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Abstract

We examined the time-resolved and steady-state fluorescence quenching of A-acetyl-L-
tryptophanamide (NATA) by acrylamide and iodide, over a range of viscosities in propylene
glycol. The quenching of NATA by acrylamide and iodide results in heterogeneity of the intensity
decay which increases with the quencher concentration. We attribute the complex decays of NATA
to transient effects in diffusion and the nature of the fluorophore—quencher interaction. These data
were compared using the phenomenological radiation boundary condition (RBC) and distance-
dependent quenching (DDQ) models for collisional quenching. We used global analysis of the
time-resolved frequency-domain and steady-state data to select between the models. Consideration
of both the frequency-domain and steady state data demonstrate that the quenching rate depends
exponentially on the fluorophore—quencher distance, indicating the validity of the DDQ model.
The rate constants for acrylamide and iodide quenching, at the constant distance of 5 A, were
found to be near 1013 s71 and 109 s71, respectively. These rates reflect electron transfer and
exchange interactions as the probable quenching mechanisms, respectively.
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1. Introduction

Steady-state and time-resolved fluorescence spectroscopy are extensively used in physical
chemistry and biochemistry [1]. Because the emission spectra are typically broad additional
information is found from the time-resolved decay of the excited state, which determines the
time available for dynamic processes to affect the emission spectral parameters [2].
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Quenching of fluorescence often decreases the mean lifetime of the excited state and alters
the time available for rotational diffusion and spectral relaxation. By performing lifetime-
resolved or quenching-resolved measurements, one can determine the timescale of these
phenomena [3,4]. Additionally, collisional or dynamic quenching of fluorescence has been
widely utilized to study the structure and dynamics of biological macromolecules [4-9].
Collisional quenching is thought to require contact between the fluorophores and quenchers
during the lifetime of the excited state. Studies of quenching can yield information about
diffusive motions in solution, the accessibility of intrinsic and extrinsic fluorophores in
macromolecules to externally added polar [7,8] and non-polar quenchers [9] and the rates of
diffusion of the quenchers within proteins [5,9-12] membranes [13,14] and lipid bilayers
[15-17].

In the presence of quenching, the decays of fluorescence intensity become more complex
than a single exponential due to transient effects [18—21] which occur immediately
following excitation of the fluorophore. The origin of the transient effects in collisional
quenching of fluorescence is the rapid decay of closely spaced fluorophore—quencher pairs,
followed by slower diffusion-limited quenching of the remaining fluorophores. These effects
can be readily detected by using frequency-domain fluorometry [20-23]. An important
feature of the present report is the ability to independently recover diffusion coefficients,
interaction radii and the form of the distance-dependent interaction between the tryptophan
as the fluorophore and acrylamide or iodide as the quencher.

We used two phenomenological models for collisional quenching of fluorescence, the
radiation boundary condition (RBC) [18,24] and the distance-dependent quenching (DDQ)
[25-28] to analyze the experimental data. The DDQ model was used to determine the rate of
quenching at a fixed distance. These rates were interpreted in terms of the likely mechanisms
of electron transfer and exchange interactions for acrylamide and iodide, respectively.

Considering the fact that structure of A-acetyl-L-tryptophanamide (NATA) is representative
of tryptophan residues in proteins, and that the internal viscosity of proteins is highly
variable, we performed detailed studies of the time-dependent intensity decays and steady
state intensities of NATA in propylene glycol over a range of viscosities when collisionally
quenched by acrylamide and iodide. The data from such solutions provide the basis for
interpreting similar quenching data for tryptophan residues in proteins.

2. Materials and methods

NATA was from Aldrich and acrylamide (> 99.9%) electrophoresis purity reagent (lot
32285) was from Bio-Rad. Potassium iodide was from Sigma and 1,2-propanediol
(propylene glycol) (P.A. grade) was from Janssen Chimica. The concentrations of NATA in
the samples were #5x10~4 M, and were precisely the same in all samples. The concentration
of acrylamide ranged from 0 to 1.5 M and the concentration of iodide from 0 to 0.9 M at
20°C. At 0°C, —20°C, -40°C and —-60°C, the concentrations of acrylamide and iodide were
calculated based on the measured decreases in the volumes of the solutions, which were 1%,
2.3%, 3.5% and 4.6% compared to the volume of the solution at 20°C, respectively. The
solutions were not purged to remove dissolved oxygen. To minimize inner filter effects due
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to absorption of the excitation beam the emission spectra of NATA were measured using 1
cmx0.4 cm cells with the excitation beam perpendicular to the short axis. The excitation

wavelength was 296 nm. Steady-state intensity emission of NATA in propylene glycol was

corrected for the absorption of acrylamide (Aé%) at the excitation wavelength. A correction

factor, —log (Aé%/z), was applied [29]. For iodide quenching of NATA the samples

contained KCI and/or KI for total concentration of 0.5 M. These samples also contained
1073M Na,S,05 to prevent the formation of iodine.

