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Abstract

Purpose of review—Application of omics to study human health has created a new era of 

opportunities for epidemiology research. However, approaches to characterize exogenous health 

triggers have largely not leveraged advances in analytical platforms and big data. In this review, 

we highlight the exposome, which is defined as the cumulative measure of exposure and biological 

responses across a lifetime as a cornerstone for new epidemiology approaches to study complex 

and preventable human diseases.

Recent findings—While no universal approach exists to measure the entirety of the exposome, 

use of high-resolution mass spectrometry methods provide distinct advantages over traditional 

biomonitoring and have provided key advances necessary for exposome research. Application to 

different study designs and recommendations for combining exposome data with novel data 

analytic frameworks to study complex interactions of multiple stressors are also discussed.

Summary—Even though challenges still need to be addressed, advances in methods to 

characterize the exposome provide exciting new opportunities for epidemiology to support 

fundamental discoveries to improve public health.
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1. Introduction

Precision medicine provides a new paradigm for healthcare, where focus is shifted from 

treating a single disease phenotype to prevention and treatment strategies based on an 

individual’s unique characteristics [1, 2]. Currently, there are genetic tests for over 2,000 

clinical conditions, and many more genetic markers are likely to be incorporated into 

emerging risk stratification models. However, disease etiology is multifactorial and driven 

by a combination of genetic, environment, nutritional and lifestyle factors, which represent 

key measures to evaluate disease risk [2, 3]. Thus, there is a clear need to improve 

assessment methods for exposures and to apply a broad approach in evaluating these 

exposures in order to fully incorporate the concept of the exposome into precision medicine.

2. The human exposome

To emphasize the importance of applying state-of-the-art and comprehensive approaches to 

evaluate the environment in studies of disease etiology, Christopher Wild introduced the 

concept of the exposome in 2005, which he defined as a framework for measuring 

environmental stressors that “encompasses life-course environmental exposures (including 

lifestyle factors), from the prenatal period onwards [4].” The exposome is envisioned as a 

complement to the genome, where an individual’s history of exposure and how these 

exposures interact with the genome defines risk for disease.

Unlike the genome, which remains stable over time, the exposome varies on timescales 

ranging from seconds to decades. As a result, exposures that occur episodically and/or that 

have relatively short biologic half-lives can be especially challenging to assess. A key 

approach to help address this is to conduct longitudinal studies that collect biological 

samples at multiple times in the life course. Further, in addition to directly measuring the 

actual exposure or its metabolites, metabolomics has the potential to measure patterns of 

exposure-specific biologic perturbations, including those that could persist even after the 

exposure ceases. For example, Miller and Jones defined the exposome as [5]: “The 

cumulative measure of environmental influences and associated biological responses 

throughout the lifespan, including exposures from environment, diet, behavior, and 

endogenous processes.” Within this framework, exposures include external stressors, 

processes internal to the body, socioeconomic influences and psychological factors [6]. By 

characterizing the exposome in terms of a cumulative measure of environment and 

biological response, this definition suggests that at least for some risk factors multiple 

measures of an individual’s exposure over the entire life course might not need to be 

measured, and that instead small molecules related to the exposure effect and maladaptation 

could be a surrogate for that exposure.
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To date, no unified method exists to characterize the sum involvement of environment in 

disease etiology. Two main strategies are emerging from recent exposome research projects, 

one using personal sensors with geospatial monitoring and another using biological samples 

with broad measurement of biomarkers representing exposure, biological response and 

adverse effects [7, 8]. Both are enabled by computational power of big data and provide 

exciting new opportunities for implementing the exposome into environmental health and 

precision medicine research [9, 10].

3. Implementation of the exposome

One of the critical requirements for translating the exposome from concept to practice is the 

development of methods that allow measurement of exposures on the scale consistent with 

the chemical burden experienced by an individual over a lifetime. In the United States, close 

to 81,000 chemicals are registered with the Environmental Protection Agency (EPA) for 

manufacture, import, and use in commercial products, including 68,000 registered under the 

Toxic Substances Control Act and 13,000 chemicals declared exempt, while approximately 

40,000 pesticide formulations, 100,000 phytochemicals, and 5,000 inert ingredients have 

been approved for use [11]. The majority of these are registered as the parent compound, and 

do not include abiotic and biotic transformation products that could occur during 

manufacture, commercial use, storage and environmental transport, or due to host biological 

processes. Current estimates suggest the potential for upwards of a million chemical 

exposures experienced over a lifetime [9, 12]. Common exposure assessment approaches are 

not capable of characterizing exposure on this scale.

