift-invariant
approximation (though one could also incorporate a shift-var-
iant model for the focal spot blur). In following estimations,
the aperture MTF is divided out from the total blur to fit the

FIG. 3. (a) The custom anthropomorphic chest phantom including a Kyoto Kagaku "Lungman" insert emulating the cardiac region and lungs. A tungsten wire
cast in a polyester background was inserted at positions 1 and 2 for spatial resolution properties investigations. Noise properties are investigated at positions 3
and 4 using the difference of two repeated scans. (b) The CT axial image of the anthropomorphic phantom with tungsten wire inserted. [Color figure can be
viewed at wileyonlinelibrary.com]
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estimation model, where the B is the combination of the scin-
tillator blur and the source blur.

Detector NPS was measured for six exposure levels with a
uniform bare beam. Readout NPS was estimated as a constant
and subtracted from detector NPS. The readout-noise-free
detector NPS was divided by T2

a to eliminate the aperture
effect. Normalized by area, each 2D NPS map of scintillator
photons was highly isotropic.

Angularly averaged profiles are shown in Fig. 5(a). Using
the detector blur measurements and the averaged NPS profile,
we used linear regression to estimate parameters cc and G in
the stochastic blur model Eq. (8). We found that cc ¼ 7:52
and G ¼ 0:032 mm2 optimized the parameteric model. The
data fit is found as shown in Fig. 5(b) with root-mean-square
error 1:9 � 10�3mm2. These parameters and scintillator/
aperture MTF estimates were used in subsequent predictor
validation studies.

3.B. Local spatial resolution predictor validation

A summary of the spatial resolution validation in special-
ized phantom studies is shown in Fig. 6. Each row shows
PSF predictions with an idealized and flat-panel-specific

predictor as well as estimates based on physical measure-
ments. Each column shows the local PSF in a different phan-
tom location. Line plots below compare central profiles of
local PSF measurements and predictions in both horizontal
and vertical directions at the corresponding position. Unmod-
ulated scan results are shown on the left, while AEC results
are on the right. In both cases, the PL regularization parame-
ter was b ¼ 105.

Both unmodulated and AEC experiments show similar
results in terms of PSF prediction accuracy. Namely, the pre-
dicted PSF using the flat-panel CBCT-specific model closely
matches measured PSF results. This is apparent both in the
2D PSF images as well as the 1D profiles. In contrast, the
idealized predictor underestimated blur in the reconstruction.
This is unsurprising since the idealized mode does not
account for flat-panel detector blur nor focal spot blur. The
underestimation is most easily seen in the profile plots.

A number of other interesting trends are apparent in these
results. We see that measured local PSF estimates vary across
positions, illustrating strong shift-variant resolution proper-
ties in PL reconstruction. The proposed predictor success-
fully captures these features and shows a good match in all
three positions. The largest mismatch is identified at the

FIG. 5. Flat-panel detector noise properties measurement. (a) Normalized averaged NPS profiles at six exposure levels, (b) Measured and modeled area-normal-
ized NPS profiles. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Flat-panel detector and CBCT system resolution properties measurement. (a) Detector MTF for five orientations, (b) MTF of detector blur and total sys-
tem blur, (c) Detector blur, aperture blur, and scintillator blur within the Nyquist frequency. [Color figure can be viewed at wileyonlinelibrary.com]
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second position (see profile plots for the unmodulated case),
furthest from the rotation axis. We conjecture that this mis-
match originated from approximated source blur at the center.
A shift-variant source blur model should help reduce the mis-
match.

Comparing AEC to unmodulated results, an increase in
blur is observed. This is consistent with using the same regu-
larization parameter b in both experiments. Recall that the
average dose in the AEC scan was a quarter of that in unmod-
ulated scan. Since smoothness is controlled by the relative
importance of data fidelity and regularization terms, using
the same regularization parameter but decreasing the data
fidelity (via reduced fluence) results in more blur (as
observed).