Steady-state fluorescence measurements were carried out with an SLM 8000 photon-
counting spectrofluorometer equipped with a thermostated cell holder. The emission was
detected by using a R928 (Hamamatsu) photomultiplier tube. For varying temperatures we
used ULT-80 (Neslab) circulating bath. Absorption spectra were measured on a Perkin-
Elmer Lambda 6, UV/VIS spectrophotometer. Phase and modulation fluorescence
measurements were performed using the GHz frequency-domain fluorometer described
previously in detail [30,31]. The excitation wavelength was 296 nm from a frequency-
doubled R6G dye laser, Coherent, Inc. The modulation excitation was provided by the
harmonic content of a laser pulse train with a repetition rate of 3.795 MHz and a pulse width
of approx. 7 ps. The dye laser was pumped with a mode-locked Argon ion laser (Coherent,
Innova 15). The emitted light was detected by using a microchannel plate PMT (Hamamatsu
R1564U) with external cross-correlation. All intensity decays were measured by using
rotation-free polarization conditions (magic angle polarizer orientation) in order to avoid the
effects of Brownian rotation. The fluorophore emission was selected by combination of
Schott WG 335 and Corning 7-51 filters which transmitted the emission from 325 to 400
nm (Fig. 1, ---). At each modulation frequency we measure the phase and modulation of the
sample relative to the lifetime reference which was 2,5-diphenyl-1,3,4-oxadiazole (PPD) in
ethanol (T =1.25 ns at 20°C and 0°C, © =1.26 ns at —20°C and —40°C, and t =1.27 ns at
—-60°C) [31]. The background fluorescence and/or scattered light of acrylamide or iodide in
propylene glycol contribute less than 0.5% to the measured emission. The frequency-domain
data were collected using a dedicated Minc 11/23 computer, and then transferred to a Silicon
Graphics IRIS CS/12 computer for analysis. For all analyses, the uncertainties (6¢ and 6m)
were taken as 0.2° in the phase angle and 0.005 in the modulation ratio, respectively.

3. Theory

Fluorescence quenching of NATA was investigated using the global analysis of the
frequency-domain and steady state experimental data. The corresponding theoretical values
of the frequency-domain observables, phase shift and modulation, are calculated based on
the predicted values of the fluorophore intensity decay /(7). The steady state observable is the
relative quantum yield of the fluorophore. The theoretical values of the quantum yield are
calculated as integrals of the decay /?) over time. Because of the significant inhomogeneity
of the fluorescence intensity decay of NATA in the absence of quencher the function A9 is
represented in terms of the multi-component model:

Biophys Chem. Author manuscript; available in PMC 2019 December 11.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zelent et al.

Page 4

t_ o g
_Z_CqA k, (t )dt] (1)

where [y is the intensity at £0, a are the initial amplitudes of the intensity decays

() =1, Y aexp
1

associated with the individual decay times <; Cg is the bulk concentration of the quencher,

and k(9 denotes the averaged time-dependent fluorophore—quencher reaction rate. It is
assumed that the rate Az, (2) is the same for each intensity decay component. The amplitudes
a;j are normalized so that Za;=1.

In the absence of quenching, when Cg =0 0or ky,(5) = 0 for all ¢ Eq. (1) simplifies to:

t
1 =10=1,) aiexp(—;) @
i i
Eq. (2) is used to recover the lifetimes tj and the amplitudes a; from the unquenched
fluorescence decay. The fractional contribution of each decay time component to the steady-
state intensity is expressed as:

fi=~—7 ®)
and the mean decay time is given by:
T= Zf i @
In Eq. (1) the rate k(2 is expressed as:

4 (8]
k(1) = C_’é r2k(r)Cq(r, Hdr ®)

q a

where Cy(r,2) is the concentration of the quencher molecules at the distance 7 from the
excited fluorophore at time instant # and 4(r) denotes the bimolecular quenching rate. In
general, 4(7) is dependent on the fluorophore—quencher distance. In this paper, the two
models, associated with two different expressions for the quenching rate (), are considered.
In the case of the radiation boundary condition (RBC) model (Scheme 1) the rate 4(s) can be
expressed as:

k(r) = k6(r — a) (6)

where « is the specific rate constant for quenching and a is the fluorophore—quencher
distance of the closest approach. In this model quenching is assumed only to occur at the
distance (&) of closest approach. This RBC model is an extension of the classic
Smoluchowski model in which the rate of quenching is assumed to be infinite at the contact
distance. In the case of the distance-dependent quenching (DDQ) model (Scheme 2) the rate

k(1) is given by:
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r—a
k(r) = kaexp(— " ) %)
where &, denotes the value of the rate (/) at a distace requal to the distance of the
fluorophore—quencher closest approach (r=a), and s, describes the distance dependence of
the rate.

