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Abstract

Atopic dermatitis (AD) affects up to 20% of children worldwide and is an increasing public health 

problem, particularly in developed countries. Although AD in infants and young children can 

resolve, there is a well-recognized increased risk of sequential progression from AD to other 

atopic diseases, including food allergy (FA), allergic rhinitis, allergic asthma, and allergic 

rhinoconjunctivitis, a process referred to as the atopic march. The mechanisms underlying the 

development of AD and subsequent progression to other atopic comorbidities, particularly FA, are 

incompletely understood and the subject of intense investigation. Other major research objectives 

are the development of effective strategies to prevent AD and FA, as well as therapeutic 
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interventions to inhibit the atopic march. In 2017, the Division of Allergy, Immunology, and 

Transplantation of the National Institute of Allergy and Infectious Diseases sponsored a workshop 

to discuss current understanding and important advances in these research areas and to identify 

gaps in knowledge and future research directions. International and national experts in the field 

were joined by representatives from several National Institutes of Health institutes. Summaries of 

workshop presentations, key conclusions, and recommendations are presented herein.

Keywords

Atopic march; atopic dermatitis; food allergy; asthma; skin barrier; skin microbiome; biomarkers; 
interventions

Atopic dermatitis (AD; also known as atopic eczema) is a chronic, pruritic inflammatory 

skin disorder with a complex etiology and heterogeneous presentation that affects up to 20% 

of children worldwide and is an increasing public health problem in developed countries.1–4 

Aside from its significant socioeconomic effect and increased risk of serious skin infections, 

AD can predispose infants and children to other atopic diseases, including food allergy (FA), 

allergic rhinitis, allergic asthma, and allergic kerato-conjunctivitis, a process termed the 

atopic march.5–13 Although there is evidence from retrospective and prospective population 

studies to support a causal relationship between AD and other atopic diseases, other studies 

suggest this might be an oversimplification, and further studies are needed to clarify the 

connections between these atopic diseases.14–16 The incidence of FA has also increased 

worldwide over the past decade.17–19 Although FA has a strong association with AD, its 

contribution to the classically defined progressive atopic march from AD to allergic rhinitis 

and allergic asthma is debated.20–22

Because not all patients with early-onset AD will progress through the atopic march, the 

challenges are to identify those at greatest risk of progression and to develop targeted 

interventional therapies. Success in this endeavor will depend on a detailed understanding of 

pediatric AD endotypes and phenotypes, skin barrier dysfunction in patients with AD, and 

the innate and adaptive immune processes that normally protect barrier surfaces from 

inflammation, allergen sensitization, and infection.

To evaluate the current status of knowledge in these areas, the Division of Allergy, 

Immunology and Transplantation of the National Institute of Allergy and Infectious Diseases 

convened a workshop titled “Atopic dermatitis and the atopic march: mechanisms and 

interventions” on September 6 and 7, 2017, in Rockville, Maryland. The workshop was 

attended by 41 scientists and clinicians from Europe and the United States, the National 

Institute of Allergy and Infectious Diseases, other National Institutes of Health institutes, 

and the US Food and Drug Administration. The overall goals of the workshop were as 

follows:

1. to review our current understanding and gaps in knowledge of:

• developmental relationships between AD, FA, and airway allergic 

diseases, even though many previous evaluations of the atopic march 

have not included FA in their analyses;
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• abnormalities in the skin barrier and skin microbiome in patients with 

AD that promote inflammation and epicutaneous sensitization to 

allergens; and

• immune pathways involved in barrier communication, homeostasis, and 

defense and how these deviate in patients with AD and result in allergen 

sensitization and

2. to identify potential biomarkers that predict risk for the atopic march and 

opportunities for targeting interventions to prevent AD and the atopic march.

This document includes presentation summaries prepared by each speaker. Each section is 

followed by key conclusions and recommendations for future studies that were compiled 

from session discussions and a panel discussion held at the end of the workshop and chaired 

by Dr Mark Boguniewicz. Panel discussants included Drs Gideon Lack, Donald Leung, Kari 

Nadeau, Angela Simpson, Eric Simpson, and Ulrich Wahn.

1. DEVELOPMENTAL RELATIONSHIPS BETWEEN AD, FA, AND AIRWAY 

ALLERGIC DISEASES

1.1. How frequently does the classical atopic march from AD to allergic airway disease 
occur?

Drs Ulrich Wahn and Jonathan Spergel began the workshop with a pro/con debate on 

evidence for the existence of the atopic march. For the affirmative side, Dr Wahn defined the 

atopic march as the sequential progression of different allergic conditions frequently 

observed in children with IgE antibody responses against common environmental allergens. 

Generally, eczema or AD is the first clinical manifestation, followed by asthma, allergic 

rhinitis, or both (Fig 1).5,6,23

Dr Wahn summarized data from the Multicenter Allergy Study, a prospective observational 

birth cohort study that examined the comorbidity of AD, asthma, and rhinitis with age and 

the relationship with sensitization to food or environmental allergens. In this cohort AD 

increased the risk of asthma and rhinitis, and asthma occurred more frequently with 

coexisting allergies than as a single entity.8 However, not every patient with AD had asthma, 

and not all patients with asthma had preceding AD. Moreover, AD did not seem to be a risk 

factor for adult-onset asthma (Fig 2).8

A history of infantile AD along with a parental family history for atopy also increased the 

risk of subsequent allergic manifestations of the upper or lower airways, suggesting a 

genetic influence in the atopic march.24 Several genetic risk factors for AD have been 

identified that might contribute to comorbidity, including filaggrin (FLG) gene mutations.
25,26 Nevertheless, among those with or without an allergic parent, only a minor proportion 

(<5%) had AD, asthma, and rhinitis at any age, indicating that progression from AD to 

asthma to allergic rhinitis is a relatively rare event (Fig 2).8 However, the caveat is that these 

studies were conducted on community-based populations involving milder forms of AD and 

asthma. It is noteworthy that patients with moderate-to-severe AD are more likely to have 

associated FA and respiratory allergy.9,22 Other factors that influenced comorbidity in the 
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Multicenter Allergy Study cohort included the prevalence of IgE-mediated sensitization, 

degree of epitope spreading, parental atopy, and domestic allergen exposure.27–30 Domestic 

cat and dust mite exposure of young children significantly increased the risk of sensitization 

early in life, as well as the risk of persistent asthma throughout adolescence.27–30 For both 

grass pollen–related allergic rhinitis and dust mite sensitivity associated asthma, 

sensitization preceded the clinical airway manifestation.28,29 By using these parameters, a 

predictive risk assessment for asthma in childhood is possible, and several algorithms for 

asthma prediction have been published.29–31

Dr Wahn concluded that although there is no single unique pathway for the atopic march, 

longitudinal studies between birth and age 20 years have revealed characteristic patterns of 

sensitization and clinical manifestations that might be predictive of later airway disease. 

Furthermore, future studies might wish to broaden the definition of the atopic march to 

include patients who progress from AD to FA, as well as from FA or AD to respiratory 

allergy.

In his counterarguments Dr Spergel reiterated that adult-onset asthma is rarely associated 

with AD or the atopic march8 and noted that in published pediatric studies 33% to 50% of 

children with AD did not have atopic airway diseases.32–34 In a recent retrospective, single-

site, pediatric cohort study using health care provider–diagnosed AD, asthma, allergic 

rhinitis, and FA, Dr Spergel and his colleagues confirmed the developmental sequence of 

atopic diseases from birth to age 5 years at the population level, with AD preceding FA and 

FA preceding airway diseases.10 Among patients with established FA, 35% had asthma and 

35% had allergic rhinitis, providing further evidence that not all atopic children complete the 

entire atopic march. In both groups allergy to peanut, milk, and egg significantly 

predisposed to both airway diseases, and patients with multiple food allergies were at 

increased risk of disease.10,35

In a separate multisite study of infants with recent-onset AD and atopic parents who were 

observed for approximately 3 years, approximately 10% had asthma and 33.3% had 1 or 

more atopic comorbidities (asthma, FA, allergic rhinitis, and allergic conjunctivitis) by the 

end of the study.9 Infants with greater AD severity at baseline had a greater risk of FA or 

allergic rhinitis or 1 or more atopic comorbidities.9 Dr Spergel concluded that although there 

is evidence for the atopic march in patients with pediatric allergy, this is only observed 30% 

to 50% of the time.