A challenge for exposure science to address the exposome at this scale lies in the level of 

uncertainty which is acceptable for exposure assessment. Methods that provide exposure 

estimates for large populations, such as remote sensing or based upon geographical location, 

are limited by accuracy at the individual level. In contrast, targeted biomonitoring, which 

uses specific and sensitive methods to measure known biomarkers of exogenous chemicals, 

provides a direct estimate of internal dose [13]; however, the capability to expand 

biomonitoring beyond a few hundred chemicals to thousands or tens of thousands is cost- 

and resource-prohibitive, often resulting in underpowered studies that can only detect strong 

effects [14]. Recent advances in analytical chemistry approaches are beginning to provide 

the scale of biomonitoring needed to implement exposome research. The human 

metabolome, which contains all low-molecular weight (<2,000 dalton) chemicals present in 

a biological sample, has been identified as a key measure of the exposome. The metabolome 

includes all endogenous biological metabolites, the chemicals from human-environment 

interaction, and reactants arising from interaction of these compounds with enzymatic and 

bacterial processes [15]. Proteins, DNA, polymers and other large molecules are not 

considered components of the metabolome because they require different approaches for 

measurement; none-the-less, certain chemical modifications of these macromolecules can be 

detected as breakdown products [16, 17].

The metabolome, which includes chemicals from core nutrient metabolism, lipids, the 

microbiome, diet-derived chemicals, phytochemicals, pharmaceuticals, commercial products 

and environmental contaminants, can help integrate the environment and genetics, and can 
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be directly studied for its impact on disease risk. Enzymes for the core pathways associated 

with basal metabolism are encoded within the genome and conserved across humans with 

metabolites present at tightly regulated physiological ranges. Characterizing the endogenous 

metabolites from these pathways is a functional measure of the genome, which is influenced 

in multiple ways by epigenetic and transcriptional mechanisms and also by distribution and 

post-translational modifications of proteins. Exogenous chemicals absorbed by a host, 

include compounds present in diet, drugs, microbiome, commercial products and 

environmental chemicals are detectable within the metabolome, either as the compound 

initially exposed to, or transformation products. These xenobiotics represent the exposome 

contribution to phenotype.

Xenobiotics influence biological processes through local and global changes within an 

organism, resulting in micro- and macroscale interactions between environmental chemicals 

and endogenous processes encoded by the genome. In some cases, toxicant-target interaction 

results in enhanced clearance of environmental chemicals and in other cases in the formation 

of reactive species that are more toxic than the original exposure. Genetic polymorphisms 

influence xenobiotic clearance and bioactivation, resulting in differences in metabolism and 

response from environmental exposures across a human population [18]. Metabolomics can 

be useful to characterize such interactions. Thus, the human metabolome can be used to 

assess the presence of an exposure and also to provide a framework for study of exposure-

response relationships (Figure 1).

4. Recent advances in methods for measuring the human metabolome

Methods for characterizing the human metabolome were initially focused on development 

for precision medicine, disease biomarker discovery and nutrition [19, 20]. Application 

demonstrated these approaches not only provided measurement of endogenous metabolites, 

but were sensitive enough to detect exogenous chemicals and the metabolome was 

responsive to factors outside of the host, such as differences in diet or geographical location 

[21–23]. In these studies, untargeted approaches were found to be useful by not limiting 

measures to a priori selected analytical targets.

Targeted methods are developed to measure specific, known analytes in a population to test 

pre-defined hypotheses. As such, critical issues for sample collection and processing, 

chemical identification, quantification relative to authentic standards, and reproducibility, are 

addressed prior to analyses. Costs escalate in association with the number of targeted 

chemicals that are analyzed. Untargeted analysis uses methods that maximize the number of 

chemicals that can be measured in single sample and categorize their importance for 

identification using a metabolome-wide association study (MWAS) framework, which 

systematically evaluates association of each detected chemical with an outcome or disease. 