In fluid solution, the effective concentration Cqy(; of the quencher molecules around the
excited fluorophores is affected by diffusion and the processes of quenching. The bulk
quencher concentration is of course independent of time. The effective concentration of
quenchers around the excited state depends on time and distance because quenching
depopulates the more closely spaced pairs of quenchers and excited fluorophore. In order to

simplify calculations, one introduces the function y(r,7) = Cq(r, t)/Cg. In the presence of

diffusion the function J(r, 9 is governed by the diffusion equation. The equation has an
additional sink term which is responsible for the through-space fluorescence quenching:

DD~ Y2y~ kr)y(r. ) ®

where D=0+ Dq is the mutual diffusion coefficient of the fluorophore and the quencher
with diffusion coefficients O and Dq, respectively. For the RBC model the through-space
fluorescence quenching does not take place, and then the additional sink term &(r) (9 in
Eq. (8) disappears. For both quenching models the initial and outer boundary conditions of
Eqg. (8) remain the same:

yr,t=0)=1 9)
lim y(r,t) =1 (10)
r— 0

The form of the inner boundary condition (at /=4) depends on the particular model. For the
RBC model one assumes that:

dy(r, 1) _ K.
[ or ]r:a_Dy(r_a’t) (1)

whereas for DDQ model the ‘reflecting’ or ‘specular’ boundary condition at /=ais used:

oy(r, t

The condition (12) indicates that within the DDQ model the diffusive molecular flux at the
donor—quencher boundary vanishes, and that the fluorophore is quenched exclusively by the
through-space quenching processes described by the rate (Eq. (7))

For the RBC model the diffusion Eq. (8) can be solved analytically yielding [32].
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/‘tk ) 4nDak,,
t)dr’ = t+
o ¥ 4nDa + k, 4xD%ad’

X [exp(ath)eifc(a\/D—t) + 20{% -1 ]

where ky = 4n@x and a = (4m Da+ kp)/(4nDa?) One can see from Egs. (1) and (13) that to
be able to compare the experimental and theoretical data within this model, one has to know
the values of the following parameters: lifetimes <; and their amplitudes a;; the fluorophore—
quencher encounter distance g; the specific quenching constant «; and the diffusion
coefficient D. In our analyses, tj and a; were found from the least squares analysis of the
frequency-domain fluorescence decay registered in the absence of quenching, the parameter
awas estimated from the sizes of the interacting molecules, and x and D were evaluated
based on the best fit of the experimental and theoretical data in the presence of quenching.

(13)

For the DDQ model an exact analytical solution of the Eq. (8) is not known, and numerical
methods are required. In this paper we used an algorithm described previously [33,34] based
on the numerical solution of Eqg. (8) in Laplace space [35] and numerical integration of Eq.
(5) Within the DDQ model, the parameters needed to calculate the predicted frequency-
domain data are: the lifetimes ¢j and their amplitudes a; the fluorophore—quencher
encounter distance &; the value of the bimolecular quenching rate at the encounter distance
k the characteristic quenching distance 7; and the diffusion coefficient D. As for RBC
analyses, tj and aj were found from experiments in the absence of quenching, and the
parameter a was estimated from the sizes of the interacting molecules. The remaining three
parameters, &, . and D, were evaluated based on the best fit of the experimental and
theoretical data in the presence of quenching.

To avoid confusion, we note an error which appeared in Ref. [34]. In Eq. (19), p. 224, of this
paper, there should be a minus (not plus) before w sin (wi) and w sin (@ f1).

Using the technique of frequency-domain fluorometry [30,31], one compares the
experimental phase (4., and modulation (/m,,) values with those calculated (c) from the
model intensity decay /(). At given modulation frequency (w) these values are given by:

¢C(l) = arCtan(Nu)/D(u) (14)
1 1/2
m,, = 7(N2) +D7) (15)
where
(o]
N, = f 1(t)sin(wr)dt (16)
0
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D, = / I(H)cos(wr)dt a7)
0

J= / I(t)dt (18)
0

The steady state data are represented by the Stern—Volumer-type quantity fdefined as:
F
- _0_
f= 7 1 (19)

where the ratio A Fy expresses the relative quantum yield of the fluorophore, with /yand F
being the fluorophore quantum yields in the absence and presence of quencher. In order to
find the experimental value 7 of the quantity Ffor the Ath concentration of the quencher, the
ratio Fo/ Fwas replaced by the respective ratio of photocurrents registered for the
unquenched and quenched sample. To find the calculated value 74 of the quantity 7 the ratio
Fo/ Fwas calculated from the expression:

Fy o @ydr o0
Fo [&1mdt

where /(1) is given by Eq. (1) for either the RBC or DDQ models and £(#) is the
fluorophore’s intensity decay in the absence of quencher given by Eqg. (2).

