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Abstract

Computing the solution of linear systems of equations is invariably the most time consuming task 

in the numerical solutions of PDEs in many fields of computational science. In this study, we 

focus on the numerical simulation of cardiovascular hemodynamics with rigid and deformable 

walls, discretized in space and time through the variational multiscale finite element method. We 

focus on three approaches: the problem agnostic generalized minimum residual (GMRES) and 

stabilized bi-conjugate gradient (BICGS) methods, and a recently proposed, problem specific, bi-

partitioned (BIPN) method. We also perform a comparative analysis of several preconditioners, 

including diagonal, block-diagonal, incomplete factorization, multigrid, and resistance based 

methods. Solver performance and matrix characteristics (diagonal dominance, symmetry, sparsity, 

bandwidth and spectral properties) are first examined for an idealized cylindrical geometry with 

physiologic boundary conditions and then successively tested on several patient-specific anatomies 

representative of realistic cardiovascular simulation problems. Incomplete factorization 

preconditioners provide the best performance and results in terms of both strong and weak 

scalability. The BIPN method was found to outperform other methods in patient-specific models 

with rigid walls. In models with deformable walls, BIPN was outperformed by BICG with 

diagonal and Incomplete LU preconditioners.

Keywords

Cardiovascular simulation; Iterative linear solvers; Preconditioning; Fluid-structure interaction

1 Introduction

Cardiovascular simulations are increasingly used in clinical decision making, surgical 

planning, and medical device design. In this context, numerous modeling approaches have 

been proposed ranging from lumped parameter descriptions of the circulatory system to 

fully three-dimensional patient-specific representations. Patient-specific models are 
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generated through a pipeline progressing from segmentation of medical image data, to 

branch lofting, boolean union, application of physiologic boundary conditions tuned to 

match patient data, and hemodynamics simulation. In diseased vessels, e.g., characterized by 

localized stenosis or aneurysms, computational fluid dynamics (CFD) has been widely used 

to diagnose important clinical indicators, such as pressure drop or flow reduction [34]. 

Measures of shear stress on the vessel lumen have also been correlated with the risk of 

endothelial damage and thrombus formation [33, 26]. These quantities are determined by 

discretization in space and time of the incompressible Navier Stokes equations. Multiscale 

models have been developed to simulate the local flow field in thee-dimensional patient-

specific anatomies, while accounting for the presence of the peripheral circulation through 

closed-loop circuit models providing time dependent boundary conditions [18, 7, 23, 25]. In 

addition, several approaches for fluid-structure interaction (FSI) have been suggested to 

account for vessel wall deformability [13, 20, 27]. Recently, hemodynamic models have 

been used in the solution of complex problems in optimization [24, 22] and uncertainty 

quantification [29, 30, 32, 31, 36].

Efforts to improve realism in numerical simulations, however, often lead to an increase in 

the computational cost. Implementation of the coupled-momentum method (CMM) for FSI 

increases the simulation run time by roughly twice compared to rigid wall assumptions [13], 

and the cost can be substantially higher for Arbitrary Lagrangian and Eulerian (ALE) FSI. 

On top of this, optimization and uncertainty quantification studies often require the solution 

of a large number of simulations to obtain converged solutions. These requirements all point 

to a pressing need to reduce the computational cost to enable future integration of these tools 

in the clinical setting.

Preconditioned iterative approaches are widely used to solve linear systems, Ay = b, 

resulting from discretizations using variational multiscale finite element methods. However, 

few studies in the literature have examined in detail how linear solver performance depends 

on the properties of the coefficient matrix, to provide a concrete grounding for the choice 

and development of more efficient solvers. In addition, even fewer studies have carried out 

this analysis in the context of computational hemodynamics, i.e., the specific geometries, 

boundary conditions, mesh and material properties used to create numerical approximations 

of blood flow in rigid and deformable vessels. In this study, we investigate reductions in 

computational cost achievable through solving the discretized linear system efficiently, as 

this cost is well known to dominate the execution time. The objective of this study is to 

perform a systematic comparative analysis of existing linear solver strategies, linking their 

performance with the distributed coefficient matrix characteristics of cardiovascular 

modeling.

Krylov subspace based iterative solvers are typically preferred for the solution of large linear 

systems from CFD, due to their superior scalability and memory requirements compared to 

direct methods [4]. Popular Krylov subspace iterative solvers include the conjugate gradient 

method (CG) for symmetric positive definite (SPD) coefficient matrices, and the generalized 

minimum residual method (GMRES) or the bi-conjugate gradient stabilized method 

(BICGS) in the non-symmetric case. Alternatively, a recently proposed bi-partitioned linear 

solver (BIPN) [11] leverages the block-structure in the coefficient matrix, separating 
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contributions from the Navier-Stokes momentum and continuity equations. In BIPN, the 

coefficient matrix Af arising from finite element spatial discretizations and the time 

discretization for the Navier-Stokes equations consists of four blocks,

A f = K G
D L , (1)

in which K and G stem from the momentum equation, D and L stem from the continuity 

equation and stabilization. BIPN solves the matrix block K using GMRES, while the rest is 

transformed to a Schur complement form as L – DK−1G, approximated by a SPD matrix, 

L∗ + G∗
TG∗, in which the star subscript indicates the symmetric Jacobi scaling with diagonals 

of K and L. The Schur complement form is solved with CG, and the solution time for CG 

takes more than 90% of the total computing time in benchmark testing[11].

It is also well known that preconditioning plays a key role in accelerating the convergence of 

Krylov subspace methods [37, 28] by transforming the original linear system Ay = b to M−1 

Ay = M−1 b (left preconditioning), AM−1 z = b, y = M−1 z (right preconditioning), or 

M1
−1AM2

−1y = M1
−1b, x = M2

−1y (left and right preconditioning). In many cases, M is 

constructed in a way that M−1 approximates A−1. In general, an ideal preconditioner should 

be relatively cheap to apply and effective to reduce the overall solution time. In its simplest 

form, left, right or left-right Jacobi (diagonal) preconditioners are effective in shrinking the 

eigenvalue spectrum of diagonally dominant matrices. Preconditioners based instead on 

incomplete factorization (ILU) provide an approximate decomposition in the form M = L‒U‒ , 

where the sparsity pattern of A is preserved in the factors. ILUT preconditioners are slightly 

more general approaches allowing for adjustable inclusion of fill-ins, but require the user to 

specify an additional threshold parameter. We note that the efficiency of an ILU 

preconditioner results from a trade off between fewer Krylov iterations needed for 

convergence and the cost of incomplete factorization [28]. Application-specific 

preconditioners have also been proposed in cardiovascular hemodynamics to improve 

performance when the model outlets are coupled through a resistance boundary condition, 

an RCR circuit, or for more general multi-domain configurations. In what follows, we refer 

to an in-house implementation of this class of preconditioners as resistance-based 
preconditioner (RPC) [10, 11]. Additional preconditioning techniques for cardiovascular 

simulations with FSI are suggested in [21, 8]. Finally, algebraic multigrid preconditioners 

have also received significant recent interest [9].

Despite the availability of open-source implementations of iterative solvers and 

preconditioners, few studies have systematically compared the performance of these solvers 

for cardiovascuar models with rigid and deformable vessels. In addition, a thorough 

understanding of the factors affecting the performance of iterative linear solvers (e.g., 

diagonal dominance, condition number, sparsity pattern, symmetry, and positive-

definiteness) is an important prerequisite for optimal choice of solver and for the 

development of new algorithms with improved performance.
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In the current study, we first compare the performance of various iterative linear solvers and 

preconditioners for an idealized flow through a cylindrical vessel with a resistance outflow 

boundary condition. We then test our findings using three representative patient-specific 

cardiovascular models. The Trilinos software library [14], developed at Sandia National 

Laboratory is coupled with the SimVascular svFSI open source finite element code to 

provide linear solvers such as GMRES and BICGS, as well as a variety of preconditioners: 

diagonal (Diag), block-diagonal (BlockD), incomplete LU (ILU), thresholded incomplete 

LU (ILUT), incomplete Cholesky (IC), and algebraic multigrid (ML). We use Kylov linear 

solvers and Diag, BlockD, ILU, ILUT preconditioners from the AztecOO package, and IC is 

implemented via the IF-PACK package. The block-diagonal preconditioner scales the block 

matrix via the Trilinos Epetra Vbr class. The incomplete factorization methods use Additive 

Schwarz domain decomposition for the parallelization. The Trilinos ML package for 

algebraic multigrid is implemented on the AztecOO package. For detailed information on 

parallelization and preconditioning options, we refer readers to the Trilinos project [14]. 

BIPN and RPC are integrated and implemented directly in our flow solver with source code 

available through the SimVascular open source project (www.simvascular.org) [38].