1.2. Insights from birth cohorts: Identification of specific atopic phenotypes/endotypes

Dr Angela Simpson described developmental profiles of AD, asthma/wheeze, and rhinitis in 

various birth cohort studies. Population-based birth cohorts can provide a unique aspect to 

our understanding of the atopic march by allowing one to profile the development of atopic 

diseases within a subject without the effect of recall bias. A study from the European 

consortium of birth cohorts (MeDALL), with analysis of data from more than 17,000 

children in 12 European birth cohorts, showed that the coexistence of 2 or 3 diseases (atopic 

eczema, rhinitis, and asthma; FA was not assessed) in the same child occurred more 

frequently than by chance almost half of the time.36 This effect was seen in both atopic and 

nonatopic children (ie, was not dependent on the presence of specific IgE to allergens).36
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Investigators in the United Kingdom combined data from 2 birth cohorts in the Study Team 

for Early Life Asthma Research Network (STELAR; Manchester Asthma and Allergy Study 

[MAAS] and Avon Longitudinal Study of Parents and Children [ALSPAC]) to determine the 

prevalence of wheeze, AD, and rhinitis at ages 1, 3, 5, 8, and 11 years and compared these 

data with findings when a Bayesian machine learning framework was used to model the 

longitudinal development of eczema, wheeze, and rhinitis within subjects throughout 

childhood.14 The traditional approach revealed a profile plot reminiscent of the atopic 

march. The Bayesian machine learning approach, which was used to uncover latent structure 

in data, identified an 8-class solution; the largest class (approximately 50%) comprised those 

without disease (Fig 3).14 What has been conventionally described as the atopic march (AD 

followed by wheezing and rhinitis) represented a class that comprised only 3% of the 

population. The persistent eczema and wheeze cluster also comprised 3%, persistent eczema 

with late-onset rhinitis comprised 5%, and persistent wheeze and late-onset rhinitis 

comprised 6%; transient wheeze (8%), eczema-only (15%), and rhinitis-only (10%) classes 

were also seen (Fig 3). In a longitudinal analysis allergic sensitization (to any allergen) was 

a feature of all disease classes apart from transient wheeze, but the effect was seen most 

strongly for the atopic march class (odds ratio [OR] > 20). If the definition of the atopic 

march is broadened to include progression from AD to 1 or more comorbidities, then based 

on this model, approximately 10% of the population might be at risk. Although FLG-null 

alleles were overrepresented in the atopic march class, the majority of children carrying this 

variant were not in the atopic march class. Some genetic variants have been identified as 

associated with an atopic march phenotype in a genome-wide association study; the 

strongest effect was seen for a locus on chromosome 1 that was related to FLG.

Dr Simpson concluded that although eczema was a feature of 25% of the clusters, most 

eczema is not associated with the classical atopic march picture, and there is an inherent 

uncertainty in predicting the development of new symptoms or resolution of existing ones 

within any individual child. Thus when designing intervention studies to prevent the atopic 

march, it is important to note that most children with early-onset eczema will not follow an 

atopic march trajectory leading to asthma, and this needs to be considered when calculating 

sample size to ensure adequate power. It was noted that these studies lacked data on 

physician-confirmed food allergies, and therefore the link between FA and AD was not 

explored. In the future, the relationship of these atopic comorbidities to eosinophilic 

esophagitis and keratoconjunctivitis might also be of interest.10

1.3. Insights from respiratory birth cohorts: Effects of the environment on AD and the 
atopic march

Dr James Gern reviewed the temporal progression of allergic diseases beginning with AD 

followed by asthma and allergic rhinitis in respiratory birth cohorts.37 Given the large role of 

the environment in determining the risk for allergic diseases and asthma, Dr Gern and his 

colleagues evaluated this progression in 2 high-risk birth cohorts set in distinct 

environments: the Childhood Origins of Asthma (COAST) study set in suburban Madison, 

Wisconsin,38 and the Urban Environment and Childhood Asthma (URECA) study in 

disadvantaged urban neighborhoods of 4 US cities.39 These cohorts were used to test 

whether environmental exposures were associated with differences in immune development 
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that modified the risk for early allergic phenotypes, such as AD, allergic sensitization, and 

wheezing illnesses.

In the COAST study dog exposure at birth was inversely related to the risk for all 3 atopic 

features in an age-dependent fashion. Exposure to dogs in the home beginning at birth was 

inversely associated with AD and allergic sensitization by age 1 year and recurrent wheezing 

by age 3 years.40 In addition, 3 patterns of AD (early/recurrent, late onset, or none/transient) 

were identified by using latent class analysis of data through age 6 years.41 Dog ownership 

at the time of birth was lowest in the early/recurrent group (10%, 50%, and 43%, 

respectively). Compared with the none/transient AD group, the early/recurrent pattern of AD 

was associated with high rates of progression to wheezing illnesses (45% vs 23%), food-

specific IgE (48% vs 18%), and FA (15% vs 2%, all P < .01).

The URECA study tested relationships between environmental exposures, immune 

development, and the risk of atopic disease. One major finding was that early exposures to 

common urban allergens (cockroach, mouse, and cat) and diverse microbes in the home are 

inversely related to the risk of atopic wheeze at age 3 years.42 These environmental 

exposures were also inversely related to asthma at age 7 years.43,44 Additional analyses have 

identified relationships between AD, immune development, and wheeze in urban children. 

For example, early-onset AD was associated with a broad reduction in cord blood 

mononuclear responses to a variety of innate, mitogenic, and antigenic stimuli.45 Despite 

these findings, these cord blood responses were only weakly related to recurrent wheeze and 

allergic sensitization at age 3 years.46 Furthermore, although wheezing illnesses, allergic 

sensitization, and AD were all relatively common at age 1 year (49%, 32%, and 30%) and 

age 3 years (36%, 44%, and 9%), only a small number of children experienced all 3 atopic 

indicators (7% at age 1 year and 3% at age 3 years, Fig 4).

Children in the URECA study were grouped into 5 respiratory phenotypes based on a cluster 

analysis of wheeze, allergic sensitization, and lung function data during the first 7 years of 

life. Two of the phenotypes (the high-wheeze, high-atopy and high-wheeze, low-atopy 

phenotypes) were highly enriched for asthma.44 Eczema at some point in the first year was 

more common in children in the high-wheeze, high-atopy phenotype compared with either 

the high-wheeze, low-atopy or lowwheeze, low-atopy phenotypes (78% vs 54% and 48%, P 
<.01).44

Collectively, these findings provide evidence of strong relationships between individual 

elements of the atopic march (eg, AD and allergic sensitization or AD and wheeze), but 

relatively few children express all elements at once. A specific phenotype of AD that is of 

early onset with recurrent activity is most likely to be associated with allergic sensitization 

and viral wheeze. Environmental exposures, such as pet dogs, perhaps related to associated 

microbes,47 might be protective for this clinically important AD phenotype. Finally, AD and 

early allergic sensitization are linked to specific high-atopy phenotypes of childhood asthma, 

which might be of special clinical significance in terms of lower lung function and increased 

asthma morbidity.44,48

Davidson et al. Page 7

J Allergy Clin Immunol. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1.4. Association between AD and FA in human subjects

Dr Gideon Lack reviewed evidence for the close association between AD and FA in human 

subjects. There is a well-known association between AD and immediate hypersensitivity to 

foods. In recent years, it has become apparent that infantile AD in the first 6 months of life is 

associated with the development of FA and that the earlier and more severe forms of AD are 

associated with a higher risk of FA. Recent follow-up data from the peanut avoidance group 

in the Learning Early About Peanut Allergy (LEAP) study showed that among 321 children 

with AD as infants, 76% had at least 1 allergic disease and 48% had multiple comorbidities 

at age 5 years. A total of approximately 40% had FA at the ages of 5 and 6 years, 18% had 

asthma, and 54% had perennial rhinoconjunctivitis.22 Yet, at age 5 years, only 4% exhibited 

the full constellation of atopic diseases, AD, FA, asthma, and rhinoconjunctivitis.22

In regard to the mechanisms linking AD and FA, there is a growing body of evidence for 

cutaneous exposure to environmental peanut allergen, leading to the development of FA 

through a broken-down skin barrier.49 In patients with AD, the skin barrier is impaired, 

potentially allowing penetration of food allergens. This impaired barrier function is reflected 

by increased transepidermal water loss (TEWL) in infants even before they have evident 

AD.50

Genetic and environmental risk factors can also contribute to AD and FA. Null mutations in 

FLG are associated with AD and independently with peanut allergy, and FLG protein has an 

important role in maintaining skin barrier function.50,51 Furthermore, high-level exposure to 

peanut dust in the environment increases the risk of peanut sensitization and allergy in 

infants with null mutations in FLG, demonstrating a gene-environment interaction.50,51

Recent studies have shown that early application of emollients to the skin can prevent the 

development of AD.52,53 Based on these findings, Dr Lack suggested there is a rationale to 

consider early prevention and treatment of AD as a strategy to prevent the development of 

food sensitization and ultimately FAs. Given the association between AD, FA, and allergic 

airway disease, this intervention might also decrease the risk of allergic airway disease.