Our previous studies [25-27,36] and preliminary analysis of the data discussed in this paper,
showed that the models (RBC or DDQ) and DDQ parameter values (k3 7. and D) were
better resolved by insuring that both the calculated intensity decay and the calculated steady
state intensities were consistent with the experimental values. This is a consequence of the
fact that resolution of correlated parameters can be improved by global analyses [37]. For
analysis of the data presented in this paper we developed a program which simultaneously
fits the frequency domain and steady state intensities by non-linear least squares [38,39]. In
the program, the best fitted parameters and goodness-of-fit are determined by the minimum
value of:

1 ¢m - ¢cm . My, = Moy 2 fk - fck .
gt bl e
where vis the number of degrees of freedom and &¢, 6 m, and 6fare the experimental
uncertainties. For all analyses, the uncertainties 6¢ and &m were taken as 0.2° in the phase
angle and 0.005 in the modulation ratio, respectively. The uncertainties &7, were calculated
from the relation 8f=(Fy/ F1)? x (6 AFy). We assume uncertainties of & A/ = 0.005 and
0.0005 for acrylamide and iodide quenching, respectively.
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4. Results and discussion

4.1. Solvent viscosity effect on the emission spectra of tryptophan

Absorption spectra and emission spectra of NATA in propylene glycol for excitation at 296
nm over a range of temperatures are presented in Fig. 1. The absorption band of NATA at
20°C with the maximum at 282 nm remains at the same position even at —60°C. However,
the maximum of the emission band of NATA which appears near 355 nm at 20°C
progressively shifts to higher energy with decreasing temperature shifting to near 334 nm at
—-60°C. The observed blue shift of the emission (see Fig. 1, insert) is due to the solvent
viscosity effect. This effect is explained by the inability of the solvent molecules at low
temperature to reorient during the lifetime of the excited state of the fluorophore molecule

[2].

4.2. Transient effect in fluorescence quenching of tryptophan

Frequency-domain intensity decays of NATA in propylene glycol at 20°C and at —60°C in
the absence and presence of acrylamide or iodide are shown in Fig. 2. It can be seen that at
20°C, and in vitrified propylene glycol at —60°C, the data of fluorescence intensity decays of
NATA in the absence of quenching (O) can be satisfactorily fit to a single exponential, as

can be seen from the values of )(121 near unity. However, quenching by acrylamide or iodide

results in the shifting of the frequency response to higher frequencies and the mono-
exponential model does not account for the experimental data (dashed lines). This can be

judged by 1122 values which are 239.72 and 85.40 at 20°C and 119.07 and 73.89 at —60°C for

0.5 M acrylamide and 0.5 M iodide, respectively. A three-exponential fit was needed to fit
the NATA decays in the presence of acrylamide and two- or three-exponential components
are needed also for the less efficient quencher, iodide. The results of quenching, presented in
Fig. 2, indicate that the intensity decays of NATA become heterogeneous in the presence of
acrylamide or iodide.

Importantly, acrylamide and iodide quenching of NATA was observed even in the absence of
diffusion at —60°C (Fig. 2, lower panels). This result suggests that quenching can occur by a
through-space interaction which does not require diffusion for quenching to occur.

Multiexponential analysis of the frequency-domain intensity decays of NATA in propylene
glycol in the absence and presence of acrylamide and iodide at different temperatures are
presented in Tables 1 and 2. It can be seen from the tables that quenching of NATA by
acrylamide or iodide results in heterogeneity of the intensity decays which progressively
increase with the quencher concentration. More complex decays of NATA emission intensity
are observed at —20°C and at —40°C. Three-exponential decays with negative amplitudes of
the lifetime components were observed for NATA in propylene glycol even in the absence of
quencher.

Frequency-domains of the intensity decays of NATA in propylene glycol at 20°C, 0°C,
—-20°C, —40°C and -60°C in the absence and presence of acrylamide or iodide are presented
in Figs. 3, 4 and 7. In the presence of quenching frequency responses of NATA are shifted to
higher frequency progressively with increasing concentrations of the quencher. This
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corresponds to a decrease in the mean decay time (see Tables 1 and 2). The complex decays
of NATA are the results of the transient effect in fluorescence quenching. The observed
effects are due to diffusion and through-space interactions between NATA and quenchers.
Moreover, through-space quenching alone explains the upward curvature in Stern—Volmer
plots (see Figs. 3 and 4).