This paper is organized as follows. In section 2, we review the formulation of the coefficient 

matrices resulting from finite element weak forms in fluid and solid mechanics, before 

discussing the performance of various linear solvers and preconditioners on a simple pipe 

benchmark in section 3. In section 4 we report the results of strong and weak scaling for 

BIPN with RPC and BICG with ILU, while in section 5 we examine the properties of the 

coefficient matrix. The effect of preconditioning on these properties is reported in section 6. 

In section 7 we compare performance of linear solvers in patient-specific models. We draw 

conclusions and discuss future work in section 8.

2 Linear systems in cardiovascular simulation

We begin by introducing the space-time discretization of the equations governing fluid and 

solid mechanics following an Arbitrary-Lagrangian-Eulerian (ALE) description of the 

interaction between fluid and structure [15, 3, 11, 39]. These equations are discretized with a 

variational multiscale finite element method, and are provided in the svFSI solver of the 

SimVascular open source project [38].

2.1 Linear system for fluid mechanics

Consider a domain Ω f ∈ ℝ3, occupied by a Newtonian fluid whose evolution in space and 

time is modeled through the incompressible Navier-Stokes equations in ALE form,

ρ∂u
∂t ∣x + ρ v ⋅ ∇ u = ρ f + ∇ ⋅ σ f

∇ ⋅ u = 0
in Ω f , (2)

where ρ, u = u(x, t), and f are fluid density, velocity vector, and body force, respectively. 

The fluid stress tensor is σf = −pI + μ(∇u + ∇uT) = −pI + μ∇su, μ is the kinematic viscosity, 

p = p(x, t) the pressure, v = u − u is the fluid velocity relative to the velocity of the domain 

boundary u. Variables are interpolated in space at time tn as
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w(x) = ∑
a ∈ Ia

Na(x) wa,

q(x) = ∑
a ∈ Ia

Na(x) qa,
(3)

u(x, t = tn) = un(x) = ∑
a ∈ Ia

Na(x) ua, n,

p(x, t = tn) = pn(x) = ∑
a ∈ Ia

Na(x) pa, n,
(4)

in which Ia, Na, wa, qa, ua, and pa are the nodal connectivity set, interpolation functions at 

node a, test function weights, velocity and pressure at node a, respectively. In this study, we 

employ P1-P1 type (linear and continuous) spatial approximations of the fluid velocity and 

pressure. We consider a stabilized finite element discretization based on the variational 

multiscale method [2, 11], leading to the weak form of the Navier-Stokes momentum and 

continuity residuals

Rm
a (u. , u, v, p) =

∑
e ∈ Ie

∫
Ωeρ Na (u. − f + (v + up) ⋅ ∇ u) dΩ

+ ∑
e ∈ Ie

∫
Ωe(∇ Na)T( − pI + μ∇su + ρτBup ⊗ (up ⋅ ∇u)

− ρ u ⊗ up + ρτC ∇ ⋅ u) dΩ − ∫
Γh

Na h dΓ,

(5)

Rc
a(u. , u, p) = ∫

Ω
(Na∇ ⋅ u − (∇Na)T up) dΩ, (6)

in which Rm
a  and Rc

a are momentum and continuity residuals at node a, and h is the surface 

traction on the Neumann boundary Γh. The stabilization parameters are defined as
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up = − τM u. + v ⋅ ∇u + 1
ρ ∇p − μ

ρ ∇2u − f ,

τM = 4
Δt2

+ v ⋅ Gv + CI
μ
ρ

2
G:G

−1 ∕ 2
,

τB = (up ⋅ G up)−1 ∕ 2, τC = (τM g ⋅ g)−1,

Gi j = ∑
k = 1

3 ∂ξk
∂xi

∂ξk
∂x j

,

g ⋅ g = ∑
i = 1

3
gi gi, gi = ∑

k = 1

3 ∂ξk
∂xi

,

(7)

where CI is a constant set to 3, Δt is the time step size, and ξ represents natural coordinates. 

Integration in time is performed using the unconditionally stable, second order accurate 

generalized-α method [16], consisting of four steps: predictor, initiator, Newton-Raphson, 

and corrector. Initial values for accelerations, velocities and pressures at time tn+1 are set in 

the prediction step as

u. a, n + 1 = γ − 1
γ u. a, n, ua, n + 1 = ua, n, pa, n + 1 = pa, n, (8)

where γ = 0.5 + αm – αf, αm = 1/(1 + ρ∞), and αf = (3 – ρ∞)/(2 + 2ρ∞) are the 

generalized-α method coefficients, while ρ∞ is the spectral radius set to ρ∞ = 0.2 in this 

study. In the initiator step, accelerations and velocities are computed at an intermediate stage 

n + αm and n + αf,

u.
a, n + αm = (1 − αm) u. a, n + αm u. a, n + 1,

u
a, n + α f = (1 − α f ) ua, n + α f ua, n + 1 .

(9)

A Newton-Raphson iteration is performed based on Equations (5) and (6), using u.
n + αm, 

un+αf, pn+1 from (9) by solving a linear system of the form

K Δu + G Δp = − Rm u.
n + αm, u

n + α f , pn + 1 ,

D Δu + L Δp = − Rc u.
n + αm, u

n + α f , pn + 1 ,
(10)

where the blocks K, G, D, and L partition the tangent coefficient matrix with blocks for 

nodes a and b equal to
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Kab ≈
∂Rm

a

∂Δub , Gab ≈
∂Rm

a

∂Δpb ,

Dab ≈
∂Rc

a

∂Δub , Lab ≈
∂Rc

a

∂Δpb .
(11)

We re-write this linear system in matrix form as

A f y = − R f , (12)

where

A f = K G
D L , y = Δu

Δp , R f =
Rm

Rc
, (13)

with blocks K, G, D, L of size (3Nnd × 3Nnd), (Nnd × 3Nnd), (3Nnd × Nnd), (Nnd × Nnd), 

respectively. Here Nnd is the total number of nodes, while Δu ∈ ℝ
3 Nnd and Δp ∈ ℝ

Nnd

contain nodal velocities and pressure increments. We note that the major focus of our study 

is on solving the linear system in equation (12). Once the momentum and continuity residual 

norms drop below a given tolerance, the unknowns at the next time step are determined 

through the corrections

u. a, n + 1 u. a, n + 1 + Δua,
ua, n + 1 ua, n + 1 + γ Δt Δua,

pa, n + 1 pa, n + 1 + α f γ Δt Δpa,
(14)

∀a ∈ Ia. Finally, detailed expressions for each block of the coefficient matrix from Eq. (5), 

Eq. (6), Eq. (11), and Eq. (14) are

Kab = ∑
e ∈ Ie

∫
Ωe ραmNaNbIab + ρα f Na(v + up) ⋅ ∇NbIab

+ μα f (∇Na ⋅ ∇NbIab + ∇Nb ⊗ ∇Na)

+ ρα f τBup ⋅ ∇Naup ⋅ ∇NbIab

+ ρτMu ⋅ ∇Na(αmNb + α f u ⋅ ∇Nb)Iab

+ ρα f τC ∇Na ⊗ ∇Nb dΩ,

(15)
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Gab = ∑
e ∈ Ie

∫
Ωe −α f ∇NaNb + α f τMu ⋅ ∇Na∇Nb dΩ, (16)

Dab = ∑
e ∈ Ie

∫
Ωe α f Na∇Nb + α f τMu ⋅ ∇Na∇Nb

+ τM ∇NaαmNb dΩ,
(17)

Lab = ∑
e ∈ Ie

∫
Ωe

α f τM
ρ ∇Na ⋅ ∇Nb dΩ, (18)

in which α f = γΔt α f  and Ie is the list of elements containing nodes a and b.

First we observe that the matrix K is diagonally dominant. Except for entries related to the 

stabilization terms, which are typically small, the most significant off-diagonal contribution 

is provided by the viscous term, which is also typically smaller than the acceleration and 

advection terms in cardiovascular flows. Second, the small magnitude of the stabilization 

terms suggests that G is similar to −DT. We also observe that the matrices K and Af are non-

symmetric, while L is symmetric and singular since it has an identical structure to the 

matrices arising from the discretization of generalized Laplace operators. We also note that 

L is characterized by small entries compared to the other blocks, since it only consists of 

stabilization terms.