1.5. Tracing the link between AD and asthma: Clues to cellular mechanisms

Dr Judith Woodfolk reviewed cellular mechanisms that might link AD to asthma. 

Multiallergen sensitization is a hallmark of AD and is likely to be pivotal to the development 

of asthma. Among children with AD, there is a hierarchy of allergens related to age, 

sensitization, and asthma. High levels of specific IgE to peanut are present before 3 months 

of age, whereas levels of IgE antibodies to aeroallergens increase throughout childhood, 

particularly among patients with severe disease. Age-related progression from cat to dust 

mite to rye grass sensitization is evident, and sensitization to cat and dust mite, but not food 

allergens, predicts wheeze. Thus peanut allergy sets the stage for multisensitization, more 

severe disease, and asthma among a subset of patients with AD.54

Regardless of age, the majority of IgE is not accounted for by known allergens in patients 

with the highest total IgE levels, indicating dysregulated IgE production. Dysregulated IgE 

in patients with AD reflects underlying TH2-driven processes that are also perturbed and 

manifest systemically. Allergen exposure promotes the expansion of pathogenic TH2 
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effectors with the potential to traffic between the skin and respiratory tract based on 

coexpression of a variety of tissue-homing markers (cutaneous lymphocyte–associated 

antigen, CCR4, and CCR6). TH2 amplification is driven by myeloid dendritic cells of the 

cDC2 type through cross-talk between pathways triggered by allergen and thymic stromal 

lymphopoietin (TSLP). Enhanced responsiveness of dendritic cells to diverse external cues 

is also integral to this process.55

Recent work on peanut allergy in both human and animal models supports the skin as a site 

for TH2 priming that leads to asthma. In multisensitized children with AD and asthma who 

have high levels of IgE to peanut, those T cells responding to Ara h 2, an important predictor 

of peanut allergy, secrete multiple TH2 cytokines.56 Within the same patient, these T cells 

are more “TH2 skewed” compared with those specific for Ara h 1 or the major cat allergen 

Fel d 1, despite the link between cat allergen and asthma. Such cytokine heterogeneity 

among allergenspecific T cells likely reflects the molecular properties of the allergen 

combined with the anatomic site of T-cell priming. The recent identification of a unique 

surface TH2 signature that captures all allergen specificities could shed light on how the 

evolution of TH2 responses orchestrates AD and asthma in early childhood.57

Beyond allergens, asthma development reflects complex environmental exposures that 

culminate in “immunologic reprogramming” in the susceptible host. In healthy subjects 

microbes induce a robust TH1 response. However, TH1 signatures are also evident in the 

lower airways of children with severe asthma, including those with high IgE levels.58 

Notably, CCR5+ memory T cells expressing IFN-γ constitute the dominant T-cell type in 

bronchoalveolar lavage fluid. Moreover, higher levels of the type III interferon IL-28A in 

bronchoalveolar lavage fluid are linked to sensitization to dust mite and inhalant fungal 

species. Recently, CCR5+ memory TH1 cells have also been implicated in the control of 

rhinovirus in healthy nonasthmatic subjects.59 These collective findings, coupled with 

known interactions between IgE and rhinovirus in wheezing children, support a role for TH1 

dysregulation in asthma pathogenesis in multisensitized patients with AD. Investigating 

unconventional roles of IgE and the contributions of “pantissue” dendritic cell types that 

populate both human skin and airways60 could shed light on the development of asthma in 

patients with AD.

Key conclusions

• Birth cohort studies, machine learning approaches, and longitudinal latent class 

analyses have identified multiple mixed atopic phenotypes defined by specific 

comorbid conditions and their time course, indicating significant heterogeneity in 

presentation of the atopic march.

• Only a small subset of children in the general population (approximately 3%) 

appear to follow the complete course of what has been conventionally referred to 

as the atopic march. Even in high-risk cohorts, a stepwise progression from AD 

to FA, asthma, and rhinoconjunctivitis is not common.

• The majority of children with AD do not progress to other allergic diseases, 

although those with severe AD more likely do. Inversely, the majority of children 
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with asthma or rhinoconjunctivitis later in life do not have a history of early-life 

AD.8,10

• However, early-life AD remains a major risk factor for the development of any 

atopic disease:

– Early-onset persistent AD, multisensitization to allergens, and familial 

atopy are risk factors for the classical atopic march or development of 

multiple comorbidities.

– Progression from AD to FA, particularly peanut allergy, is significantly 

associated with multisensitization and development of allergic airway 

disease.

– FA in infancy is associated with an increased risk of asthma, 

irrespective of whether FA resolves. The risk is greater in those with 

multiple food allergies and those with coexistent AD.61

• The strong association between AD and allergic sensitization implies that skin 

barrier defects in patients with AD increase the risk of epicutaneous sensitization 

to food allergens and aeroallergens.

• FLG mutations enhance the potential for sensitization through the skin and 

predispose to the classical atopic march, implying skin barrier dysfunction in this 

process.

• Workshop participants agreed that subjects who only have elements of the 

conventional atopic march should still be considered as part of a broader 

definition of the march, which is more reflective of the natural history of atopic 

disease. Understanding the underlying biology of the various manifestations of 

the atopic march is pivotal for development of endotype-targeted future 

intervention strategies.

Workshop recommendations

• Early prevention and treatment of AD should be tested as a strategy to inhibit the 

development of food allergies and atopic airway disease.

• A new, large, prospective birth cohort study is required to better define AD 

phenotypes, atopic comorbidity phenotypes, and their respective risk profiles. 

This longitudinal cohort should monitor not only for the development of the 

atopic march in its proposed broader definition but also for resolution of allergic 

diseases, recognizing that greater than 50% of childhood AD resolves before 

adulthood.

• The birth cohort study should:

– incorporate agnostic evaluations of skin, gut, airway and peripheral 

blood and use multiparameter approaches to further define phenotypic/

endotypic subgroups of AD and to predict AD outcomes and 

development of other atopic conditions;
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– use longitudinal latent class analysis methods and other clustering 

approaches in identifying patterns of atopic disease and incorporate 

severity and time course;

– use accepted diagnostic criteria and validated disease severity scores for 

all atopic conditions;

– investigate genetic, epigenetic, and environmental influences on the 

development of AD and atopic disease progression;

– determine mechanistically how AD severity and multiallergen 

sensitization influence atopic disease progression; and

– allow for reliable replication by establishing early collaborations with 

other cohorts with the goal of including similar clinical outcomes.