These analyses are analogous to GWAS, except the metabolic profile, rather than genetic 

variants, are tested as disease risk factors. As a result, untargeted metabolomics can be used 

to detect uncharacterized, unexpected and previously unknown exposures and metabolic 

products linked to disease. Because of the reliance on untargeted methods, analytical 

platforms that provide quantitative measures and the ability to identify molecules are 

required [24, 25].
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While initial efforts in untargeted metabolomics were focused on using NMR, limited 

sensitivity to low-level compounds does not make these instruments useful for exposome 

applications [26]. In contrast, ultra-high-resolution mass spectrometers (UHRMS) and 

adaptive algorithms for processing complex mass spectral data now makes possible 

detection of over 100,000 chemical signals in blood, including environmental chemicals 

present at levels 100–1000 times lower than endogenous metabolites [27, 25, 9, 28]. The key 

advantage of available mass spectrometry methods is derived from the high mass resolution 

(>60,000) and mass accuracy, enabling separation of m/z differing by <2.5 parts-per-million. 

UHRMS profiling of blood plasma samples obtained from healthy individuals has indicated 

measure of metabolites from more than 80% of the pathways present in the KEGG database 

and detection of a broad spectrum of environmental chemicals [29]. Because of the high-

mass accuracy and resolution, very low intensity peaks can be differentiated from 

background noise with high-sensitivity [27, 30–33]. For low abundance signals, analyses 

with multiple technical replicates improves confidence in detection as well as quantitative 

reliability [34].

An important limitation for current untargeted metabolomics methods is that analytical 

standards are not available for most detected chemicals and concentrations are reported as 

ion intensities. To make such data quantifiable in the future, an analytical strategy called 

reference standardization was developed using pooled samples analyzed within each batch 

[35, 27]. Known concentrations within the reference sample can then be used to determine a 

chemical response factor and calculate analytical sample concentrations based on single-

point calibration. The benefits of this approach are that targeted quantification is only 

required in the reference sample, chemicals do not need to be selected a priori and 

population-wide estimates of chemical concentrations can be determined without having to 

re-analyze samples with chemical standards. By supporting quantification of large numbers 

of chemicals detected in human samples, reference standardization can provide the 

systematic biological and environmental chemical measurements required for risk 

assessment and harmonization across multiple laboratories.

The number and types of chemicals detected in biological samples is greatly expanded by 

combining complementary strategies for mass spectrometry. These include using alternate 

chromatography approaches, which are used to separate compounds before detection, and 

different types of mass spectrometers [23, 36–39]. Analysis by liquid chromatography (LC-

UHRMS) and gas-chromatography (GC-UHRMS) provides the most comprehensive 

complementary platforms for metabolome- and exposome-wide association studies [40]. 

LC-UHRMS metabolomics platforms are best suited for measurement of polar molecules 

with specific functional groups, or large, non-polar molecules that contain these functional 

groups (such as lipids, fatty acids and sterols), making it useful for measures of endogenous 

metabolites, drug and environmental chemical metabolites. Many environmental chemicals, 

including volatile organic chemicals, brominated flame retardants, organohalogens, 

pesticides, hydrocarbons, perfumes and solvents are volatile enough to be introduced into 

the gas phase when heated and do not contain the functional groups that are required for 

detection on the LC-UHRMS. Thus, GC-UHRMS provides the best sensitivity and 

selectivity for these compounds. The combination of these platforms enables measure of 

both exposure and biological response, providing an integrated framework that can be used 
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to link environmental exposures to internal dose, biological response and the metabolic 

changes of disease.

Identification of mass spectral signals is one of the key challenges in untargeted chemical 

profiling. Many detected ions do not match metabolites listed in metabolomic or 

environmental chemical databases, and authentic standards are not available. Current efforts 

focused on leveraging computational approaches that assign annotation confidence have 

provided improved prediction of metabolites present in chemical databases [41–43]. For 

annotating unknown spectral peaks, numerous tools can be used for characterizing ion 

fragmentation patterns to predict possible identities and biotransformation products of parent 

metabolites [44–47]. Continued efforts focused on developing new chemical databases that 

house both environmental chemicals and endogenous metabolites as “MS-Ready” structures 

and development of new computational approaches is expected to rapidly improve 

annotation capabilities of untargeted mass spectrometry data in exposome research [48–50].