2.2 Linear system for solid mechanics

In the solid domain, we start by introducing measures of deformation induced by a 

displacement field d = x – X, i.e., the difference between the current and material 

configurations x ∈ ℝ3 and X ∈ ℝ3, respectively

F = ∇d + I, C = FTF, E = 1
2(C − I), (19)

where F, C, E, represent the deformation gradient, the Cauchy-Green deformation tensor 

and the Green strain tensor. The Jacobian is also defined as J= det(F). We relate the second 

Piola-Kirchhoff stress tensor S with the Green strain tensor E through the Saint Venant-

Kirchhoff hyperelastic constitutive model

S = λ tr(E) I + 2 μ E, (20)

where λ =
ν Es

(1 + ν)(1 − 2ν) , μ =
Es

2(1 + ν) , Es and ν represent the Young’s modulus and Poisson’s 

ratio, respectively. The equilibrium equation is
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ρs
∂u
∂t = ρs f + ∇ ⋅ σs in Ωs, (21)

where ρs and σs denote the density and solid stress tensor, respectively. This leads to the 

weak form

∫
Ωs

0 ρs
0 w(u. − f) + ∇w :P dΩ = 0, (22)

where P = FS is the first Piola-Kirchhoff stress tensor, w is a virtual displacement and Ωs
0 is 

the solid domain in the reference configuration. Discretization of (22) leads to the residual

Rm
a (u. , d) = ∫

Ωs
0 ρs

0Na(u. − f) + F S∇Na dΩ . (23)

Using the generalized-α method, the displacements at time tn+1 are predicted as

da, n + 1 = da, n + ua, n + 1Δt + 0.5γ − β
γ − 1 u. a, n + 1Δt2, (24)

in which β = 1
4 (1 + α f − αm)2. In the initiator step, the intermediate displacements are 

provided by

d
a, n + α f = (1 − α f ) da, n + α f da, n + 1 . (25)

Solving (23) with the Newton-Raphson method, we obtain the linear system

Ks Δd = − Rm (u.
n + αm, d

n + α f ), (26)

where Ks
ab ≈

∂Rm
a

∂Δdb , with tangent stiffness matrix

Ks
ab = ∫

Ωs
0 ρs

0αmNaNbI + α f (S∇Na) ⋅ ∇NbI

+ λ α f (F∇Na) ⊗ (F∇Nb) + μ α f (F∇Nb) ⊗ (F∇Na)

+ μ α f FFT ∇Na ⋅ ∇Nb dΩ,

(27)

and α f = α f β Δt2. At this point, d is corrected using

da, n + 1 da, n + 1 + β Δt2Δda, ∀a ∈ Ia . (28)
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Again, we note that the focus of this work is on solving the linear system in equation (26) 

together with solving equation (12) when including FSI. Finally, we observe that most terms 

in (27) (i.e., the third, fourth, and fifth terms) contribute to the off-diagonals of Ks and that 

the matrix Ks is symmetric.

3 Linear solver performance on pipe flow benchmark

All tests discussed in this study are performed using the svFSI finite element solver from the 

SimVascular open source project, leveraging the message passing interface (MPI) library 

and optimized to run efficiently on large computational clusters [12]. We note this 

implementation assigns fluid and solid elements to separate cores and assumes unique 

interface nodes, i.e., common nodes on the fluid and solid mesh are expected to match. An 

FSI mesh with matching interface nodes is generated through the freely-available 

Meshmixer software, with details reported in [39].

We consider a simple pipe benchmark whose size and boundary conditions are chosen to 

represent the ascending aorta of a healthy subject, having 4 cm diameter, 30 cm length and 

0.2 cm thickness, assuming a radius/thickness ratio of 10%. The inflow is steady with a 

parabolic velocity profile, having a mean flow rate of Q = 83 mL/s (5 L/min). A resistance 

boundary condition is used at the outlet equal to R = 1600 g/cm4/s, which produces a mean 

pressure of approximately ΔP = 100 mmHg, typical of the systemic circulation of a healthy 

subject. Simulations are performed with rigid and deformable walls (see Figure 1), using 

1,002,436 tetrahedral elements for the fluid domain and 192,668 tetrahedral elements for the 

wall, generated in SimVascular with the TetGen mesh generator plugin [38, 19]. We measure 

the wall clock time on the XSEDE Comet cluster for simulations consisting of 10 time steps 

of 1 millisecond each, using 38 and 48 cores for rigid and deformable simulations, 

respectively. The XSEDE Comet cluster has 1,944 compute nodes with the Intel Xeon 

E5-2680v3 cores, 24 cores/node, 2.5GHz clock speed, 960 GFlop/s flop speed, and 120GB/s 

memory bandwidth. For more information about the Comet cluster, please refer to the 

XSEDE user portal. We use the restarting scheme for GMRES. We set the restart number of 

200 which showed superior performance against smaller restart numbers (See Appendix A). 

We set the ILUT drop tolerance to 10−2 and the fill-in level to 2. In our test, changing the 

drop tolerance to 10−4 and 10−6 did not significantly change the performance of the linear 

solver reported here. For the multigrid preconditioner we selected a maximum level of four, 

a Gauss-Seidel smoother, and the symmetric Gauss-Seidel for the subsmoother. We 

confirmed that this setting was superior to other choices for smoother and subsmoother (See 

Appendix B). Finally, as the node ordering affects the amount of fill-in produced by an ILU 

decomposition, we apply Reverse-Cuthill-McKee (RCM) reordering prior to the incomplete 

factorization. RCM has been shown to be effective among many reordering schemes in the 

solution of non-symmetric sparse linear systems (see, e.g., [5]). From our testing, ILUT with 

RCM reordering provided superior performance against ILUT without reordering and ILUT 

with METIS reordering (See Appendix C).
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3.1 Rigid wall benchmark

We plot the linear solver performance measured by wall clock time in Figure 2. In Table 2, 

we report the number of iterations and the portion of total compute time consumed by 

solving the linear system. Three iterative solver tolerances, ϵ = 10−3, 10−6, 10−9, are tested 

and compared. Table 1 shows the effect of tolerance on the velocities at t = 10 ms, 

suggesting the velocity error norm is of the same order of the selected tolerance.

Figure 2 shows that incomplete factorization preconditioners are fast and exhibit robust 

performance across all tolerances, irrespective of the underlying iterative linear solver. 

Despite similar performance for ILU, ILUT and IC preconditioners across all cases, the 

slightly worse performance of ILUT with respect to ILU seems to suggest that constructing 

a more accurate factor may lead to smaller run times than the savings in the factorization 

cost acheived by dropping additional fill-ins. GMRES with diagonal preconditioners (either 

diagonal or block-diagonal) appears to be significantly slower than other schemes, 

particularly as the tolerance ϵ becomes smaller. This degrading performance of standard 

GMRES for cardiovascular modeling is consistent with previous studies, showing that 

resistance boundary conditions are responsible for an increase in the condition number [10, 

11]. While BICGS seems to perform better than GMRES with diagonal preconditioners, its 

performance becomes increasingly unstable with smaller tolerance ϵ. Furthermore, while 

algebraic multigrid preconditioners appear to be superior to diagonal preconditioning, they 

are inferior to BIPN or GMRES/BICGS with ILU. Finally, the performance of BIPN with 

RPC preconditioning is comparable to ILU for small tolerances (i.e., ϵ = 10−3) but 

significantly degrades as the tolerance value decreases.

From Table 2, we see that the time consumed by the linear system solvers constitutes the 

majority of the total compute time. In BIPN, the compute time of GMRES is significantly 

smaller than the compute time of CG. As the tolerance value decreases, the relative 

percentage of compute time for GMRES solve becomes larger. All Trilinos preconditioners 

show larger iteration numbers with decreasing tolerance. The relatively small percentage of 

linear solver compute time against the total compute time with IC and ML implies that 

building such preconditioners is expensive. This suggests that storing and reusing a 

preconditioner for several time steps could increase efficiency.

3.2 Deformable wall benchmark (FSI)

We illustrate the compute times for the deformable wall case in Figure 3 and summarize the 

number of iterations and percentage compute time of the linear solvers in Table 3. For FSI 

simulations with a tolerance ϵ = 10−3, BIPN with RPC shows more than an 8 fold increase 

in compute time compared to the rigid wall case, which also suggests the limitations of this 

approach for the deformable wall case. The increase of iteration number for GMRES as 

tolerance values decrease is notably higher than in the rigid wall case, and the percentage of 

compute time for the GMRES solve in BIPN is significantly higher, about 80% of the total 

compute time while the CG part continues to make up a smaller percentage. This suggests 

directions for future improvement of BIPN in the GMRES part for FSI simulations. 

Conversely, incomplete factorization preconditioners (both for GMRES and BICGS), exhibit 

good performance across all tolerances and a limited increase in compute time compared to 
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the rigid case. Diagonal preconditioners show a comparable performance to incomplete 

factorization schemes at large tolerances, but the performance degrades for smaller 

tolerances. Among all algorithms implemented in Trilinos, the algebraic multigrid 

preconditioners is the slowest, while BICG with ILU appears to be the best solution scheme 

overall.