2. ROLES OF SKIN BARRIER DYSFUNCTION, CUTANEOUS 

INFLAMMATION AND ITCH IN THE PATHOGENESIS OF AD

2.1. How do skin barrier defects shape the immune response in patients with AD?

The relative importance of immunologic versus epithelial abnormalities in the development 

and perpetuation of AD, as well as all other allergic conditions, is a hotly debated topic. Dr 

Lisa Beck noted that murine AD models and naturally occurring human disease have 

demonstrated that a perturbation in one compartment typically begets the characteristic 

features observed in the other compartment.62 This would suggest that therapies targeting 

both compartments might yield the greatest benefit. In fact, recent studies showed that daily 

application of various emollients to the skin of high-risk infants led to a 50% reduction in 

AD by 6 months of age.52,63 In another study short-term application of petrolatum with 

occlusion affected skin barrier function and also enhanced innate immune responses in both 

normal skin and nonlesional AD skin, suggesting beneficial effects on both barrier and 

immune compartments and a potential explanation for the preventative effects of emollients 

in infants at high risk of AD.64 Overall, these data suggest that emollients can prevent 

progression to AD. This approach might also affect the development of other allergic 

disorders, such as FA and asthma, if skin penetration and immune activation is responsible 

for both food allergen and aeroallergen sensitization.

The importance of the skin barrier was also highlighted in a study of more than 1500 infants 

born of low-risk mothers, which demonstrated that infants who were in the upper quartile of 

TEWL had a high OR (OR = 3.1) for the development of AD at 12 months or FA by 2 years 

of age (OR = 3.5).65,66 Remarkably, measures of epidermal dysfunction are observed, even 

in clinically unaffected skin of patients with AD, and include TEWL, reduced stratum 

corneum (SC) hydration, reduced integrity of the SC, more alkaline surface pH, and a 

reduced irritancy threshold. This raises the possibility that the entire skin integument of 

patients with AD might be permissive to allergen sensitization, as well as elicitation, and this 

might explain why the highest levels of type 2 immune serum biomarkers (thymus and 

activation-regulated chemokine/CCL17, pulmonary and activation-regulated chemokine/

CCL18, periostin, total serum IgE, and total eosinophils) are seen in patients with AD. This 
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has led to the speculation that the skin might be either one of or the critical surface for 

systemic allergen sensitization, even in patients with allergic diseases that manifest in other 

organs, such as the gastrointestinal tract (FA and eosinophilic esophagitis) or the upper or 

lower airway (allergic rhinitis and asthma).

There are a number of abnormalities observed in the SC that could lead to a defect in 

epidermal barrier function in patients with AD (Fig 5). These include acquired or genetic 

defects in FLG or other epidermal differentiation proteins. FLG mutations increase the risk 

of AD, peanut allergy, AD plus asthma, and eczema herpeticum.50,51,67 Decreased 

expression of FLG has multiple effects, including increased TH2 cytokine production by 

group 2 innate lymphoid cells (ILC2s), increased production of endogenous proteases, and 

increased IL-1 and TSLP production.68 However, FLG mutations are neither necessary nor 

sufficient to induce AD. Mutations in other genes involved in the maintenance of epidermal 

integrity and barrier function, including DSG1, the gene encoding desmoglein, also are 

associated with severe dermatitis, increased expression of TSLP in keratinocytes, and 

multiple allergies.69 It is likely that both AD and the atopic march might require multiple 

genetic, immunologic, and environmental hits: (1) altered lipid composition or 

conformation; (2) acquired or genetic defects in proteases and/or anti-proteases; (3) products 

released from Staphylococcus aureus, which commonly colonizes AD skin; and/or (4) 

simply the consequence of the physical trauma from widespread scratching.

Only recently have we appreciated the importance of the second barrier structure in the skin 

called tight junctions (TJs), which reside at the level of the stratum granulosum and are the 

only barrier structure in all simple epithelia. These structures are also defective in patients 

with AD.70 Furthermore, TJs divide the epidermis into 2 compartments. The more 

superficial half, which is readily exposed to environmental insults but does not express 

pattern recognition receptors, has little to no Langerhans cell or dendritic cell processes, and 

is consequently immunologically inert.71 This is in contrast to the deeper epidermis, below 

the TJs, where all the immunologic response elements reside, and host responses are robust 

(Fig 5).72,73 The current paradigm postulates that patients with AD have alterations in both 

of these barrier structures (SC and TJs) and that this promotes their sensitization to a whole 

host of allergens/antigens.74

The epidermis does not merely function as a physical barrier but is likely also the critical 

initiator of type 2 immune responses (Fig 5). This function is in part mediated by the 

extensive repertoire of pattern recognition receptors expressed on barrier epithelial cells 

coupled with their strategic location at the interface of the microenvironments and 

macroenvironments.70,75 The exposure of barrier-disrupted epidermis to allergens or 

microbes, many of which signal through receptors relevant for innate immune responses, 

leads to production of chemokines and alarmins (TSLP, IL-33, and IL-25) that instruct 

immature dendritic cells and activate ILC2s, key drivers of a type 2 immune response.75 

Importantly, enhanced type 2 immune activation downregulates the expression of epidermal 

differentiation complex and TJ proteins, innate immune responses, and antimicrobial 

peptides.
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In summary, initial studies of epidermal cells from patients with AD focused on 

characterizing them for their “leaky” nature, but they are no longer viewed as simply 

“structural” cells but rather the key cells that determine the character and amplitude of the 

innate and adaptive immune response to environmental signals.

2.2. What is the role of type 2 immune responses in modulating the skin barrier in 
patients with AD?

Recent studies suggest that the atopic march is most apparent in patients with AD and 

allergen sensitization.11 Donald Leung noted that these observations are consistent with 

studies demonstrating that epicutaneous allergen sensitization associated with type 2 

immune activation predisposes to FA.76 In this regard, by using a novel minimally invasive 

skin tape-tripping technique to examine epidermal protein profiles, TSLP can be detected in 

the epidermis at 2 months of age, more than 1 year before the development of clinical AD at 

24 months.77 The skin-tape transcriptome in patients with nonlesional AD has revealed that 

50% of patients with AD express high-level TH2 cytokines, which have been demonstrated 

to reduce expression of FLG and other epidermal differentiation proteins that contribute to 

severity of AD skin disease.78,79 The high type 2 endotype is also associated with increased 

expression of IL-4 receptor (IL-4R) on keratinocytes. Lipidomics studies show that AD skin 

has short-chain rather than long-chain fatty acids, and this might be the result of IL-13 

overexpression.80 Taken together, there is increasing evidence that immune-driven 

abnormalities in the skin barrier can be detected in nonlesional AD skin before onset of 

clinical AD. This presents a potential opportunity to intervene in skin barrier dysfunction 

before onset of clinical skin disease and epicutaneous allergen sensitization.

2.3. Are there differences in AD phenotypes between adults and children?

The pathogenesis of AD in adults appears to be driven by TH2 and also by TH22 cytokines.
81–83 These cytokines have been shown in vitro to have effects simulating the AD phenotype 

through downregulation of barrier differentiation proteins, such as FLG and lipid species 

(IL-4/IL-13 and IL-22), inhibiting antimicrobial peptides (IL-4/IL-13) and inducing 

epidermal hyper-plasia (IL-22). Recent data from adults with moderate-to-severe AD 

suggest that the spectrum of AD comorbidities expands well beyond allergic conditions (eg, 

allergic asthma), with increases in cardiovascular and other comorbidities likely reflecting a 

high level of systemic immune activation (T cells, B cells, and circulating cytokines) in the 

blood.83 The systemic immune abnormalities in adults with chronic moderate-to-severe AD 

are also reflected by widespread nonlesional skin abnormalities.83–85

However, these paradigm-shifting discoveries are based on adult AD, and the factors that 

initiate AD in children are not well understood. Indeed, infants and adults have a different 

distribution of lesions.