5. Exposure-response relationships in untargeted metabolomics analyses

Data structure and the relationships among features detected in untargeted metabolomic 

experiments allow a systems-biology approach to understanding molecular mechanisms [51, 

52]. While single feature-outcome relationships can assist in identifying biomarkers of 

disease risk or exposures, they often do not adequately describe variability across a 

population spectrum and, as a result, suffer from reproducibility among populations and 

effectiveness as diagnostic or prognostic tools. Internal data structure, which can be 

represented using network-based topology approaches, has been used to characterize 

unknown features through relationship to known biological pathways, compare metabolism 

across species and assess systemic responses to environmental exposures and disease [35, 

53–55, 36]. Combined with alternative omic data, such as methylation, gene expression, cell 

sub-populations or proteomics, a functional approach can be used to identify data-driven 

relationships across multiple phenotypic data sets, including exposure, and represents a key 

area of research for the exposome [51, 56, 10].

Conceptually, interconnecting pathways and networks are equivalent; the structure can be 

described by a set of edges connecting nodes that represent metabolites and enzymes. Thus, 

pathways can be mapped on top of correlation structure and metabolite subsets tested for 

pathway enrichment, which evaluates if more metabolites from a given pathway are present 

than would be expected by chance. An initial limitation of this approach is the need to assign 

metabolite identities prior to performing the enrichment tests, which is complicated by 

uncertainty in annotation of mass spectral data. This has been overcome by development of 

the pathway enrichment tool Mummichog, which was developed specifically for use with 

untargeted high-resolution mass spectrometry data and incorporates complexity of 

untargeted mass spectral data while isolating biological effects and reducing Type I error 

[57]. The algorithm has been applied to a range of studies examining metabolic effects of 

disease, drug and environmental exposures [36, 58, 59].

To date, this pathway enrichment approach has been used to identify alterations in 

endogenous metabolism. Studies of polycyclic aromatic hydrocarbon metabolites in US 
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Armed Services Personnel showed that expected metabolites of environmental chemicals are 

detected and quantitatively related [60]. Thus, the feasibility is established to develop an 

identical approach for xenobiotic metabolite biomonitoring. With development of powerful 

new tools that predict in silico biotransformation and high-throughput multi-cellular 

exposome screening assays [61, 62], an exposure enrichment analysis can be used to 

mathematically evaluate greater exposures in one population relative to another. This has the 

potential to overcome many of the limitations of single biomarker approaches in 

epidemiology and improve reliability of environmental risks of disease identified in 

population studies.

Demonstration of how metabolomics can be applied using the framework described in 

Figure 1 to provide important insights into the underlying mechanism of exposure-disease 

relationships is demonstrated by a recent study of occupational exposure to the degreasing 

solvent, trichloroethylene (TCE) [63]. In this study, untargeted metabolomic profiling was 

used to evaluate early biological effect, of TCE exposure by comparing metabolic 

differences between 80 healthy workers using TCE and 95 unexposed, matched controls 

[63]. Full-shift TCE levels were evaluated for all workers, and blood samples were collected 

following completion of the work shift [64]. Using a MWAS, all detected mass spectral 

signals were tested for association with exposure. Metabolites associated with exposure 

included known TCE detoxification products, unidentifiable chlorinated compounds and 

endogenous metabolites. To elucidate biological response, pathway enrichment analysis was 

completed, and identified disruption to purine catabolism, decreases in sulfur amino acid and 

bile acid biosynthesis pathways; which are consistent with known toxic effects of TCE. 

Metabolites associated with exposure were also tested for their relationship with urinary 

TCE exposure biomarkers and physiologic endpoints, supporting known or suspected 

disease associations, including immune and renal effects. Thus, external exposure was linked 

to internal dose and biological response, providing insight into molecular mechanisms of 

exposure-related disease etiology. Most notably, TCE metabolites associated with 

physiologic endpoints included compounds that had not been previously described, 

identifying potential new mode-of-actions for TCE toxicity that would not have been 

detected if only targeted analyses were completed.