4 Parallel scalability

Parallel scalability is investigated for two preconditioned linear solvers, BIPN-RPC and 

BICG-ILU, in terms of speedup (see, e.g., [6]), defined as the computing speed of multiple 

cores compared to a single core calculation, i.e., Sp = T1/Tp, where Tp is the compute time 

on Np cores. The ideal strong scalability performance between Sp and Np is linear, however, 

sublinear scaling is expected due to communication cost.

4.1 Strong scaling

In this section, we monitor the compute time for a model with a fixed number of degrees of 

freedom, while progressively increasing the number of cores. We first test the strong 

scalability by varying the number of cores, testing 1, 2, 4, 8, 24, 48, and 96 cores for an ≈1 

million element mesh (Mesh1 in Table 4) (Figure 4). We chose the number of cores as 

multiples of 24, to use all cores in any given node. We note, however, that one should use 

only between 2/3 and 3/4 of the total number of cores in a given node since the local 

memory bandwidth is often a bottleneck resulting in higher overhead and reduced speed 

improvement. In the rigid wall model, BIPN-RPC and BICG-ILU show similar performance 

across all core numbers as shown in Figure 2. The parallel speedup shows that both methods 

scale well up to 24 cores, leading to about 40,000 elements per core, while their parallel 

performance is reduced when running on more than 48 cores. In Figure 2, the zig-zag 

behavior of BIPN-RPC (FSI) reveals excessive inter-core communications and memory 

references. In the FSI problem, the total compute time of BIPN-RPC is larger, and the speed 

up is worse than BICG-ILU. BICG-ILU shows consistently good scalability for both rigid 

and FSI models whereas the scalability of BIPN-RPC degrades significantly in the FSI case.

We conduct an additional scaling study on a refined mesh with 8M elements (Mesh5 in 

Table 4). We use 24, 48, 96, 192, and 384 cores and we use the Np = 24 case as a reference 

for Sp. As shown in Figure 5, the BICG-ILU speedup scales almost linearly up to 192 cores, 

i.e., ~40,000 elements per core. In the 8M mesh, the compute time of BIPN-RPC becomes 

significantly larger due to a poor weak scalability, as discussed in the next section.

4.2 Weak scaling

In this section, we solve models of increasing size and report the simulation time by keeping 

approximately the same number of elements per core. The number of nodes, elements and 

non-zeros in the coefficient matrix is summarized for each mesh in Table 4. We use 20, 40, 

80, 160, 320 cores for meshes 1 to 5, resulting in 27,000 elements and about 4,500 nodes per 

a core.

BICG-ILU shows increased compute time but does not show any significant changes in 

scaling when increasing the number of cores. For the rigid model, BIPN-RPC shows poor 
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scalability as the number of cores exceeds 160. This explains the loss of superior 

performance of BIPN-RPC against BICG-ILU in the strong scalability study with 8M mesh. 

Similar to the rigid case, BIPN-RPC shows performance loss after 160 cores for the FSI 

model.

5 Characteristics of unpreconditioned matrices

In this section, we investigate the properties of the coefficient matrices discussed in section 

2.1 to better understand the performance results. With reference to the pipe benchmark, we 

visualize the matrix sparsity pattern and investigate its properties including bandwidth, 

symmetry, diagonal dominance and spectrum. We also investigate the characteristics of both 

global and local matrices. The global matrix contains all mesh nodes from all cores, while a 

local matrix contains only a subset of the nodes in the global matrix assigned to a single core 

upon partitioning. We report single-core, local matrix characteristics with Nlnd ~ 5000 nodes 

to represent the typical case of distributed discretizations consisting of ~ 25000 tetrahedral 

elements per core. This way we focus on detailed local information in a region of specific 

interest (e.g. resistance boundary), and also calculate properties of the matrix such as 

eigenvalues and condition numbers in a cost-effective way. We discuss properties for two 

groups of coefficient matrices, i.e., matrices associated with fluid flow and matrices 

associated with solid mechanics.

5.1 Matrix properties for fluid flows in rigid vessels

Sparsity pattern.—The structure of Af is determined by element nodal connectivity, i.e., 

the non-zero columns for node a are from nodes belonging to the element star associated to 

a. The star of elements associated to a given node a is the set of all elements connected to a. 

An example of global sparsity pattern for the pipe benchmark unstructured mesh is reported 

in Figure 7. The node ordering starts from the outer surface and goes to the interior of the 

pipe, as seen from the reduced connectivity between the upper-left block and the remaining 

inner nodes. The density is less than 1 percent, and sparsity is more than 99.99 percent 

(Table 4).

A Reverse-Cuthill-McKee (RCM) bandwidth minimizing permutation of the same raw 

matrix shows a banded sparse structure illustrated in Figure 7. We report quantitative 

estimates for bandwidth and number of non-zeros, showing that bandwidth is approximately 

1000 with a maximum of about 1500, and most nodes are connected to 15-16 other nodes.

Diagonal dominance.—A closer look at the magnitudes of entries in the global matrix Af 

reveals a clear block-structure (Figure 8). The 4-by-4 block structure corresponds to the 

matrix blocks in equation (13). This shows that diagonal entries are larger than the off-

diagonals in each block of K, suggesting that magnitudes of entries in the blocks of G, D, L 
are small compared to diagonals in K. This relates to the dominant contribution of the 

acceleration and advection terms, over the stabilization and viscous terms in (15) (see, e.g., 

[11]). The matrix Af is, however, not diagonally dominant (i.e. ∣Aii∣ < ∑j=1 ∣Aij∣). To show 

this, we quantified the relative magnitudes of off-diagonal and diagonal entries (Figure 9). 

Specifically, we counted the number of elements that have a certain percentage of absolute 

magnitudes compared to the diagonal values, showing that most off-diagonal values are less 
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than 20% of the associated diagonal. To report quantitative estimates of diagonal dominance, 

we measure the mean of the relative magnitude of the sum of off-diagonal values to the 

diagonal,

D(K) = 1
Nr

∑
i = 1

Nr
∣ Kii ∣ ∕ ∑

j = 1
i ≠ j

Nc
∣ Ki j ∣ , (29)

in which Nr and Nc is the number of rows and columns in K respectively. D increases with 

the diagonal dominance. D(Af) for the global matrix is 0.514 and D(K) for the global matrix 

is 0.678.

Symmetry.—We use an index, S, to quantify how close a matrix is to symmetric. We first 

obtain off-diagonal elements of A by subtracting its diagonal as A = (A − diag(A)). We then 

decompose the A into the symmetric part, Asym = (A + AT) ∕ 2, and the skew-symmetric part, 

Askew = (A − AT) ∕ 2. The index S is defined as

S(A) =
∣ Asym ∣ − ∣ Askew ∣
∣ Asym ∣ + ∣ Askew ∣

, (30)

in which we use the 2-norm for ∣A∣. The index equals −1 for a perfectly skew-symmetric 

matrix and 1 for a perfectly symmetric matrix. As shown in Section 2.1, the matrix is 

nonsymmetric in the K, G, D blocks due to stabilization and convective terms, with S(Af) 

equal to 0.9859. That is, S(Af) is a nearly symmetric matrix in the analyzed regime (ideal 

aortic flow). Finally, L is a symmetric and semi-positive definite matrix with S(L) = 1.

Eigenvalues.—Spectral properties are widely used to characterize the convergence and 

robustness of iterative solvers. It is well known, for example, that the rate of convergence of 

CG depends on the spectral radius of a left-hand-side SPD matrix. Despite eigenvalues 

clustered around 1 leading to rapid convergence of iterative solvers for well-conditioned 

SPD matrices, the eigenvalues may not be solely responsible for the convergence rate of 

these solvers and other matrix characteristics may play a role [28]. Calculation of all 

eigenvalues (λi) of the global matrix for a typical cardiovascular model with order 1 million 

mesh elements is prohibitively expensive. In this paper we therefore report the spectrum of 

local matrices instead of the global matrix. For a smaller size system, we also demonstrate 

that the distribution of eigenvalues from local matrices is a good approximation to the 

distribution of eigenvalue of the global matrix (See appendix D).

In Figure 10, we plotted the spectrum of local Af matrices from the pipe benchmark with 

rigid walls. The eigenvalues of Af are complex with small magnitudes of the imaginary part 

up to O(10−8), while the magnitudes of the real part ranges from O(10−9) to O(10−1). In 

Figure 10, there are three distinct groups of eigenvalues with different ranges of the real part. 