Under the conditions of uniform regularization and uni-
form x-ray illumination (e.g., no bowtie filter), varying levels
of blur are also observed with regard to directional depen-
dence. Specifically, since measurements associated with
shorter path lengths will have higher data fidelity and thus
less MBIR-induced blur along the direction of measurements.
Thus, for the unmodulated case, we see increased blur in the
vertical direction due to the decreased data fidelity (longer
path lengths) for lateral projections over anterior–posterior or
posterior–anterior projections. One also tends to see a prefer-
ence for increased tangential blur toward the edge of objects
since the data fidelity is high for the shorter paths. Thus, for
the elliptical phantom and the unmodulated beam, the central
position shows preferential vertical smoothing and increased
vertical smoothing in lateral position 2. The two effects (pref-
erential vertical blur due to the ellipse and tangential blur)

counteract each other in position 3 to yield a more isotropic
response. For the AEC case, the data acquisition is modified
so that the fluence arriving at the detector is constant for the
central ray on the detector. Thus, all projection rays passing
through the central position 1 have equal data fidelity, which
results in a nearly isotropic blur. For the other two positions,
AEC partially compensates for the asymmetry of the ellipse,
whereas the tangential blur remains. If one desires uniform
isotropic resolution for all image locations (using uniform
regularization),a more sophisticated spatial fluence-field
modulation that can homogenize the noise (e.g., dynamic
bowtie filters,68 multiple aperture device,69 etc.) for all detec-
tor rays is required.

Figure 7 shows the b-dependent full-width half-maximum
(FWHM) of the PSF at position with varying regularization
strength. Specifically, b was swept linearly in the exponent
with a 100:5 step size, from 104:5 to 106:5. Measurements are
plotted in cyan with 98% confidence intervals estimated with
eight samples at each point. The red line represents the FP-spe-
cific prediction results and the blue line stands for idealized
prediction. When regularization strength b was increased, the
PL reconstruction exhibits increased overall blur. The proposed
flat-panel-specific predictor outperforms the idealized predic-
tor which systematically underestimates the blur in the recon-
struction. We note there is a small degree of mismatch for the
flat-panel-specific predictor at the lower regularization levels.
Similarly, the measured PSFs are slightly blurrier than flat-
panel-specific predictions. We conjecture that this may result
from slight errors in the geometric calibration procedure that
are not integrated in the prediction model.

FIG. 6. PSF predictions and measurements for unmodulated and AEC x-ray techniques. [Color figure can be viewed at wileyonlinelibrary.com]
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3.C. Local noise predictor validation

Figures 8 and 9 summarize the results of the noise predic-
tor validation in specialized phantom study, showing the
comparison between measurements and predictions in the
unmodulated and AEC experiments, respectively. In each
subfigure, NPS estimates are organized similar to the spatial
resolution studies with each row showing an NPS computed
by measurement or one of the two predictors. Each column
represents one of the locations being compared. The mea-
surements are somewhat noisy due to the limited number of
ROIs used in the sliding window estimate. However, the

general shape and amplitude are apparent and matched well
with flat-panel-specific predictions. The idealized predictions
underestimated noise level (variance) by over 70%. Compar-
ing results across columns, we can see shift-variant noise
properties at the three different positions. In each figure, the
left subfigure shows NPS in reconstruction with regulariza-
tion parameter b ¼ 104, and the right shows results when
b ¼ 105. Consistent with expectations, higher regularization
strength leads to reduced high frequency noise and smaller
overall variance.

We also observe significant differences in noise properties
between two acquisition strategies. Increased correlated noise
is observed along fy-axis in the unmodulated reconstructions
because of fewer photons transmitted parallel to the long axis
(x-axis in spatial domain) of the elliptical phantom. The over-
all noise distribution is more uniform and isotropic in AEC
scans due to the increased homogeneity of the statistical
weights.

3.D. Validation in anthropomorphic phantom
studies

The results of spatial resolution and noise properties pre-
dictions and measurements in anthropomorphic phantom
studies are summarized in Fig. 10 . The PSF at each location
is shown in columns on the left and the NPS estimates are
shown on the right. From the top to the bottom, each row
shows the idealized predictions, flat-panel-specific predic-
tions, and estimates in physical measurements. Central

FIG. 7. Accuracy of predictions with varying regularization strength. Plots
of PSF FWHM vs b are shown for idealized and flat-panel-specific predic-
tors as well as measurements. Subfigures show the measured PSF at each b.
[Color figure can be viewed at wileyonlinelibrary.com]

FIG. 8. Predicted and measured NPS estimates for the unmodulated x-ray technique. Left: b ¼ 104; right: b ¼ 105. Note that the colormaps vary for each col-
umn for better visualization due to location-dependent noise levels. [Color figure can be viewed at wileyonlinelibrary.com]
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profiles in both horizontal and vertical directions of predic-
tions and measurements are compared in the plots at the left
bottom rows. The PL regularization parameter was b ¼ 106

in the spatial resolution study, and b ¼ 105 in the noise
properties study.