4.3. DDQ and RBC models for tryptophan fluorescence quenching

Frequency-domain and steady-state data of NATA quenching by acrylamide and iodide are
analyzed using the radiation boundary condition (RBC), and distance-dependent quenching
(DDQ) models for collisional quenching of fluorescence. We used multi-domain global
analysis of the frequency-domain and steady state data to recover the variable parameters.
The variable parameters are a, Dand « for the RBC model; &, 7, Dand k; for the DDQ
model. From Figs. 3 and 4 it is evident that the RBC model cannot account for the
frequency-domain data of NATA quenching by acrylamide. The inadequacy of the RBC
model is also seen from the calculated quantum yields shown on the Stern—Volmer plots.
The inability of the RBC model to account for the data is due to the presence of a short
lifetime component in the intensity decays of NATA quenching (Figs. 5 and 6). In contrast to
the RBC model, the DDQ model precisely accounts for the data of NATA quenching over
the entire range of temperatures. The results of analysis of NATA quenching by iodide are
exemplified in Fig. 7. In this case the RBC model can account for the data at 20°C and 0°C,
however, the DDQ model also allows for an improved fit to the data. The results of the RBC
and DDQ analysis are presented in Tables 3 and 4 for acrylamide quenching and in Tables 5
and 6 for iodide quenching of NATA, correspondingly. From Tables 4 and 6 it is important to
note that & values for acrylamide quenching of NATA (~1013 s71) and iodide quenching of
NATA (~10° s~1) remain the same over the range of temperature from 20 to —60°C.

In Table 7 we compared the diffusion coefficients obtained from the DDQ and RBC data
analysis with those calculated from the diffusion theory using Stokes—Einstein equation:

D = kgT/6zRny (22)

where &g is the Boltzman constant, 7 is the temperature in K Ris the radius of the molecule
and 7 is the viscosity of propylene glycol (45.66 CP at 20°C). The radius of the molecule
can be obtained from the relation R = (3 V4r)Y/3 [18,40]. Vs the molecular volume
calculated as the sum of the van der Waals increments of atoms in the molecule.

The diffusion coefficient recovered from the intensity decay data of NATA quenched by
acrylamide at 20°C using the RBC model for &=5 A(7.19x10~7 cm? s71) is larger than
predicted from the diffusion theory using the Stokes-Einstein equation (3.09x10~7 cm2 s71).
This can be explained by the compensation for the initial drop in the intensity decay
introducing some additional quenching [36,28]. However, for iodide quenching the
recovered value of D using the RBC model (2.89x10~7 cm? s71) is in good agreement with
the value of diffusion coefficient predicted from the diffusion theory (3.61x10~7 cm=2s71).
On the other hand, the DDQ model for acrylamide and iodide quenching, results with the
values of Dwhich are 1.86x10~7 cm? s™1 and 1.93x10~7 cm? s71, respectively, and are
slightly smaller than the calculated value from the Stokes—Einstein equation being
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3.09x1077 cm? 571 and 3.61x10~7 cm? 571, correspondingly (see Table 7). Such behavior
usually is explained by the fluorophore—solvent or quencher—solvent interactions which slow
diffusion [10,28], but this seems to be the minor effect.

Considering the van der Waals radii R of the indole chromophore of NATA (2.96 A),
acrylamide (2.56 A) and iodide (1.99 A) (see Table 7) one can estimate the minimum
encounter distance 4 as the sum of the radii for acrylamide and iodide quenching of NATA to
be 5.54 A and 4.95 A, respectively. Previously, for the indole chromophore of NATA,
acrylamide and iodide the molecular volume Vwas calculated from the relation (4/3)r /sy, 17
where 7y, r,,and r;are the van der Waals radii of the molecules in the x, yyand zdirections.
The estimated values of 7, r;,and 7, from the molecular models of indole, acrylamide and
iodide gave rise to the average radii of 2.2 A[26], 1.7 A [26] and 1.78 A [28], respectively.
From these radii the minimum encounter distance a for acrylamide and iodide quenching of
NATA can be estimated as equal to 3.9 A and 3.98 A, respectively.

Considering both distances for collisional contact of the fluorophores and quencher
molecules ranging from 3.9 A to 5.54 A for acrylamide and from 3.98 A to 4.95 A for
iodide, we estimated for both quenchers the optimal distance of the closest approach &5 A.