The first group contains those with the real part less than 10−5. The second group contains 

those with real part ranging between 10−5 and 10−2. The spectrums of K and L in Figure 10 
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show that the third group, with eigenvalues larger than 10−5 in Af, is attributed to the K 
block, while the eigenvalues of L, G and D are responsible for the group of smallest real 

eigenvalues in Af. We list several minimum and maximum eigenvalues of a local matrix 

without resistance boundary condition (BC) in Table 3. The maximum eigenvalues of K and 

Af appear to be the same, suggesting that block K dominates the high portion of the 

spectrum, with the smallest eigenvalues provided by the blocks L, G and D. This suggests 

that the large condition number of Af ~ O(106), obtained from MATLAB condest, relates to 

the inhomogeneous eigenvalue spectrum observed in the momentum, continuity and 

coupling blocks. Additionally, the small condition number of K justifies the idea behind the 

BIPN approach, i.e., to solve the K block separately, while expressing the other blocks in 

Schur complement form [11]. L is singular, and thus has zero eigenvalue and an extremely 

large condition number. Lastly, the resistance boundary condition is responsible for the few 

largest eigenvalues order of O(10−1) in Figure 10, as we discuss in the next section.

Effects of the resistance boundary condition.—A resistance boundary condition 

perturbs the condition number of the coefficient matrix Af, and may be responsible for a 

significant increase in the solution time for the tangent linear system [10]. The boundary 

traction h, is given, in this case by

h(u, p, x, t) = − Pi n, x ∈ Γh, (31)

in which Pi is the pressure at surface i, evaluated as Pi = Ri Qi, i.e., proportional to the flow 

rate Qi across the surface

Qi(t) = ∫
Γi

u ⋅ n dΓ, (32)

through the prescribed resistance Ri. Thus, the contribution of the resistance boundary 

condition to the coefficient matrix is

Kbc = ∑
i = 1

nbc

Ri Si ⊗ Si, Si = ∫
Γi

Na n dΓ, (33)

where nbc is the number of resistance boundaries, and Ri = γ Δt Ri. K
bc is finally added to the 

K sub-matrix, resulting in the coefficient matrix K = K + Kbc. Generalization from an outlet 

resistance to a coupled lumped parameter network model is accomplished using a slightly 

more general expression for Kbc, i.e.

Kbc = ∑
k = 1

nbc

∑
l = 1

nbc

γ Δt Mkl∫
Γk

Na ni dΓ∫
Γl

Nb n j dΓ,

Mkl =
∂Pk

n + 1

∂Ql
n + 1 ,

(34)
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where the resistance matrix Mkl is obtained by coupling pressures and flow rates at different 

outlets [25].

Addition of a resistance boundary condition alters the topology of the coefficient matrix due 

to the rank one contribution Si ⊗ Si. This, in practice, couples all velocity degrees of 

freedom on a given outlet, significantly affecting the performance of matrix multiplication 

for the K block and the fill-in generated by its LU decomposition. Thus, the vector Si is 

stored separately, to improve the efficiency of matrix multiplication and for RPC 

preconditioning. Figure 8 shows how the global matrix entries are affected by the presence 

of a resistance boundary condition, i.e., large magnitude components in the z-directional 

velocity block (lower-right block in K) arise. To better highlight this effect, we show two 

local matrices with and without a resistance boundary condition in Figure 11. Addition of 

Kbc increases the contribution of off-diagonal entries moving the matrix further away from 

diagonal dominance.

The resistance BC perturbs the spectrum and increases the condition number of Af. The 

largest few eigenvalues in the spectrum of Af and K in Figure 10 are calculated from local 
matrices in partitioned domains interfacing the resistance boundary. The change of spectral 

properties of K due to rank one contribution Kbc (see, e.g., [11]) is measured with maximum 

and minimum eigenvalues reported in Table 6. The maximum eigenvalue of K is 

significantly larger than K, leading to a ~ O(10)-fold increase in the condition number of K, 

thus increasing the spectral radius of the whole spectrum as shown in Figure 10. 

Additionally, our tests confirm that the first maximum eigenvalue Af increases linearly with 

the assigned resistance. Thus, in a more general case, we expect several large eigenvalues to 

be added to Af for models with multiple outlet resistances.

5.2 Matrix properties for fluid flow in deformable vessels

Sparsity pattern.—The global sparsity pattern for the FSI mesh is illustrated in Figure 12, 

where nodes in the solid-fluid interface are ordered first, followed by nodes in the fluid 

region next to the interface, and nodes in the solid domain. As shown in Figure 7 when the 

connectivity matrix is reordered by RCM, the global sparsity pattern has a banded sparse 

matrix structure with the larger maximum bandwidth of ≈ 1750 compared to the rigid case, 

while the number of non-zeros in a row is mostly clustered around 15 to 16, similar to the 

rigid case. Magnitudes of entries associated with solid nodes appear to be significantly larger 

than those in the fluid domain. For example, the magnitude of Ks is order one (Figure 13), 

whereas the magnitude of K is order 10−3 (Figure 11). In what follows, we focus on the 

local matrix Ks from Eq. (27) since the characteristics of Af in FSI are similar to the rigid 

wall case.

Diagonal dominance.—The metric introduced above to quantify diagonal dominance 

drops to D(AFSI) = 0.4775 for the global matrix AFSI, i.e., the additional FSI terms reduce 

the diagonal dominance of the system. The magnitudes of a local Ks matrix before and after 

diagonal scaling is compared, in Figure 13, to a local K from the fluid domain. The 

diagonally scaled block Ks qualitatively shows how the off-diagonals in Ks are larger than 
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those in K. The diagonal dominance metric for the local blocks Ks and K are found to be 

D(Ks) = 0.379 and D(K) = 0.678, respectively.

Symmetry and positive definiteness.—The symmetry metric for matrix Ks is one, i.e., 

S(Ks) = 1 and positive definite as expected from its properties and confirmed numerically.

Eigenvalues.—We calculated and plotted the eigenvalue spectrum of local matrices from 

the FSI benchmark in Figure 14. All eigenvalues of Ks are real due to the symmetry of Ks. 

As listed in Table 7, the magnitudes of eigenvalues in Ks is significantly larger than the 

magnitudes of eigenvalues from Af.

5.3 Discussion

Results from the previous sections suggest the following conclusions. First, the condition 

number of both the fluid and solid tangent matrices Af and Ks appears to be large, and 

therefore preconditioning is necessary. Second, the fluid matrix Af is more diagonally 

dominant than the solid matrix Ks. This suggests that diagonal preconditioning is expected 

to be more effective for rigid wall simulations, but incomplete factorization preconditioners 

are expected to work better under fluid-structure interaction, consistent with the results 

obtained in the pipe benchmark. Third, resistance and coupled multidomain boundary 

conditions need a special treatment for preconditioning, due to their effect on the maximum 

eigenvalue and condition number.

6 Effect of preconditioning

In this section we investigate how application of various preconditioners affects the spectral 

properties of the coefficient matrix in both the rigid and deformable case by explicitly 

computing the preconditioned matrix Ml
−1AMr

−1, where Ml
−1 is a left preconditioner and 

Mr
−1 is a right preconditioner.

Consider a left and right Jacobi preconditioning for Af:

Wm = diag(K)−1 ∕ 2, Wc = diag(L)−1 ∕ 2,
K∗ WmKWm, G∗ WmGWc,

D∗ WcDWm, L∗ WcLWc,
Δu∗ WmΔu, Δp∗ WcΔp,

(35)

resulting in the linear system A f
∗y∗ = − R∗. Spectral properties of the preconditioned matrix 

A f
∗ and Ks

∗ are reported in Figure 15 and Table 8.

Table 8 shows how diagonal preconditioning is effective in improving the conditioning of 

Af, particularly for K, without resistance BC. The condition number of K* is reduced to 

~10, and only a few linear solver iterations are expected to be sufficient to substantially 

reduce the approximated residual. This again justifies the approach followed by the BIPN 

solver, where the linear system involving the momentum block K is solved separately, thus 

shifting the computational cost to the iterative solution of its Schur-complement. The 
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condition number of the approximated Schur complement block L* + G*TG* is, in this 

example, equal to 120, consistent with previous findings in [11]. This also justifies the fact 

that ~80 percent of total compute time in BIPN is dedicated to the solution of the Schur 

complement linear system. Conversely, a symmetric Jacobi preconditioning does not seem to 

significantly reduce the condition number of the solid block Ks. This is attributed to the 

presence of large off-diagonal values in Ks that are only marginally affected by diagonal 

preconditioning. As a result, the eigenvalues of Ks
∗ range from O(10−3) to O(1) while the 

eigenvalues of A f
∗ range O(10−2) to O(1), shown in Figure 15, with the exception of a few 

eigenvalues from the resistance BC. This, in turn, justifies the superiority of incomplete 

factorization preconditioners for FSI simulations.