Emma Guttman-Yassky and colleagues have recently compared the skin and blood of 

patients with moderate-to-severe adult AD with that of children with early-onset AD who 

were less than 5 years old and within 6 months of disease initiation but with similar disease 

severity.86–90 They found potent and early TH2 activation in both the blood and skin 

compartments of children with AD, establishing that the systemic nature of new-onset 
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disease in children is similar to adults.86 The selective activation of the TH2 axis in blood 

can direct B cells toward IgE class-switching, explaining the systemic atopic consequences 

of AD. Although in blood early AD begins mainly as TH2 polarized, it has a more complex 

skin phenotype than adult AD with activation of TH2, TH9, and TH17/TH22 but little TH1 

polarization.86 Pediatric nonlesional AD skin is already hyperplastic, accompanied by 

significant inflammation and activated cytokines to levels often greater than those in adults, 

indicating that the clinical manifestation of AD is the tip of an iceberg that reflects 

abnormalities affecting the entire integument.86 Importantly, FLG deficiency of adult AD is 

not present in early pediatric AD, challenging the notion of FLG as central for disease 

elicitation and the instigator of the atopic march.86

Because AD is considered a window to the atopic march, the 2 important questions are 

whether AD can be prevented in high-risk children using skin barrier or other modifications 

and whether in children that already have moderate-to-severe AD, the atopic march can be 

prevented using immune (either broad or narrow T-cell targeting) manipulations. Clinical 

trials with targeted therapeutics against the TH2, TH22, and TH17/IL-23 pathways are 

needed to clarify the relative contribution of each cytokine axis to the disease phenotype in 

both adults and importantly also in children.23,91 In adults TH2 and TH22 targeting seem to 

provide therapeutic benefit.92–94 Inhibition of more than 1 cytokine axis might be needed to 

fully resolve the AD phenotype, particularly in children.

2.4. Immune regulation of itch in patients with AD

Itch is a central and debilitating feature of AD, and scratching in response to itch exacerbates 

allergic skin inflammation. Therefore understanding the pathogenesis of itch-induced 

epithelial injury in AD is of paramount importance in both understanding and preventing the 

progression of allergic disease. Classically, it was established that adaptive TH2 cells, 

through production of the type 2 cytokines IL-4 and IL-13, promote AD pathogenesis. 

Studies by Brian Kim and colleagues in 2013–2014 identified novel contributions of innate 

type 2 cytokine–producing immune cells, such as basophils and ILC2s, to the pathogenesis 

of AD in both mice and human subjects.95,96 Although these cells clearly promote skin 

inflammation in patients with AD, how itch arises in this context has not been well studied. 

Recent clinical trials with dupilumab, an anti–IL-4Rα mAb that blocks signaling of both 

IL-4 and IL-13, have demonstrated rapid improvement of itch in patients with AD.92,93 

Anti–IL-31 mAb has also been found to reduce itch.97 However, the molecular mechanisms 

underlying these clinical outcomes remain unknown.

In addition to their known proinflammatory functions, IL-4, IL-13, and IL-31 contribute to 

chronic itch through direct effects on sensory neurons. Specifically, it was found that sensory 

neurons were activated by IL-4 and IL-13 involving itch-sensory pathways in mice and 

exhibited neural hypersensitivity to a number of pruritogens. Furthermore, IL-4 can activate 

human sensory neurons, suggesting that neuronal type 2 cytokine signaling contributes to 

itch across species. Conditional deletion of IL-4Rα from sensory neurons in mouse models 

has demonstrated a previously unrecognized mechanism through which neuronal IL-4Rα 
critically mediates chronic itch. Based on IL-4Rα signaling biology, it was hypothesized that 

type 2 cytokine–mediated activation of sensory neurons is dependent on neuronal Janus 
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kinase (JAK) signaling. Consistent with this hypothesis, both pharmacologic JAK inhibition 

and sensory neuron–specific genetic deletion of JAK1 resulted in abatement of chronic itch 

in mice.98 Thus signaling mechanisms previously ascribed to the immune system might 

represent novel therapeutic targets (ie, JAK1) within the nervous system and might have 

functional implications at epithelial barrier surfaces beyond the skin. In other murine studies 

keratinocyte-derived TSLP acted directly on a subset of sensory neurons to trigger a robust 

itch response.99 Collectively, studies by Brian Kim and others reveal an evolution-arily 

conserved paradigm in which the sensory nervous system uses classical immune signaling 

pathways to influence mammalian behavior.

Key conclusions

• AD is a complex heterogeneous skin disease characterized by skin barrier defects 

and both local and systemic inflammation that affects infants, children, and 

adults. The complexity of AD is further increased by environmental exposures, 

varying levels of severity, and racial differences in skin immune responses.

• The epidermal dysfunction observed in both clinically affected and unaffected 

AD skin suggests that the entire skin integument of patients with AD might be 

permissive to local and systemic allergen sensitization.

• There is mounting evidence that sensitization to allergens through inflamed AD 

skin might lead to allergic diseases that manifest in other organs, such as the 

gastrointestinal tract (FA) and upper or lower airways (asthma and allergic 

rhinitis, respectively); definitive evidence for this concept is needed.

• Although FLG-null mutations are strongly associated with AD, FA, and the 

atopic march, they are only observed in a minority of subjects undergoing the 

atopic march. Other factors that can contribute to deficiency in skin FLG levels, 

including immune activation, altered gene copy number, and epigenetic 

modification of FLG, warrant further investigation.

Workshop recommendations

• Identify endotypes and phenotypes of AD by using a longitudinal infant cohort 

study and determine which are predictive of atopic disease progression

• Determine whether the sequence from AD to FA and to airway allergic diseases 

reflects a causal relationship or whether this disease pathway is based on a 

shared genetic background

• Use minimally invasive approaches to characterize the skin of young infants, 

including TEWL, proteomic, lipidomic, and transcriptomic analyses of skin tape 

strips and skin microbiome analyses

• Determine the changes in skin barrier abnormalities and lesional/nonlesional skin 

inflammation over time, as opposed to one snapshot in time

• Determine whether barrier abnormalities are inherent or whether they can also be 

influenced by low-grade inflammation
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• Further investigate the association between neonatal TEWL levels, food 

sensitization, and FA at 2 to 3 years of age to determine whether TEWL can be 

used as a single parameter for intervention studies59

• Further characterize the systemic inflammatory effects of AD and their 

relationships to atopic and nonatopic comorbidities

• Further characterize FLG mutations and their association with AD in diverse 

ethnic groups

• Develop individualized therapeutic approaches for AD based on well-defined 

disease endotypes

3. MICROBIOME DISTURBANCES IN PATIENTS WITH AD AND FA

3.1. Skin microbiome shifts in patients with AD

Dr Heidi Kong provided an overview of microbial alterations and their significance in 

patients with AD. In addition to the critical importance of the skin barrier, host genetics, and 

immune system in the pathogenesis of AD, associations between AD and the increased 

frequency of S aureus skin colonization and infections, as well as susceptibility to herpes 

simplex virus skin infections, have been well documented by many studies. In addition, 

there has been considerable interest in determining how micro-biota might play a role in 

preventing, eliciting, and/or exacerbating atopic disorders.100 In conjunction with traditional 

cultivation methods, microbiome sequencing has advanced how human microbiota can be 

studied in the context of atopy. Targeted sequencing of regions of the bacterial 16S 

ribosomal RNA gene has highlighted the notable changes in skin microbes in patients with 

AD, specifically demonstrating reduced bacterial diversity in combination with shifts in the 

relative abundances of both S aureus and Staphylococcus epidermidis during disease flares.
101 The more complex sequencing method of shotgun metagenomics has also been used to 

more broadly study global microbial communities (bacteria, fungi, and viruses) in patients 

with AD. Shotgun metagenomics has enabled analyses of the genomic functional potential 

and bacterial strain differences in patients with AD compared with healthy control subjects, 

noting that strains derived from patients with AD can be distinct from bacterial strains 

obtained from other sources.102,103

Although extensive investigations seek to understand how microbes might contribute to the 

development or worsening of disease, other research has considered whether microbiota can 

have beneficial effects in preventing or ameliorating AD or other atopic disorders.104,105 In 

the same context the question of whether microbiome manipulations can prevent the 

progression of AD to other atopic diseases is becoming relevant. Of note, most of the 

published microbiome research findings in atopic patients remain correlative, highlighting 

the need for further studies to test for possible causality.