In Tables 3-6 for acrylamide and iodide quenching of NATA, we list the goodness-of-fit
values (;(ZR) for global analysis of the frequency-domain and steady-state data. Based on this

analysis, we note that the RBC model can be excluded based on the high ;(ZR values. In other

instances, we have noted that the parameter values often become unreasonable prior to a
significant elevation in XZR. Using the DDQ model, it was possible to fit the frequency-

domain and steady-state data at all temperatures, so as to result in a low value of ;(ZR (Figs. 3,

4 and 7).

In the RBC model the distance a describes the radius of the sphere which contains the
quencher molecules which are able to quench the fluorophore. In fact, the parameter ain the
RBC model (as well as in the DDQ model) describes the radius of the sphere constituting
the excluded volume around the fluorophore. Quencher molecules are not found in this
volume because of molecular size and solvation. The possibility of quenching appears in the
RBC model only at immediate contact of the fluorophore with the quencher. No through-
space interaction is taken into account in this model. Because the number of fluorophore—
quencher pairs being in contact at the time of excitation is extremely small, no quenching
can be simulated by this model when the diffusion coefficient is assumed to be zero. An
increase of the value of the parameter ain this model only increases the surface of the sphere
on which the fluorophore—quencher encounters may appear. No fluorophore molecules can
be statically quenched in this model, except at very high quencher concentrations where
there is immediate proximity at the moment of excitation. One has to notice that the
fluorophore can appear to be statically quenched in terms of the DDQ model. The quenching
radius is modeled here by value of the parameter 7. Because of the allowed through-space
interaction diffusion is not necessary to quench the fluorophores having the quencher
molecules at distance a<r<a+(,+3)x 1. In our opinion, this possibility of apparent static
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quenching together with the assumed exponential form of the fluorophore—quencher
interaction constitutes the main advantage of the DDQ model. Static quenching
contributions cannot be taken into account using the RBC model, but are allowed in the
DDQ analysis.

The difference between the DDQ and the RBC models can be seen by examining the time-
dependent intensity decays as reconstructed from the best fits to the frequency-domain data.
These reconstructed intensity decays are shown in Figs. 5 and 6, respectively. The DDQ
model creates a short decay time component during the first 10 ps following excitation
showing transition from one decay time to another, as a gradual transition from a fast to a
slow decay. The characteristic increase in intensity and delay in slow decays observed at
—-20°C and —40°C is created by the lifetime components with negative amplitudes. The fast
component in the fluorescence intensity decay is responsible for the low phase angles at
higher frequencies and allowed for through-space quenching interactions. Apparently, this
more complex intensity decay function is needed to account for the combined frequency-
domain and steady-state data. The fast component in the decays is not provided by the RBC
model (see also Fig. 8).

Fig. 9 show Arrhenius plots for NATA in propylene glycol in the presence of acrylamide and
iodide correspondingly obtained based on the RBC and DDQ models. The DDQ model
gives higher values of the activation energies (10.09 and 10.44 cal mol~1, see Table 8) which
are closer to the activation energy for propylene glycol obtained from viscosity changes
which is ~11 cal mol~L. The mutual diffusion coefficients (D,g) for NATA quenched by
acrylamide and iodide obtained from extrapolation of the arrhenius plots to 20°C for the
RBC and DDQ models are similar to those D recovered from the decay data measured at
20°C (see Table 7).

4.4. Mechanisms of tryptophan fluorescence quenching

Our data on acrylamide and iodide quenching of NATA can be summarized based on the
DDQ analysis adequate for the both quenchers. The Stern—\Volmer plots for NATA in
propylene glycol quenched by acrylamide and iodide are presented in Fig. 10 showing the
difference in quenching effect. Acrylamide is electrically neutral and a strong quencher,
while iodide is ionic and a relatively weaker quencher of tryptophan fluorescence. The
difference in quenching is also clearly seen by the frequency-domain data for both quenchers
(Figs. 3, 4 and 7) and on the profiles of reconstructed time-dependent intensity decays of
NATA (Figs. 5, 6 and 8) when quenched over the range of temperature (20°C, 0°C, -20°C
and —60°C). The observed highly efficient quenching NATA by acrylamide and less efficient
quenching NATA by iodide are now discussed based on the mechanisms of interactions
between acrylamide or iodide and tryptophan.