Application of a symmetric Jacobi preconditioner to a local coefficient with resistance 

boundary condition leads to the eigenvalues reported in Table 9. Despite a reduction by three 

orders of magnitude, the condition number is still one order of magnitude larger than in the 

case without resistance BC. Note that the maximum eigenvalue of the preconditioned matrix 

is one order of magnitude larger than the second maximum eigenvalue, consistent with 

previous observations. Thus, the RPC preconditioning proposed in [10] seeks a 

preconditioning matrix H such that H ≃ (Ktotal)−1. The idea is to construct H by combining 

the diagonal components of K with the resistance contributions stored in Sj as

H = (Kd)−1 − ∑
j = 1

nbc
R j((Kd)−1S j) ⊗ ((Kd)−1S j)

1 + R j (Kd)
− 1

2S j

2 , (36)

where Kd is diag(K). The preconditioned matrix HK has a small condition number (Table 7) 

and smaller off-diagonal entries (Figure 16).

7 Performance of linear solvers in patient-specific models

In this section we tested the performance of linear solvers on patient-specific cardiovascular 

models, in an effort to extrapolate the results obtained for the pipe benchmark to more 

realistic problems. We use three different models with a wide range of boundary conditions 

(i.e., resistance, RCR, coronary BC, closed-loop multidomain), with and without wall 

deformability and covering various patient-specific anatomies. All anatomic models were 

constructed from medical image data using Sim-Vascular.

7.1 Pulmonary hypertension

The first model represents the left and right pulmonary arteries with associated branches and 

is used to investigate the effects of pulmonary hypertension (PH). The finite element mesh 

contains 3,223,072 tetrahedral elements to represent the pulmonary lumen, has rigid walls 

and 88 outlets with Windkessel (RCR) boundary conditions, prescribed through a coupled 0-

D multi-domain approach [25, 40] (Figure 17). A pulsatile inflow waveform extracted from 

PC-MRI was imposed at the pulmonary artery inlet. This model is solved using a time step 
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of 0.46 milliseconds and 120 cores (≈ 25,000 elements per core). The tolerance on the 

Newton-Raphson residual is set to ϵ = 10−4.

We briefly report global matrix characteristics in the PH model. The diagonal dominance 

metric is D(Af) = 0.5598, and D(K) = 0.7397. The metric value for D(Af) is similar to values 

from the pipe model with rigid walls. The matrix is nearly-symmetric, S(Af) = 0.9903.

Results in Figure 17 compare the performance of diagonal, block-diagonal and ILU 

preconditioning. BIPN with RPC shows the best performance, followed by ILU-BICG. This 

is expected due to the large number of resistance boundary conditions (i.e., 88) at the model 

outlets. Diagonal preconditioners with GMRES instead perform poorly, consistent with our 

observations in the pipe benchmark.

7.2 Coronary artery bypass graft

Second, we consider a model of coronary artery bypass graft surgery (see, e.g., [27, 36]) 

with 4,199,945 tetrahedral elements and rigid walls, coupled with a closed-loop 0D lumped 

parameter network (LPN), including coupled heart, coronary and systemic circulation 

models (Figure 18). Simulations were performed using 168 cores (~ 24, 000 elements per 

core), with a time step of 0.87 millisecond and a non linear iteration tolerance of ϵ = 10−3.

The diagonal dominance metric for the global matrix in the CABG model is D(Af) = 0.5200, 

and D(K) = 0.6914. The matrix in the CABG model is less diagonally dominant than the 

previous cylinder or pulmonary hypertension model. The matrix is also near symmetric, 

S(Af) = 0.9938.

As expected, due to the presence of coupled multidomain boundary conditions [10], BIPN 

results in the best performance, followed closely by BICG with ILU, while GMRES with a 

diagonal preconditioner performs poorly. The relative performance of ILU against the 

diagonal preconditioner is better than seen in previous models. The smaller diagonal 

dominance metric in CABG model confirms superiority of ILU over the diagonal 

preconditioner.

7.3 Left coronary

Next, we tested performance of linear solvers in a left coronary model. The left coronary 

model was extracted from a full coronary artery model used in Tran et al.[36]. The pulsatile 

flow waveform at the inlet of the left coronary branch was extracted from the full model 

simulation and imposed at the inlet of the model. The model has six outlets, each with 

applied open-loop coronary outlet boundary conditions [17]. All resistance and compliance 

values as well as inflow pulsatile waveforms are determined to produce a normal physiologic 

response of the left coronary artery following our prior work. We ran simulations with rigid 

and deformable walls with a lumen mesh containing 486,066 tetrahedral elements and a 

vessel wall mesh with 206,369 tetrahedral elements, time step of 1 millisecond and tolerance 

of ϵ = 10−4. We used 20 cores for the rigid wall simulation and 24 cores for the deformable 

wall simulation.
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The diagonal dominance metric for the left coronary model with rigid wall is D(Af) = 

0.5238, and D(K) = 0.6972, which are similar to the CABG model. The matrix is near 

symmetric, S(Af) = 0.9855, however, this model is furthest from symmetric among all 

models considered.

For the ALE FSI model, the diagonal dominance is reduced as D(AFSI) = 0.4323, D(K) = 

0.5320. Note that the number of elements in a wall mesh is 40 percent of the fluid mesh, so 

the effect of adding solid mechanics in the linear system is more significant than the pipe 

case where only 20 percent of elements were in the in wall mesh. As a result, the symmetry 

metric is very close to 1, S(AFSI) = 0.99998, since Ks is symmetric.

As shown in Figure 20, performance test results are consistent with previous findings. RPC-

BIPN is the fastest method for the rigid wall simulation. In FSI, the performance of BIPN is 

poor, while diagonal and ILU preconditioners with GMRES perform better.

7.4 Discussion

From the performance results in the patient-specific models, we find that RPC-BIPN is the 

fastest method for rigid wall simulations with many resistance BCs in agreement with the 

pipe model. ILU-BICG is only slightly slower than RPC-BIPN while the standard diagonal 

scaled GMRES fails. The performance degradation of RPC-BIPN in FSI models is 

consistent with the pipe model and suggests the need for future improvements of BIPN for 

ALE FSI.

8 Summary and conclusions

In this paper we study the performance of preconditioned iterative linear solvers for 

cardiovascular simulation in rigid and deformable walls. To this end, we implement various 

iterative linear solvers - GMRES, BICGS, and BIPN - and preconditioners - diagonal, block-

diagonal, ILU, ILUT, ML, and RPC in a single flow solver. Standard iterative solvers and 

preconditioners are employed from the Trilinos library and compared against RPC-BIPN, 

implemented in our in house solver. Simulation wall clock time is measured and compared 

in a benchmark pipe flow with a resistance BC.

ILU preconditioned BICG provides the best overall performance in both rigid and 

deformable wall simulations. RPC-BIPN in the FSI simulation shows ~ 8 fold increase in 

compute time compared to the rigid wall case. Strong and weak scalings of ILU-BICG and 

RPC-BIPN are reported.

To better understand the observed performance, char acteristics of the left-hand-side matrix 

in the linear system are examined. We report sparsity patterns, diagonal dominance, 

symmetry, eigenvalues and condition numbers in global and local matrices. Results show 

that the sparse matrix structure has a narrow banded structure after Reverse-Cuthill-McKee 

reordering. The matrix from the fluid domain has larger diagonal values than off-diagonals 

and is nearly symmetric. Eigenvalues and the condition number of the matrix from the fluid 

domain show that the K block has a significantly smaller condition number compared to the 

Af matrix, supporting the main premise of BIPN. Effects of preconditioning on matrix 
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characteristics are investigated by explicitly forming the preconditioned matrix. A diagonal 

preconditioner is shown to be effective to reduce the range of eigenvalues in the fluid 

domain, especially for the K matrix.

Adding wall deformability to the fluid simulation increases the bandwidth of the matrix and 

decreases the relative magnitudes of the diagonal values compared to the off-diagonal 

values. Due to the reduction of diagonal dominance, a diagonal preconditioner does not 

significantly reduce the condition number of the original matrix.

The resistance boundary condition disturbs the sparsity and diagonal dominance of the 

original fluid matrix, and causes an ill-conditioned system by adding an eigenvalue which is 

larger than the maximum eigenvalue of matrix without resistance BC. The resistance based 

preconditioner successfully reduces the condition number of the system with a resistance 

boundary condition by four orders of magnitude, while a diagonal preconditioner only 

reduces the condition number by two orders of magnitudes.