3.2. The complex relationship between S aureus and AD

Dr Alan Irvine summarized the mechanisms of colonization of AD skin with S aureus and 

the mechanisms through which S aureus can exacerbate AD. S aureus is frequently isolated 

from the skin of patients with AD, with colonization rates of 70% in patients with AD 
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compared with 30% of unaffected subjects.106 The density of S aureus colonization is 

directly related to the severity of AD.107 Patients with AD and S aureus colonization often 

have a greater skin barrier defect than patients with AD without S aureus, decreased 

expression of occludin, and increased access of dendritic cell dendrites to the SC. S aureus 
strains isolated from patients with AD show differences to those isolated from unaffected 

carriers; clonal complex (CC1) strains are enriched among patients with AD, whereas the 

CC30 strains most frequently isolated from nasal carriers in the healthy population are less 

common in patients with AD.108

AD skin is permissive for S aureus colonization. The antimicrobial defensin peptides LL-37, 

β-defensins, and dermicidin are present at reduced levels in AD skin. One mechanism 

underlying this effect is the known inhibition of IL-4 and IL-13 on human β-defensin 2 and 

human β-defensin 3 gene expression.109 S aureus species grow poorly in acidic conditions 

but much better in the alkaline conditions seen in patients with AD.110 S aureus isolated 

from patients with AD bind more strongly to intact AD skin and also to standard binding 

assays than S aureus isolated from unaffected subjects.108,111 In patients with established 

AD, FLG deficiency, either genetic or acquired from type 2 skewing, leads to irregular or 

deformed corneocytes.112 S aureus isolates from patients with AD also bind more strongly 

to these corneocytes compared with isolates from unaffected control subjects in a clumping 

factor B-dependent fashion.108

Once AD skin is colonized, S aureus can drive disease severity or disease flares through 

several mechanisms. S aureus expresses several molecules that contribute to disease activity. 

These include soluble toxins, such as d-toxin, that directly stimulate mast cells (MCs) and 

cause increased IgE levels,113 and α-toxin, a pore-forming toxin that directly causes cellular 

damage in keratinocytes with a resultant effect in skin barrier function and possible effects 

on susceptibility to viral infection.114 When solubilized, the cell wall–bound protein A 

triggers inflammatory responses from keratinocytes through the TNF receptor. 

Staphylococcal superantigens, such as staphylococcal enterotoxin (SE) A, SEB, and SEC 

and toxic shock syndrome toxin 1 trigger B-cell expansion and cytokine release.115 Finally, 

proinflammatory staphylococcal lipoproteins induce TSLP expression in primary human 

keratinocytes in a Toll-like receptor 2/6–dependent manner, identifying another possible 

mechanism through which S aureus induces a TH2 response.116 Both of these mechanisms, 

barrier disruption and TH2 induction, make FA development more likely.117

3.3. Contributions of gut dysbiosis and regulatory T-cell reprogramming in patients with 
FA

In addition to skin dysbiosis, there is increasing evidence from animal and human studies 

that gut dysbiosis can play a role in the etiology of atopic diseases, particularly FA.118 Dr 

Talal Chatila and colleagues have investigated mechanisms of oral tolerance breakdown in 

FA in mouse models and in human subjects with a focus on the contributions of regulatory T 

(Treg) cell dysfunction and gut dysbiosis. In earlier studies using a murine transgenic model 

(Il4raF709) of FA involving a gain-of-function mutation in the IL-4R α chain, they 

demonstrated that FA is associated with reprogramming of Treg cells into TH2-like cells that 

play an essential role in disease pathogenesis.119 Treg cell TH2 cell–like reprogramming was 
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associated with decreased expression of TGF-β1 by Treg cells, an effect mediated by Treg 

cell–intrinsic IL-4/IL-4R signaling. Treg cell–specific deletion of a single Tgfb1 allele 

promoted FA, whereas expression of a Tgfb1 transgene protected against FA, which is 

consistent with a role for decreased Tgfb1 expression in mediating the pathogenic effects of 

TH2 cell–like reprogramming of Treg cells. More recently, using the same experimental 

system, they showed that IL-4 production by IL-33–stimulated ILC2s promotes FA by 

inducing Treg cell reprogramming to TH2-like cells. These reprogrammed Treg cells are 

functionally impaired and unable to control ILC2 and MC expansion and activation (Fig 6).
120

In addition to Treg cell reprogramming, Chatila and colleagues showed that dysbiosis is 

another factor relevant to tolerance breakdown and pathogenesis in experimental FA.118,121 

They also have evidence that infants with FA exhibit dysbiosis that evolves dynamically over 

time. To test the hypothesis that treatment with immunomodulatory bacteria promotes 

tolerance in patients with FA, they designed minimal consortia of human Clostridiales and 

Bacteroides commensals for introduction into germ-free and conventional control and 

Il4raF709 mice. Both the Clostridiales and Bacteroides consortia, but not one composed of 

Proteo-bacteria, protected mice from having FA and cured established disease. Both 

consortia suppressed pathogenic TH2 cell–like reprogramming of gut Treg cells in Il4raF709 
mice. These results support a link between gut dysbiosis and Treg cell impairment in 

patients with FA and suggest that therapy with minimal consortia of immunomodulatory 

bacteria could be therapeutically beneficial in a clinical setting (Fig 7). Although dysbiosis 

has been reported in some human studies of FA, its reproducibility and role in disease 

pathogenesis remains to be established.121,122

Recent studies in human infants and mouse models suggest that gut bacterial dysbiosis early 

in life might affect the development of the immune system and play a role in the subsequent 

development of FA.122 Further studies are needed to identify clinically beneficial bacteria 

for manipulation of the gut microbiota. Dietary and probiotic interventions might be part of 

future preventative and therapeutic interventions in patients with FA.122

Workshop recommendations

• Determine optimal approaches and time points for studying the infant gut, skin, 

and airway microbiome: such studies should include examination of the mycome 

and virome.

• Identify dysbiotic bacteria and determine how they contribute to atopy

• Determine whether microbiome shifts are a cause or a consequence of AD, FA, 

or both

• Define the mechanisms involved in the proallergic or protolerogenic functions of 

the microbiota in the context of FA

• Investigate the role of S aureus in the development of FA, including the effects of 

SEB on tolerance in the gut and tissue homing of T cells
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• Determine whether gut microbial changes and Treg cell plasticity are features of 

AD or FA in human subjects at any age

4. USE OF MOUSE MODELS TO INVESTIGATE HOW EPICUTANEOUS 

SENSITIZATION TO FOOD ALLERGENS AND AEROALLERGENS LEADS TO 

REACTIVITY IN THE GUT AND AIRWAY

4.1. Roles of TSLP, IL-33, and IL-25 in epicutaneous sensitization

Although there is a well-recognized clinical association between AD and FA and evidence 

that sensitization to peanut in human subjects can occur through the skin after exposure to 

peanut oils and peanut-containing house dust, the immunologic mechanisms underlying 

epicutaneous sensitization to allergens and the communication routes between the skin and 

other mucosal surfaces are incompletely understood.123–126 Skin barrier defects, which are 

discussed in the previous sections, are thought to be important in both the initial local events 

that lead to AD and the systemic sensitization to allergens that predisposes to atopic diseases 

at other mucosal sites, such as the gastrointestinal tract and airway. Skin damage caused by 

scratching in response to the persistent skin itchiness characteristic of AD can also 

contribute to allergen entry and sensitization.127 TSLP, IL-33, and IL-25 are 3 epithelial 

cell–derived cytokines produced in human subjects and mice in response to a variety of 

stimuli that play prominent and complex roles in the innate and adaptive immune responses 

to allergens. The mechanisms by which these alarmins contribute to allergen sensitization in 

the skin and initiate crosstalk between the skin, gut, and airway are the subject of intense 

investigation.128 Mouse models that simulate skin inflammation and AD have been 

particularly useful for investigating TSLP, IL-33, and IL-25 interactions and identifying 

target populations and downstream signaling events.128–130

Dr Steve Ziegler and colleagues tested the functional role of IL-33 and the interplay between 

IL-33 and TSLP in a model of intradermal administration of ovalbumin (OVA) with either 

TSLP or IL-33, followed by oral allergen challenge.131,132 They found that both TSLP and 

IL-33 were capable of promoting sensitization to OVA, and sensitized mice had 

gastrointestinal inflammation and anaphylaxis after oral challenge.128 Importantly, TSLP-

dependent sensitization required TSLP-responsive, skin-resident dendritic cells and IL-33 

expression by keratinocytes. However, OVA sensitization mediated by IL-33 was TSLP 

independent. Gastrointestinal allergic responses in TSLP-sensitized mice also were TSLP 

independent but required IL-25 signaling. Interestingly, as was seen in the skin, IL-33 was 

the dominant cytokine because IL-33 blockade after sensitization alleviated gastrointestinal 

responses.128 Taken together, these data demonstrate that IL-33 signaling is required for 

allergic response to food after epicutaneous sensitization, with IL-33 being downstream of 

TSLP in the skin and downstream of IL-25 in the gut (Fig 8).128

The same IL-33–dependent skin sensitization model was used to successfully induce an 

airway response after nasal allergen challenge.133 However, unlike the gut response, IL-33 

was not needed for the allergen-induced inflammatory airway response. These data support 

the hypothesis that antigen sensitization through a disrupted skin barrier might be 
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responsible for development of FA or airway allergy and indicate that only gut reactions are 

dependent on IL-33.