6. Metabolomic applications in epidemiology studies of disease

Due to the ability to characterize a diverse series of endogenous and exogenous metabolites 

in biological samples, metabolomic approaches have rapidly gained acceptance as an 

important tool in population health research. Results demonstrate application to measure the 

metabolome using small volumes of blood, urine, stool, saliva, exhaled breath condensate, 

cerebral spinal fluid, biopsies and other hard and soft tissues has the potential to inform on 

possible mechanisms underlying disease [65–70]. Furthermore, current analytical strategies 

are high-throughput and available at a relatively low cost, making possible analysis of large 

studies on the order of 1,000 to 10,000 samples [11, 60, 71, 72]. Thus, metabolomic 

methods are poised to provide a key analytical platform for exposome research in 

epidemiology.
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A fundamental aspect of the exposome is to assess the occurrence and impacts of 

environmental exposures across the lifespan. The use of life course epidemiology 

approaches, which aim to elucidate biological and environmental processes that operate 

across an individual’s life course and how exposure at different periods influence disease 

risk [73], is of critical importance for exposome research. However, most existing evidence 

is currently from case-control or cross-sectional studies that do not allow establishing a clear 

temporal relationship between exposure, intermediate effect biomarkers and disease. 

Recently, metabolomics characterization of amniotic fluid, cord blood, and maternal/child 

urine or serum samples have been used to assess complex fetal-maternal exposures, and have 

potential to be linked to developmental problems [59, 74–77]. Newborn dried blood spots 

have also been proposed as a promising specimen for metabolomic profiling and have been 

used to identify metabolic biomarkers of future risk of cancer and other childhood diseases 

[78]. The integration of untargeted metabolomics in large-scale prospective pregnancy and 

childhood cohorts with continued follow-up of participants towards adulthood is a key 

requirement for the characterization of the exposome over the lifespan. As exogenous 

exposures and endogenous metabolites are time-varying, future study designs can be 

benefited by the integration of metabolomics at multiple time points; such approaches are 

currently lacking.

The use of occupational studies to understand the effect of workplace exposures on health 

can further provide key insight into disease risk factors and early biological effects of 

exposure. Metabolomic approaches have been applied to a range of occupational exposure 

studies [79, 80]. As indicated above, metabolomic associations with occupational TCE 

exposure demonstrates the power of using untargeted approaches to characterize the effects 

of chemical exposures [63]. Additional metabolomic studies of occupational exposures 

include welding fume exposures, metals, shiftwork, military deployments, farming, 

automotive exhaust and pesticide plant workers [81–86].

Untargeted metabolomic profiling of tissues, urine and blood in population studies can 

detect environmental chemical metabolites and previously uncharacterized biomarkers in 

human populations [87, 76, 31, 32, 27, 23]. Using MWAS, metabolic alterations can be 

associated with exposure levels and used to evaluate exposure-dependent relationships in 

biological pathways. To date, multiple exposures have been assessed, including air pollution, 

persistent organic pollutants, proximity to industrial operations, metals, perfluorinated 

substances and plasticizers [36, 88–95]. As with all observational studies it is important to 

control for confounding, which can be accomplished by study design ensuring comparability 

of “exposed” and “unexposed” subjects and by using questionnaire-based data and 

biological markers of known or suspected confounders. Replication of biologic response 

findings in other studies is critical to rule out false-positive associations. Further, where 

feasible, study designs that evaluate populations before and after an exposure takes place 

(e.g., before and after a large seasonal variation in an environmental exposure, or where 

appropriate, controlled low-level exposure studies) can be very useful to help established a 

causal relationship, as well as exposure intervention studies that evaluate subjects during the 

exposure and post-intervention when exposures are reduced. Finally, following up observed 

associations in experimental in vitro and animal studies can also help to support causal 

relationships in humans.
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The application of metabolomics to the study of disease risk, screening, and treatment 

efficacy has generated some promising initial findings, although the field is still in its 

infancy. These include studies of neurodegenerative diseases [96], type II diabetes [97], 

cancer [98], human immunodeficiency virus (HIV) infection [53], tuberculosis [99], malaria 

[100] and cardiovascular disease [71, 72]. A critical next step in the application of 

metabolomics to the study of disease etiology and early disease detection will be the use of 

longitudinal studies, which have already shown their utility [101, 102, 72], and especially 

when repeat biological samples are collected and stored over many years. These studies will 

allow the direct measurement of exposure to exogenous and endogenous compounds at 

multiple points during the life course, which is especially important for environmental 

exposures that have relatively short half-lives and/or do not bioaccumulate, and the 

assessment of the trajectory of metabolic changes from those exposures leading to disease.