The performance of various preconditioned linear solvers is evaluated in four patient-

specific models. In these models, RPC-BIPN is best for rigid wall models with multiple 

resistance or coupled LPN outlet boundary conditions. In the deformable wall simulation, 

RPC-BIPN shows significant performance degradation and diagonal preconditioners or ILU 

with BICG achieve the best performance.

This study motivates several new research directions to develop new preconditioned linear 

solver strategies. The effectiveness of BIPN for the solution of fluids problems with rigid 

walls has been proven in the current study. Currently our in-house code (RPC-BIPN) uses 

the bi-partitioned approach for ALE FSI, forming a linear system from the momentum 

equations for the fluid and the solid domains together, and another system for the continuity 

equation for the fluid domain. However, since the characteristics of the matrix in the solid 

domain is different from the fluid domain, most notably diagonal dominance, linear systems 

from these two domains should be separately solved (i.e. Tripartitioning). The inefficiency 

of solving FSI in BIPN stems from adding off-diagonal dominance to the left-hand-side 

matrix block K. Since RPC is based on a simple diagonal preconditioner, solving the system 

K becomes less efficient. We suggest solving Ks separately with an Incomplete Cholesky 

preconditioner, exploiting its symmetric property, rather than a simple diagonal 

preconditioning. Exploration of this idea is the subject of future work.

Additionally, we point out that the Schur complement block in BIPN is not preconditioned. 

Since a major portion of the computational cost in BIPN is consumed when solving the 

Schur complement block [11], acceleration of the linear solver performance by a proper 

preconditioning technique could significantly reduce the compute time. To form a 

preconditioner for the Schur complement block, one would need an efficient sparse matrix-

matrix multiplication scheme as well as explicit formation of the Schur complement block. 

The open-source Trilinos library provides this option as well as various preconditioners so 

combining a partitioning approach with Trilinos is expected to provide consistent 

performance in both rigid and deformable wall simulations of cardiovascular 

hemodynamics. Implementation and testing of this approach is left for future investigation. 
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Testing of linear solver performance on more complex patient-specific disease with large 

wall deformations (e.g. aortic dissection) are warranted, and would likely lead to further 

insights. Future studies are also warranted to further assess solver performance and matrix 

characteristics, towards development of new solver and preconditioner strategies.
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9: Appendix

A GMRES restart

We tested different GMRES restart numbers in the pipe benchmark problems. In Figure 20, 

we plot compute times for preconditioned GMRES using a pipe model with rigid wall and a 

pipe with deformable wall. Our test shows that decreasing restart number increases the 

compute time of linear solver in the rigid pipe model. The FSI model does not show a 

notable difference.

B Choice of smoother and subsmoother for ML

In the ML package, multiple options are available for the smoother and the subsmoother. As 

shown in Figure 21, the Gauss-Seidel smoother works best among Chebyshev, symmetric 

Gauss-Seidel, and ILUT. For the subsmoother, the symmetric Gauss-Seidel is the best 

among Chebyshev and MLS.

C Effect of reordering in ILU

We evaluated and compared compute times of linear solvers with different reordering 

methods. RCM and METIS reordering for ILUT via the Trilinos IFPACK are implemented. 

We use 2 level fill-in and 10−2 dropping tolerance for this test. Figure 23 shows performance 

differences between ILUT with different reordering schemes. From the testing, we confirm 

that the RCM is the fastest method against METIS and no reordering. The superior 

performance of RCM is notable when GMRES is used with ILUT.

D Eigenvalue spectrums of the local and global matrix.

In this section we compare the spectrum of eigenvalues in the local and global matrices and 

investigate how our analysis on local eigenvalues can be generalized to the global matrix. 

We use a pipe model in the same dimension shown in Figure 1 meshed with 24,450 elements 

with Nnd = 5462. We use one core to extract the global matrix, and four cores to examine 

local matrices. As shown in Figure 24, the eigenvalue distributions of the global and local 
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matrices are similar. Although the eigenvalues from the global and local matrices are not 

exactly the same, the distribution of eigenvalues of local matrices is a good approximations 

to the distribution of eigenvalues in the global matrix.
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Fig. 1: 
Schematic representations and mesh for cylindrical pipe benchmark, (top) a rigid model with 

parabolic inflow and outlet resistance boundary condition, (bottom) an FSI model with same 

boundary conditions. For each model we show a magnified view of the tetrahedral finite 

element mesh. The fluid and solid domains are colored in red and gray, respectively.
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Fig. 2: 
Compute times for linear solvers and preconditioners using a rigid pipe model with 

tolerances (top) ϵ = 10−3, (center) ϵ = 10−6, (bottom) ϵ = 10−9. For ϵ = 10−6, error bars are 

plotted by taking standard deviations from two repeated simulations. Differences between 

repeated simulations are caused by different computing nodes assigned by the scheduler on 

the Comet cluster.
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Fig. 3: 
Compute times for linear solvers and preconditioners using a deformable wall pipe model 

(FSI) with tolerances (top) ϵ = 10–3, (middle) ϵ = 10−6, (bottom) ϵ = 10−9. For ϵ = 10−6, 

error bars are plotted by taking standard deviations from two repeated simulations.
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Fig. 4: 
Strong scaling of BIPN-RPC and BICG-ILU for pipe benchmark with rigid and deformable 

walls on the 1M lumen mesh model (Mesh2). (top) compute time, Tp, versus number of 

cores, Np, (bottom) speedup, Sp = T1/Tp, versus Np.
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Fig. 5: 
Strong scaling of BIPN-RPC and BICG-ILU for pipe benchmark on the 8M lumen mesh 

model (Mesh5). (top) Tp versus Np, (bottom) Sp = T24/Tp versus Np.
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Fig. 6: 
Weak scaling of BICG-ILU and BIPN-RPC for pipe benchmark with rigid and deformable 

walls.
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Fig. 7: 
Sparsity pattern of a connectivity matrix for the 1M pipe mesh. Among all matrix elements, 

only non-zero values are colored in the plot. (top) The global sparsity pattern for the whole 

pipe model with Nnd = 166, 899. (center) Reverse Cuthill-Mckee reordering of the global 
connectivity matrix. The upper-right inset is 100 magnification of the diagonal of the 

reordered matrix. The lower-left inset is 10,000 magnification. For each row, the left exterior 

plot shows the maximum bandwidth in that row. (bottom left) Frequencies for the number of 

non-zero elements in a row (Nnnz). (bottom right) A local sparsity pattern from a core with 

Nlnd = 5014.
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Fig. 8: 
A visual representation of the global sparse matrix Af with entries colored by absolute 

magnitude. (top) The full matrix Af colored by magnitudes ranging 0 to 10−3. (bottom) A 

decomposed matrix colored by magnitudes of each sub-block. In K in the upper-left block, 

the colorbar ranges from 0 to 10−3. In G in the upper-right block and D, in the lower-left 

block, the colorbar ranges from 0 to 10−5. In L in the lower-right block the colorbar ranges 

from 0 to 10−6.
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Fig. 9: 
Measures of diagonal dominance. (top left) The magnitude of diagonal values in each row of 

Af. (top right) The sum of absolute magnitude of off-diagonal values in each row of Af. 

(bottom) Histogram of the number of matrix elements N(Aij) with magnitudes that 

correspond to the certain percentage of the associated diagonal entry. Only elements that are 

more than 1% of diagonal entries are counted.
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Fig. 10: 
Spectrum of (top) local fluid matrices Af, (bottom left) L blocks, (bottom right) K blocks. 

All local eigenvalue spectrums from 38 cores are plotted together with different colors.
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Fig. 11: 
A visual representation of (top) a local matrix Af without resistance BC (bottom) a local 
matrix Af,res with a resistance BC, R=1600g/cm4/s. Matrix elements are colored by their 

absolute magnitude. For both figures color ranges from 0 to 10−3.
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Fig. 12: 
(Top) Global sparsity pattern for the FSI pipe benchmark with Nnd = 198,128. (bottom) 

Visual representation of the entry magnitudes for the global matrix AFSI.
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Fig. 13: 
Sparsity pattern of a local Ks colored by absolute magnitude of each entry, for Nlnd = 4892. 