In both spatial resolution and noise properties validations,
the flat-panel-specific predictions closely match with the
physical measurements, while the idealized PSF predictions
are sharper (failing to capture the blur in the imaging system).
Directional blurring due to the oblate phantom shape and
shift variance of the response is evident with increased tan-
gential blur for position 2 since it is closer to the edge of the
phantom. The idealized NPS predictions underestimate the
noise level in both locations; however, the proposed method
shows good agreement with empirical NPS measurements.
Nonstationarity of the noise is evident with very different
NPS predictions between these two locations.

4. DISCUSSION AND CONCLUSION

In this work, we presented local spatial resolution and
noise predictors for PL reconstruction that adopt realistic
physical models of FP-CBCT data acquisition. Phantom
experiments showed that FP-specific predictors have superior
consistency to physical measurements when compared to ide-
alized predictors of both spatial resolution and noise proper-
ties.

The proposed predictors account for the dependencies on
patient anatomy, x-ray techniques, scanner geometry, and
reconstruction penalty design through the weights, system

matrix, and the Hessian matrix of quadratic penalty term.
Moreover, they account for the dependency on system charac-
teristics. The system characteristics including the scintillator
blur, focal spot blur, aperture effect, and measurement covari-
ance are precalibrated through direct x-ray measurements and
used in properties prediction process. In our experiments, a
one-time system characterization of the input–output relation-
ship of the signal per unit incident x-ray is sufficient to pro-
vide an accurate set of predictors for both spatial resolution
and noise properties. The accuracy of properties prediction is
dependent on the precalibration and the stability of the sys-
tem. We expect that detector effects like scintillator blur to be
highly stable over time; however, there is the potential for
additional complexity with focal spot blur. In particular,
dependencies of focal spot size on tube current, tube heating,
etc., have the potential to change the amount of blur induced
by the source. To maintain accurate PSF and NPS predic-
tions, such effects would need to be modeled to maintain
high accuracy, for example, through calibration of focal spot
blur as a function of tube current. While such effects were
not significant in our experiments, different x-ray tubes and
system geometries may be more susceptible to such effects.

These predictors can be used for prospective analysis of
reconstructed image quality at any location of interest given
measured projection data — permitting prospective control
and design of regularization for specific image quality goals.
Moreover, the same predictors can be used with different
patient and object models for adaptive imaging whereby the
acquisition approach (e.g., x-ray modulation) is adapted
based on the patient anatomy. Similarly, since the proposed

FIG. 9. Predicted and measured NPS estimates using the AEC x-ray technique. Left: b ¼ 104; right: b ¼ 105. For each regularization strength, the colormap is
the same for every subfigure. [Color figure can be viewed at wileyonlinelibrary.com]
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predictors take into account additional aspects of noise and
resolution in an end-to-end system model (e.g., detector char-
acterizations), these models may be used for joint design of
hardware (including detector choices and system geometry)
with MBIR software (which is known to improve image qual-
ity trade-offs over conventional analytics reconstruction
approaches). As in related work, these improved local quan-
tification of spatial resolution and noise properties can be fur-
ther integrated into observer models, which are promising in
prospective design of task-based optimization in system
design, acquisition strategies, and reconstruction methods.

In this work, we adopted a FP-CBCT data acquisition for-
ward model including the scintillator blur, an approximated
shift-invariant focal spot blur, and the aperture effect. In FP-
CBCT noise model, the general gain term associated with the
Poisson-equivalent fluence level, I0, in the reconstruction for-
ward model is characterized along with the correlated noise
level. However, these models leave out the shift-variant focal
spot blur and the noise aliasing effect. The shift-variant prop-
erty of focal spot blur is significant when large magnification
is used. In such scenarios, more sophisticated modeling and
system calibration are needed. Aliasing noise effects are
small for indirect detection FP detectors due to the extra

scintillator blur and is negligible in this work. In systems
equipped with direct detection detector, noise remains high
near and above the Nyquist frequency, and aliasing plays an
important role. Thus, to accommodate such scenarios, this
work needs to be extended to explicitly model aliasing.

In this work, we presented a general approach to assess
PL-reconstructed image quality in a prospective fashion,
especially in systems where characteristics such as system
blur and nonideal statistics lead to the mismatch between the
data acquisition model and the reconstruction model. This
mismatch is significant in FP-CBCT systems since scintillator
blur is nonnegligible. In conventional CT, mechanisms like a
pixelated scintillator are utilized to avoid signal sharing
between pixels. However, effects like charge sharing between
adjacent pixels70 and finite focal spot71 can produce addi-
tional system blur that is often not modeled in reconstruction.
Such blur may be potential impact in the prediction of imag-
ing properties in high resolution CT applications. The pro-
posed predictors are sufficiently general to accommodate
such high resolution CT applications but will require system-
specific calibration. While this work focused closely on PL
with a quadratic penalty in CBCT, there is ongoing work to
apply similar predictors and analysis of other reconstruction