Dr Raif Geha also discussed the role of IL-33 in MC-dependent food anaphylaxis. In earlier 

studies he and his colleagues reported that oral antigen challenge of mice sensitized 

epicutaneously by means of application of OVA to tape-stripped skin resulted in IgE-

dependent systemic anaphylaxis that was quantitated by its effects on body temperature.
127,130 In subsequent studies they showed that IL-33 is produced and released locally and 

systemically in response to skin injury in both mice and human subjects.134 Systemic IL-33 

can have downstream effects on a variety of IL-33 receptor (IL-33R)–expressing cells, 

including MCs, which play a critical role in food-induced anaphylaxis. By using their model 

system and wild-type, IL-33R–deficient, and MC-deficient mice, Dr Geha and colleagues 

investigated the role and mechanism of action of IL-33 in mice with MC-dependent 

anaphylaxis.134 These studies showed that IL-33 enhances IgE-mediated MC degranulation 

and cytokine production in vitro, indicating direct effects of IL-33 on MCs. IL-33R 

deficiency or IL-33R blockade significantly reduced the severity of the anaphylactic 

response after epicutaneous sensitization and oral challenge, supporting a critical role for 

IL-33/IL-33R signaling in oral anaphylaxis. Notably, IL-33R deficiency had no effect on 

production of OVA-specific IgE, TH2 cytokine production, or MC proliferation. A similar 

requirement for IL-33 was observed in recall anaphylactic responses to OVA, as well as in 

an IgE-dependent passive anaphylaxis model. The relationship between IL-33 and MC 

activation in vivo was explored in MC-deficient mice. Oral anaphylaxis was abrogated in 

these mice but could be restored by reconstitution with wild-type bone marrow–derived mast 

cells, but not IL-33R–deficient bone marrow–derived mast cells, demonstrating the 

importance of IL-33/IL-33R engagement on MCs for their activation.

In summary, these studies demonstrated that IL-33 promotes the effector phase in IgE- and 

MC-dependent food anaphylaxis through direct interaction with IL-33Rs on MCs and 

induction of MC activation and degranulation. Because patients with AD reportedly have 

increased levels of IL-33 in the skin,135 IL-33 might be an important link between cutaneous 

sensitization to food allergens and food-induced anaphylaxis and a potential therapeutic 

target.

In a third mouse model of epicutaneous sensitization, Dr Cecilia Berin and colleagues used 

peanut antigen to determine the contribution of epicutaneous allergen exposure and host 

factors to the generation of TH2-skewed immunity.136 C3H mice exposed topically to peanut 

on abdominal skin (prepared with depilatory cream) generated a robust IgE and IgG1 

response to peanut and experienced anaphylaxis after oral peanut challenge. This was not 

observed with control legumes, such as soy or green bean, but was observed with the tree nut 

cashew. Soy or green bean could elicit sensitization when applied with adjuvants, such as 

cholera toxin or SEB, suggesting that, in contrast to some other foods, peanut has inherent 

adjuvant factors that could promote sensitization. This was formally shown by the ability of 

peanut to elicit sensitization to a bystander antigen (β-lactalbumin) that did not elicit 

sensitization on its own. Topical peanut induced IL-33 production by keratinocytes, which 

acted on skin-draining dendritic cells to drive a TH2-polarized response in the draining 
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lymph nodes. These results demonstrate that activation of innate pathways in the skin by 

peanut proteins contributes to the generation of peanut allergy.136

Whether epicutaneous sensitization to peanut promotes sensitization to other food allergens 

or aeroallergens in human subjects remains to be determined. In support of this possibility, a 

study of atopic phenotypes identified by latent class analyses at age 2 years revealed 2 

classes in which a high incidence of peanut sensitization was associated with sensitization to 

1 or more aeroallergens.137 On the other hand, early introduction of peanut and prevention 

of peanut allergy in the LEAP study had no effect on the incidence of aeroallergen 

sensitization or allergic airway disease.21

4.2. Regulation of epicutaneous responses to food allergens

In other studies Berin and colleagues examined the capacity of the skin to generate immune 

tolerance to food allergens.138 In an OVA-driven model of anaphylaxis generated by 

epicutaneous sensitization, as described above for peanut, they observed that topical 

application of allergen with Viaskin patches (epicutaneous immunotherapy [EPIT]) 

protected mice from anaphylaxis, and mice remained protected 2 weeks after termination of 

treatment. In contrast, treatment of mice with oral immunotherapy resulted in transient 

protection that was lost after treatment was terminated. EPIT expanded OVA-specific 

latency-associated peptide (LAP) positive, forkhead box P3–negative Treg cells in the 

draining lymph nodes, and these Treg cells uniquely expressed the gut-homing receptor 

CCR9 in addition to CCR4 and CCR6 (Fig 9).138 Clinical protection was not associated with 

changes in antibody responses, but instead, the gut-homing Treg cells directly suppressed 

the activation of MCs through a TGF-β–dependent mechanism. This regulatory response to 

EPIT was also observed in peanut-sensitized mice treated with peanut EPIT.138

These results indicate that topical exposure to clinically relevant food allergens can lead to 

sensitization or tolerance, depending on the context of allergen exposure. Important 

contributing factors can include site of antigen exposure and dose that might determine 

which antigen-presenting cells of the skin acquire and present antigen. Further studies are 

needed to delineate how factors present during antigen presentation control the balance 

between sensitization and tolerance in the skin.

In summary, the 3 animal models presented at the workshop and other published work 

provide compelling evidence that epicutaneous sensitization to allergens occurs and can lead 

to downstream hypersensitivity reactions at distant barrier sites, such as the gut and airway, 

after local allergen challenge. Further studies are needed to identify the cell populations and 

signaling pathways that link the skin and mucosal barrier surfaces.

Workshop recommendations

• Further define the cell types and signaling cascades involved in cutaneous and 

intradermal sensitization to food and aeroallergens

• Delineate the specific pathways through which cutaneous sensitization results in 

gut or airway sensitization and juxtapose mechanisms of cutaneous to direct oral 

or airway sensitization; for example:
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– determine whether tissue-resident allergen-specific memory T and B 

cells exist in the skin and at mucosal surfaces and whether they are 

clonally related and

– determine where allergen-specific IgE-producing plasma cells reside

• Determine whether keratinocyte-derived IL-33 is the sole orchestrator of 

crosstalk between the skin, gut, and airway by using mouse models and early 

intervention in human allergic disease

• Define normal tolerance mechanisms in the skin and determine how topical 

antigen exposure can induce tolerance rather than sensitization to allergens

• Establish how Treg cells maintain homeostasis in the skin and at mucosal 

surfaces

• Determine the molecular basis of the adjuvant activity of peanut and the 

mechanism of epitope spreading

• Further investigate the potential connection between peanut sensitization, other 

allergies, and the atopic march

5. BIOMARKERS TO IDENTIFY SUBJECTS AT HIGH RISK FOR THE 

ATOPIC MARCH

Two striking messages from the workshop were the narrow interventional window for 

preventing AD and allergen sensitization and the paucity of reliable biomarkers to identify 

those at high risk of progression through the various stages of the atopic march. Although 

there is agreement on the importance of severity of AD, increased TEWL, and 

polysensitization in infancy and childhood in atopic disease progression, there is a particular 

need to identify biomarkers/risk factors in early infancy that predict the development of AD 

and FA and are upstream of multisensitization to food allergens.139

Workshop recommendations

• Undertake profiling of the skin using skin tape strips and multiomics approaches 