Acrylamide is known to be an electron-acceptor [41]. Quenching of singlet excited
tryptophan, which is a good electron donor [41-45], can be due to the electron transfer from
tryptophan to acrylamide. The acrylamide quenching of NATA can be described by the
transiently formed nonemissive exciplex L(NATAS* ---Acé)* which in polar propylene
glycol or agueous solution is followed by the charge separation and the formation of the
solvated radical ions [41,46]. This is shown on the scheme:
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NATA* + Ac 2! (NATA*--Ac’7)* — NATA} + Ac; . (23)

The efficiency of quenching is correlated with the overall free-energy change, AGe, for the
electron transfer process and can be evaluated from Rehm and Weller equation and theory of
Marcus (see Refs. [47,48]).

lodide, bromide and alkyl halides are well established as heavy-atom perturbers of
luminescence of aromatic and heteroaromatic fluorophores [28,49-54] including indole
[49,50] and tryptophan [49]. The presence of heavy atoms or heavy atom containing
molecules in the environment increases the rates of spin-forbidden processes of the
fluorophores via a spin-orbital coupling mechanism. The effect of heavy atoms in decrease
the fluorescence intensity is accompanied by increase the phosphorescence intensity and
decrease the phosphorescence lifetime of the fluorophores. For instance, 1 M sodium iodide
decreases the fluorescence intensity of 2-naphthalene sulfonate adsorbed on filter paper
[51,53] and enhances room temperature phosphorescence (RTP) 40-fold without altering the
transition energy. Moreover, the RTP of indole on filter paper is enhanced 370-fold and of
tryptophan 455-fold by addition of 1 M sodium iodide [49]. The mechanism of the
fluorescence quenching of NATA by iodide during the collisional contact can be explained
by the exchange interactions between the singlet excited tryptophan and iodide causing the
increase of the ISC process. This is followed by the separation of the triplet-excited
fluorophore and iodide according to the scheme:

*

o= 1 _ *ISC3 3 .-
NATA* +1~ —' (NATA--17) (NATA---I")* —> NATA* +1

The negative iodide ion cannot be an electron acceptor and in the presence of excited
tryptophan cannot act as the efficient electron donor. Therefore iodide quenching of NATA
appears to be due to an external heavy atom effect.

Electron transfer and exchange interactions processes describe two mechanisms of
quenching NATA by arylamide and iodide, respectively. Both processes depend on the short
range interactions requiring close contact between the reactants. From the geometry of the
molecules the contact distance is in the range of 4-6 A. Using DDQ-global analysis of the
frequency domain and steady state data for acrylamide and iodide quenching of NATA the
distance of the closest approach a=5A appears to be the most appropriate distance allowing
for excellent agreement between the experimental data and the best fit to the model (see
Figs. 3-8). From the DDQ analysis using a=5 A (see Tables 4 and 6) acrylamide quenching
of NATA is characterized by a characteristic distance of 7 =0.32 and bimolecular rate
constant for quenching &;=5.5x10%2 s71. For iodide quenching of NATA 7, =0.62 and
k=5.9x10° s71. The bimolecular rate constants recovered from the DDQ analysis
characterize quantitatively the acrylamide and iodide quenching of NATA in propylene
glycol (Figs. 3, 4 and 7). Additionally (Fig. 8) we can also see that for the less efficient
quencher iodide there is no short lifetime component in the intensity decay of NATA.
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5. Conclusions

We have examined the intensity decays of NATA in propylene glycol over a range of
temperatures and viscosities, when quenched by acrylamide and iodide. We also examined
the Stern—\olmer plots which displayed significantly upward curvature. The data could not
be explained by the RBC model. However, the data were consistent with the distance-
dependent model where the rate of quenching decreased exponentially with the fluorophore—
quencher distance. The presence of a distance-dependent and/or through space interaction
was demonstrated by the presence of quenching in frozen solution where diffusion does not
occur.

For both iodide and acrylamide quenching the quenching rate constant decreases rapidly
with distance, and the interactions are very local (<1 A). However, the quenching rate
constant at the contact distance is much larger for acrylamide (5.5%1013 s71) than for iodide
(5.9x10° s71). This difference in rate constants demonstrates that acrylamide quenching
occurs by an electron transfer mechanism and that iodide quenching occurs by heavy atom
(exchange) interactions.
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Fig. 1.

Absorption and fluorescence spectra of NATA in propylene glycol at different temperatures.
The dotted line shows the emission spectrum of NATA observed through the combination of
Schott WG-335 and Corning 7-51 filters used to select the emission for intensity decay
measurements. Insert: Dependence of the fluorescence emission maximum of NATA in
propylene glycol (@) on temperature with excitation wavelength at 296 nm.
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Fig. 2.
Frequency response of the NATA intensity decay in propylene glycol at 20°C and at —60°C.