FIG. 10. PSF and NPS predictions and measurements in anthropomorphic phantom studies. [Color figure can be viewed at wileyonlinelibrary.com]
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method and regularization strategies (including edge-preser-
ving penalties41 and prior image-based reconstruction meth-
ods72). The methodology presented here is general —
permitting mismatch between the data acquisition model and
the reconstruction model (which often makes idealizations to
obtain practical algorithms). To accommodate other recon-
struction techniques, one may derive the properties predictors
based on the corresponding acquisition and reconstruction
model. For example, penalized weighted least squares
(PWLS) is commonly used for reconstruction presuming a
Gaussian statistical model for the line integral estimates, and
it is straightforward to derive similar resolution and noise pre-
dictors for PWLS. In fact, since the derivations rely only on
the first- and second-order statistics, the predictors for PWLS
should be very similar to the Poisson PL case developed here
if a conventional weighting scheme (the inverse of measure-
ments) is applied.

In general, this work represents a bridge between the high-
fidelity physical modeling common in detector and system
design with cascaded systems analysis and model-based
reconstruction, providing prospective image quality analysis
of a CT system end-to-end and facilitating precise characteri-
zation and control of image properties without specialized
data acquisitions and exhaustive reconstruction.
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APPENDIX (A1)

A RELATIONSHIP BETWEEN GAIN FACTORS IN
FLAT-PANEL AND RECONSTRUCTION MODELS

Raw projection data acquired in FP-CBCT requires pre-
processing including models/corrections for detector sensitiv-
ity, incident fluence inhomogeneities, and dark current. To
eliminate these effects, a gain-offset preprocessing pipeline is
typically used to normalize the projection data to the ratio of
detected fluence and incident fluence, which should equal
the exponent of the negative line integral according to a sim-
ple Beer–Lambert’s law model. That is,

ycorr ¼ y� �yoff
�y0 � �yoff

;�ycorr ¼ expð�AlÞ (A1)

where y is one frame of uncorrected projection data, �y0 is an
estimated gain based on the average of bare-beam frames,
and �yoff is an offset estimated based on the average of dark
frame with no x-ray exposure.

To perform model-based reconstruction, one must estimate
I0 in Eq. (13). This term carries important information about
incident fluence levels and noise levels. Under a Poisson
noise model assumption, I0 can be calculated so that the
scaled projection in bare-beam data I0y0;corr has equal mean
and variance. Thus,

I0�y0;corr ¼ I20r
2
y0;corr (A2)

I0 ¼ �y0;corr
r2y0;corr

¼ ð�y0 � �ydÞ2
r2y0

: (A3)

Using cascaded system analysis, the local mean and vari-
ance of the same bare-beam data including detector response
are

�y0 ¼ k�1a2pd �q0�g1 �g2�g4 þ �yd ¼ a�2
pd �q0G0 þ �yd (A4)

r2y0 ¼ k�2
Z Z

Sdetdfudfv (A5)

¼ k�2a4pd �q0�g1�g2�g4

Z Z
ð1þ �g4PKT

2
3 ÞT2

a dfudfv þ r2ro

(A6)

¼ k�2 �q0G0

Z Z
ð1þ ccT

2
scÞT2

a dfudfv þ r2ro (A7)

where k is the conversion gain that denotes the number of
electrons per arbitrary detector unit. The remaining notation
is consistent with Section 2.A.2. Combining Eqs. (A3),
(A4), and (A7), the analytical expression for the I0 estimate is

I0 ¼
a�4
pd q

2
0G

2
0

�q0G0
R R ð1þ ccT2

scÞT2
a dfudfv þ r2ro

: (A8)

Presuming that the readout noise is relatively small compared
to the quantum noise permits the following approximation:

I0 ¼
a�4
pd q0G0R R ð1þ ccT2

scÞT2
a dfudfv

: (A9)

In Eq. (28), we introduce an empirical gain G that scales the
corrected data I0ycorr to the detector output,

GI0ycorr ¼ �q0G0ycorr (A10)

where the incident quanta �q0 is attenuated by the object to
�q0ycorr. Thus, the explicit expression of G can be written as,

G ¼ a4pd

Z Z
ð1þ ccT

2
scÞT2

a dfudfv: (A11)

This is the scalar gain factor used in Section 2.B.2.

a)Author to whom correspondence should be addressed. Electronic mail:
web.stayman@jhu.edu.
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