to look at protein, lipid, and RNA signatures in neonates and infants before and 

after development of AD

• Investigate the utility of profiling foreskin and cord tissue

• Validate the use of TEWL measurements in neonates as a predictor of AD and 

FA

• Perform unsupervised sequential analysis of infant blood for cell types, 

proteomics, transcriptomics, and metabolomics

• Undertake sequential detailed immune profiling of the blood, including CyTOF 

analyses of adaptive and innate immune cells, cytokine profiles, serology, and 

evolution of allergen-specific T and B cells and Treg cells
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• Analyze the skin and gut microbiomes from birth onward, including 

consideration of the effects of mode of delivery and breast-feeding

• Investigate potential maternal effects that might increase atopy in the infant, 

including skin barrier abnormalities

6. INTERVENTIONS TO PREVENT OR INTERVENE IN THE ATOPIC MARCH

The workshop ended with a panel discussion on primary interventions to prevent the 

development of AD and the atopic march and secondary interventions to modulate AD and 

reduce the risk of sensitization through damaged inflamed skin and to prevent disease 

progression once sensitization has occurred. Topics covered included the merits of local 

versus systemic and single versus combination interventions, choices of cells or effector 

molecules to be targeted, optimal times to intervene, and duration of intervention. There was 

general agreement that thus far the effects of emollients on AD prevention are encouraging 

in high-risk populations at early age time points.52,53,63 Because early-onset aggressive AD 

is most strongly associated with risk of FA, it was suggested that AD in infants be treated 

aggressively and prophylactically if there is any evidence of inflammation. It is important to 

assess whether this might reduce the prevalence of food allergies and, subsequently, 

respiratory allergy. Longitudinal birth cohort clinical trials will be needed to determine 

whether these early interventions affect the development of FA and atopic airway disease.

The advantages and disadvantages of future use of monoclonal therapeutics, including 

omalizumab, dupilumab, and antibodies to innate cytokines for AD prevention and treatment 

in infants, was discussed. Although cost and feasibility are major concerns, if the atopic 

march, or at least FA, can be prevented with omalizumab or dupilumab early in life, less 

expensive drugs might be developed in the future that target similar pathways. It was also 

suggested that reducing IgE levels and blocking IL-4 responses in sensitized but nonallergic 

infants might provide a window to safely introduce all the allergenic dietary foods early, 

induce tolerance, and prevent development of FA. This approach might also be useful for 

improving the safety and efficacy of oral immunotherapy in infants and older subjects who 

already have FA. Although there was support for using omalizumab in infants, it was agreed 

that once the treatment is stopped, the natural course of the FA or other allergic disease will 

not change.

Workshop recommendations

Prevention of AD and its atopic consequences (atopic march):

• Further investigate the effectiveness of early prophylactic treatment of infants 

with emollients or other skin barrier protectors for the prevention of AD, FA, and 

respiratory allergy and determine the mechanisms of action: pilot studies suggest 

the efficacy of this approach.53

• Investigate the effectiveness of early, topical, anti-inflammatory treatment of 

infants with AD in preventing FA and respiratory allergy
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• Using interventions that block type 2 immune skewing and inflammation, 

conduct trials very early in high-risk children with AD to prevent allergen 

sensitization and further progression of the atopic march

• Determine whether allergen immunotherapy plus anti–type 2 immunity biologics 

offer superior results in preventing disease progression in children sensitized to 

aeroallergens or food allergens compared with immunotherapy alone

• Develop reliable biomarkers to track and predict the effectiveness of long-term 

preventative and therapeutic interventions

Abbreviations used

AD Atopic dermatitis

COAST Childhood Origins of Asthma

EPIT Epicutaneous immunotherapy

FA Food allergy

FLG Filaggrin

ILC2 Group 2 innate lymphoid cell

IL-4R IL-4 receptor

IL-33R IL-33 receptor

JAK Janus kinase

LEAP Learning Early About Peanut Allergy

MC Mast cell

OR Odds ratio

OVA Ovalbumin

SC Stratum corneum

SE Staphylococcal enterotoxin

TEWL Transepidermal water loss

TJ Tight junction

Treg Regulatory

TTSLP Thymic stromal lymphopoietin

URECA Urban Environment and Childhood Asthma
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FIG 1. 
A proposed model of the atopic march. AD prevalence peaks early in infancy, potentially 

increasing the risk for consequent development of the atopic march. Development of FA, 

asthma, and allergic rhinitis correlates with AD severity in infancy.23
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FIG 2. 
Allergic multimorbidity of asthma, rhinitis, and eczema over 20 years in the German birth 

cohort Multicenter Allergy Study. A, Percentages of all participants with allergic parents. B, 

Percentages of all participants with nonallergic parents. Multimorbidity of asthma, eczema, 

and allergic rhinitis up to 20 years of age (n = 941) by parental allergy and age is shown.8
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FIG 3. 
Bayesian machine learning methods identified 8 distinct latent disease classes based on 

individual profiles of eczema, wheeze, and rhinitis across 2 population-based birth cohorts: 

Avon Longitudinal Study of Parents and Children (ALSPAC) and Manchester Asthma and 

Allergy Study (MAAS). The number of children and proportion of the study population are 

indicated for each class. Plots indicate longitudinal trajectories of wheeze, eczema, and 

rhinitis within each class.14
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FIG 4. 
Overlap between AD, allergic sensitization, and wheezing in urban children. Although the 

individual conditions are relatively common, at age 3 years, only 3% of children experienced 

all 3 conditions.45 Figure courtesy of Dr James Gern.
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FIG 5. 
Skin structure and abnormalities associated with AD. Impaired skin barrier promotes foreign 

antigen (eg, dust mites and food allergens) penetration and activation of innate immune and 

pattern recognition receptors. Pathogen-associated molecular patterns and damage-

associated molecular patterns are secreted secondary to tissue damage and/or an altered 

microbial profile to initiate and perpetuate tissue inflammation. Concurrently, antigen 

stimulation leads to TH2-promoting cytokine secretion (IL-25, IL-33, and TSLP), 

consequent IgE- and FcεRI-bearing Langerhans cell and dermal dendritic cell (DC) 
activation, and migration to regional draining lymph nodes to initiate TH2 differentiation and 

B-cell IgE skewing. In turn, T cells circulate back to infiltrate the skin (cutaneous 

lymphocyte–associated antigen [CLA]+ effector memory T [TEM]/central memory T [TCM] 
cells) or are distributed peripherally (CLA− TEM/TCM cells) to other end organs to initiate 
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diverse atopic disorders. APC, Antigen-presenting cell; DAMP, damage-associated 

molecular pattern; PAMP, pathogen-associated molecular pattern; PRR, pattern recognition 

receptor; TSLPR, TSLP receptor. Figure adapted from Czarnowicki et al,23 with permission.
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FIG 6. 
In the Il4raF709 model IL-33–induced IL-4 production by ILC2s plays a crucial role in 

enabling sensitization to food allergens by promoting production of TH2 cell–like Treg cells 

that have impaired Treg cell function.120
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FIG 7. 
Commensals can have essential functions in oral tolerance. Dysbiotic commensals can 

promote pathogenic TH2 cell–like reprogramming of gut Treg cells and MC dysregulation 

leading to FA. DCs, Dendritic cells; IRF, interferon regulatory factor; iTreg, induced Treg 

cell; OX40L, OX40 ligand; ROR-γT, retinoic acid–related orphan receptor γT; STAT6, 

signal transducer and activator of transcription 6. Figure courtesy of Dr Talal Chatila.
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FIG 8. 
A model of barrier disruption and skin sensitization. Allergens, infections, and tissue 

damage can stimulate release of TSLP, IL-33, and IL-25 from the epithelium. These 

epithelial cell–derived cytokines license dendritic cells (DCs) to drive type 2 responses but 

also act on a variety of cell types, including basophils, eosinophils, MCs, and innate 

lymphoid cells, to initiate and maintain allergic inflammation.128
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FIG 9. 
Immune communication between the skin and gut and tolerance induction determined by 

using EPIT. Epicutaneous exposure to peanut results in generation of latency-associated 

peptide (LAP)+ Treg cells with gut- and skin-homing receptors that suppress MCs in the gut 

and skin through a TGF-β–dependent mechanism.138
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