The use of untargeted metabolomic methods provides a systematic measure for conducting a 

metabolome- and exposome wide association study of disease. To understand the complexity 

of the human exposome, new data analytic strategies need to be adopted in epidemiology 

studies. Identifying relationships between environmental factors and disease, and 

establishing causality, will require strategies that incorporate multiple-levels of 

measurements that capture exposures, biological response and disease [103–105]. To avoid 

complication by factors related to reverse causality and identify exposures from the 

environment contributing to development of disease, so called “meet-in-the-middle” 

approaches hold promise for untargeted methods applied to human studies [8, 106]. When 

performing this type of data analysis, causal relationship between disease and environment 

is evaluated through a prospective search for intermediate biomarkers related to past 

exposure and associated with disease development. If overlapping associations are 

identified, it reinforces a potential causal interpretation of the exposure-disease association. 

As an additional step, the proportion of the association explained by intermediate 

biomarkers can be quantified using causal mediation analytical methods [107]. The 

associations identified using this framework can also be evaluated through animal exposure 

and disease models, which help establish biological plausibility. Target populations to 

support this approach are not limited to life-course studies, and existing studies of children 

or adults with previously collected biologic samples and questionnaire data can be used 

within this framework. For example, exposure can be tied to disease using other exposure 

assessment methods, such as geospatial data, exposure questionnaires, and remote sensing; 

exposure can be linked to intermediate biomarkers in existing occupational exposure studies 

that may reduce confounding due to additional exposures; and intermediate biomarkers can 

be linked to disease using already established or new prospective cohorts. Untargeted 

metabolomics can be integrated with each type of data to facilitate overall linkage of 

exposure to outcome.

7. Conclusions

Incorporation of the exposome into epidemiology research will improve the ability to 

understand the effect of environmental exposures on human health. In many cases, disease 

arises from a complex series of environmental, lifestyle and genetic factors that are not 

possible to elucidate using single biomarker approaches. While still rapidly developing, 
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technology now exists to provide the functional measures of environment and biological 

response that potentially allows comprehension of the complex, human chemical experience, 

and efforts are underway to evaluate harmonization of these methods across laboratories 

[108–110]. Platforms based upon UHRMS now allow measurement of 10,000–100,000 

chemical signals using minimal sample volumes and are cost-effective. While current 

technologies allow analysis of 40 samples per day (12,500 samplers per instrument-year) at 

a cost of approximately $100, with appropriate investments in development of automation, 

chromatography and bioinformatics, analysis of up to 500 samples-per-day (125,000 

samples per instrument-year) and cost as low as $5 per sample may be possible. As a result, 

barriers to incorporate metabolomic approaches for measuring the exposome have been 

lowered and deserve consideration as a cornerstone in epidemiological biomarker studies. 

This technology, combined with complementary advancements in genetics, transcriptomics, 

epigenetics, proteomics, imaging and bioinformatic approaches for identifying patterns in 

this complex data provide exciting new opportunities for fundamental discoveries in human 

health.
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Figure 1: 
Framework for the metabolome as a central measure for linking exposure to internal dose, 

biological response and disease. Environmental chemicals absorbed by a host, which are 

detected within the metabolome in either the parent form or as transformation products 

represent a measure of exposure internal dose and the exposome contribution to metabolic 

phenotype. These compounds can influence biological processes through local and global 

changes within an organism, resulting in micro- and macroscale interactions between 

environmental chemicals and endogenous processes encoded by the genome, the functional 

measures of these interactions can be detected as alterations to metabolic processes. By 

detecting metabolites from most metabolic pathways, metabolomic techniques allow 

evaluation of these biological changes, which represent markers of effective dose and 

response. Long-term shifts in metabolic processes accompany disease pathobiology and 

often represent distinct metabolic phenotypes from controls. Thus, the human metabolome 

can be used to assess the presence of an exposure and also to provide a framework for study 

of exposure-response and disease relationships. (Reprinted from Elsevier Books, Douglas 
I. Walker, Young-Mi Go, Ken Liu, Kurt D. Pennell, Dean P. Jones; Metabolic 
Phenotyping in Personalized and Public Healthcare, Pages 167–211; Jan 1, 2016; with 
permission from Elsevier) [111].
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