(A and C. The open circles (O) and solid lines represent the data and best single exponential
fits in the absence of acrylamide, respectively. The closed circles (@) and solid lines
represent the data and best three-exponential fit with 0.5 M acrylamide, respectively. The
dashed lines show the best single exponential fits to fit data. (B) Similar to (A); (D) similar
to (C), but for 0 and 0.5 M iodide. The closed circles (@) and solid lines represent the data
and best two- and three-exponential fits with 0.5 M iodide.
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Left panel: Frequency-domain intensity decays of NATA in propylene glycol in the presence
(left to right) concentration of acrylamide at 20°C (0, 0.5, 1.0 and 1.5 M) and at 0°C (0,
0.505, 1.010 and 1.515 M). The solid lines show the best fit to the DDQ model using:
(upper) a=5 A and 7, =0.322 A and (lower) a=5 A and 7, =0.318 A. The dashed lines show
the best fit to the RBC model using &=5 A. Right panel: Stern-Volmer plots for NATA
quenched by acrylamide in propylene glycol at 20°C and at 0°C. The solid lines represent
the calculated values of [(Fy/F)-1] using parameter values from the DDQ model for &=5 A.
The dashed lines represent the RBC model using also a=5 A.
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Left panel: Frequency-domain intensity decays of NATA in propylene glycol in the presence
(left to right) concentrations of acrylamide at —20°C (0, 0.512, 1.023 and 1.535 M), at
-40°C (0, 0.518, 1.036 and 1.554 M) and at —60°C (0, 0.524, 1.048 and 1.572 M). The solid
lines show the best fit to the DDQ model using: (top) &=5 A and 7, =0.317 A; (middle) &=5
Aand 7, =0.313 A; and 7, =0.318 A. The dashed lines show the best fit to the RBC model
using &=5 A. and (bottom) a=5 A Right panel: Stern-Volmer plots for NATA quenched by
acrylamide in propylene glycol at —20°C, at —40°C and at —60°C. The solid lines represent
the calculated values of [(Fy/F)—1] using parameter values from the DDQ model for &=5 A.
The dashed lines represent the RBC model using also a=5 A.

Biophys Chem. Author manuscript; available in PMC 2019 December 11.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Zelent et al.

Page 21

o o©
- w
(@] o

INTENSITY

o
o
W

INTENSITY

(0] 0.5 1.0 15 20 25
TIME (ns)

Fig. 5.

Reconstructed time-dependent intensity decays of NATA in propylene glycol quenched by
acrylamide at 20°C (0, 0.5, 1.0 and 1.5 M) and at 0°C (0, 0.505, 1.010 and 1.515 M) for the
best-fit RBC (- — -) and DDQ (———) parameters.
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Fig. 7.
Left panel: Frequency-domain intensity decays of NATA in propylene glycol in the presence

(left to right) concentrations of iodide at 20°C (0, 0.2, 0.5, 0.7 and 0.9 M), 0°C (0, 0.202,
0.505, 0.707 and 0.909 M), —20°C (0, 0.205, 0.512, 0.716 and 0.921 M), and —60°C (0,
0.210, 0.524, 0.734 and 0.943 M). The solid lines show the best fit to the DDQ model using
from (top to bottom) &=5 A, and 7, = 0.623 A, 0.631 A, 0.557A and 0.513 A,
correspondingly. The dashed lines show the best fit to the RBC model using a=5 and r,
=0.623 A, A. Right panel: Stern-Volmer plots for NATA quenched by iodide in propylene
glycol at 20°C, 0°C, —20°C and —60°C. The solid lines represent the calculated values of
[(Fo/F)—1] using parameter values from the DDQ model for a=5 A. The dashed lines
represent the RBC model using also &5 A.
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Reconstructed time-dependent intensity decays of NATA in propylene glycol quenched by
iodide at 20°C (0, 0.2, 0.5, 0.7 and 0.9 M) at 0°C (0, 0.202, 0.505, 0.707 and 0.909 M),
-20°C (0, 0.205, 0.512, 0.716 and 0.921 M) and —60°C (0, 0.210, 0.524, 0.737 and 0.943
M) for the best-fit RBC (- —-) and DDQ (— — —) parameters.
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Arrhenius plots for NATA in propylene glycol in the presence of acrylamide (left) and iodide

(right) obtained based on the RBC and DDQ maodels.
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Fig. 10.
Stern—-Volmer plots for NATA in propylene glycol at 20°C quenched by acrylamide (@) and

iodide (O) showing the difference in the quenching effect. The solid lines represent the
calculated values of (/y/F)-1 using the parameter values from the DDQ model.
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RBC MODEL

k(r)=x0 (r-a)

Scheme 1.

RBC model for collisional quenching of fluorescence.
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ra

-

* ;
F,/ s\ :

Scheme 2.
DDQ maodel for collisional quenching of fluorescence.
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