(top) A raw matrix, Ks, in the solid domain (center) A scaled matrix with its diagonal Ks
∗ in 

the solid domain (bottom) A scaled local K* with its diagonal in the fluid domain.
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Fig. 14: 
Spectrum of (red) local Af in the fluid domain and (blue) Ks in the solid domain. All local 
eigenvalue spectrums from 48 cores are plotted together.
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Fig. 15: 

Spectrum of (red) local A f
∗ in the fluid domain and (blue) Ks

∗ in the solid domain. All local 

eigenvalue spectrums from 48 cores are plotted together.
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Fig. 16: 

local sparse matrix structure of preconditioned K block. (top) K∗ without resistance BC, 

(center) K∗ with a resistance BC, (bottom) HK. The colorbar is same for all figures.
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Fig. 17: 
(Top) Patient-specific model for pulmonary hypertension with schematics of boundary 

conditions. The model is colored by instantaneous wall shear stress. (bottom) compute times 

for preconditioned iterative linear solvers.
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Fig. 18: 
(Top) Patient-specific model for coronary bypass graft model with schematics of boundary 

conditions. The model is colored by instantaneous wall shear stress. (bottom) compute times 

for preconditioned iterative linear solvers.
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Fig. 19: 
(Top) Patient-specific model for left coronary artery model with schematics of boundary 

conditions. The model is colored by instantaneous wall shear stress. (center) compute times 

for preconditioned iterative linear solvers in the rigid wall simulation. (bottom) compute 

times for preconditioned iterative linear solvers in the deformable wall simulation.
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Fig. 20: 
Compute times for GMRES and preconditioners using (top) a rigid pipe model, and 

(bottom) a pipe model with deformable wall using different the GMRES restart numbers.

Seo et al. Page 45

Comput Mech. Author manuscript; available in PMC 2020 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 21: 
Compute times for linear solvers preconditioned with ML using a (a) rigid and (b) an FSI 

pipe model with tolerance ϵ = 10−3, with different smoothers. The symmteric Gauss-Seidel 

subsmoother is used. For the rigid wall model, 38 cores are used. For the FSI model, 48 

cores are used.
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Fig. 22: 
Compute times for linear solvers preconditioned with ML using a (a) rigid and (b) FSI pipe 

model with tolerance ϵ = 10–3, with different subsmoothers. The Gauss-Seidel smoother is 

used. For the rigid wall model, 38 cores are used. For the FSI model, 48 cores are used.
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Fig. 23: 
Compute times for linear solvers preconditioned with ILUT using a (a) rigid and (b) FSI 

pipe model with tolerance ϵ = 10−3, with different reorderings. For the rigid wall, 38 cores 

are used. For the FSI, 48 cores are used.
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Fig. 24: 
The spectrum of eigenvalues for a rigid pipe model with Neumann BC at the outlet. (top) 

eigenvalues obtained from four local matrices. Different colors are used to represent 

eigenvalues from different local matrices. (bottom) eigenvalues obtained from the global 
matrix.
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Table 1:

l2-norm of velocity errors from different residual norm tolerances. The solution error is obtained from nodal 

velocity errors after 10 time steps, using a reference simulation with a tolerance up to the machine precision, ϵ 
= 10−12.

ϵ = 10−1 ϵ = 10−3 ϵ = 10−6 ϵ = 10−9

Err 0.2235 0.0028 1.618×10−7 1.107×10−9
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Table 2:

The number of iterations and the portion of compute time consumed by the linear solver for the pipe 

benchmark problem with rigid walls. The number of linear solver iterations is counted for 10 time step 

calculations. tT is the total compute time, tLS is the compute time consumed by solving the linear system.

BIPN-RPC /ϵ = 10−3

Nbipn tLs/tT Ngmres tgmres/tLS Ncg tcg/tLS

129 89.5% 1475 5.3% 38582 77.6%

BIPN-RPC /ϵ = 10−6

Nbipn tLS/tT Ngmres tgmres /tLS Ncg tcg/tLS

847 95.1% 22699 17.25% 91470 55.7%

BIPN-RPC /ϵ = 10−9

Nbipn tLS/tT Ngmres tgmres/tLS Ncg tcg/tLS

1923 95.0% 247142 43.2% 791817 49.4%

ϵ = 10−3 GMRES BICG

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 155544 98.8% N/A N/A

Block-D 147768 98.7% 30027 94.4%

ILU 2768 85.3% 3104 89.6%

ILUT 1493 88.0% 2360 92.1%

IC 3636 40.5% 3290 41.3%

ML 1080 51.9% 1054 66.7%

ϵ = 10−6 GMRES BICGS

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 492752 99.9% N/A N/A

Block-D 491185 99.9% 110237 96.3%

ILU 6632 89.6% 6770 91.7%

ILUT 3382 89.8% 4045 92.9%

IC 8191 54.3% 7710 51.3%

ML 2526 64.6% 2376 76.6%

ϵ = 10−9 GMRES BICGS

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 1252448 100% N/A N/A

Block-D 1251025 100% N/A N/A

ILU 10066 91.0% 9766 92.2%

ILUT 5132 90.6% 5468 93.0%

IC 13728 59.8% 11022 53.4%

ML 3992 69.6% 3711 80.4%
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Table 3:

The number of iterations and the portion of compute time consumed by the linear solver for the pipe 

benchmark problem with deformable walls. The number of linear solver iterations is counted for 10 time step 

calculations. tT is the total compute time, tLS is the compute time consumed by solving the linear system.

BIPN-RPC /ϵ = 10−3

Nbipn tLS/tT Ngmres tgmres/tLS Ncg tCG/tLS

608 78.6% 117377 77% 64865 15.6%

BIPN-RPC /ϵ = 10−6

Nbipn tLS/tT Ngmres tgmres/tLS Ncg tCG/tLS

1580 83.9% 318272 79.4% 145183 13.4%

BIPN-RPC /ϵ = 10−9

Nbipn tLS/tT Ngmres tgmres/tLS Ncg tCG/tLS

14872 83.3% 4087258 79.6% 874018 11.0%

ϵ = 10−3 GMRES BICGS

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 11283 71.9% 12094 66.3%

Block-D 9127 65.1% 9438 59.9%

ILU 3900 61.2% 3655 64.2%

ILUT 3493 70.6% 3333 70.9%

IC 4089 17.2% 3873 20.02%

ML 3735 31.74% 3799 44.43%

ϵ = 10−6 GMRES BICGS

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 33455 86.2% 45623 85.3%

Block-D 26311 81.7% 29589 77.3%

ILU 7699 70.1% 7338 74.9%

ILUT 5904 75.1% 5537 77.1%

IC 8241 28.7% 7819 32.0%

ML 7109 49.9% 7610 63.9%

ϵ = 10−9 GMRES BICGS

PC Ngmres tLS/tT Nbicgs tLS/tT

Diag 71884 90.25% 100431 90.6%

Block-D 55392 88.2% 49695 82.1%

ILU 13801 75.1% 13093 80.0%

ILUT 9848 76.7% 9404 79.3%

IC 14615 42.2% 13858 43.4%

ML 12178 59.8% 9587 78.4%
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Table 4:

Number of nodes, elements and non-zero entries in tangent stiffness matrix for selected meshes in scaling 

studies.

Fluid

# Nodes # Tetrahedra # Non-zeros

Mesh1 93,944 551,819 1,496,375

Mesh2 166,899 1,002,436 2,718,385

Mesh3 349,469 2,131,986 5,784,902

Mesh4 716,298 4,415,305 11,990,977

Mesh5 1,314,307 8,117,892 22,144,741

Structure Total

# Nodes # Tetrahedra # Non-zeros

Mesh1 31,223 96,147 1,834,624

Mesh2 50,909 192,668 3,331,744

Mesh3 100,759 412,408 7,028,673

Mesh4 97,206 893,452 14,565,414

Mesh5 378,089 1,752,270 27,188,079
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Table 5:

The 1-norm condition number estimates and five maximum and minimum eigenvalues (λi) of a local matrix 

Af, and blocks K, and L without resistance BC.

Af: Condition number= 1.293×106

λi 1st 2nd 3rd 4th 5th

Max(×10−3) 3.304 3.301 3.298 3.282 3.270

Min(×10−8) 0.748 1.042 1.348 1.524 1.672

K: Condition number=163

λi 1st 2nd 3rd 4th 5th

Max(×10−3) 3.304 3.301 3.298 3.282 3.270

Min(×10−5) 4.615 4.621 5.958 6.381 6.614

L: Condition number=1.555 × 1018

λi 1st 2nd 3rd 4th 5th

Max(×10−7) 9.053 8.180 8.085 8.083 7.983

Min(×10−9) 0.000 0.456 1.224 1.765 2.214
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Table 6:

The 1-norm condition number estimates and five maximum and minimum eigenvalues (λi) of a local matrix 

A f  and K with a resistance BC.

A f : Condition number=3.299×107

λi 1st 2nd 3rd 4th 5th

Max(×10−3) 86.525 3.253 3.244 3.239 3.185

Min(×10−8) 0.671 1.036 1.350 1.427 1.504

K: Condition number=5.883×103

λi 1st 2nd 3rd 4th 5th

Max(×10−3) 86.525 3.253 3.244 3.239 3.185

Min(×10−5) 2.878 2.886 3.457 3.981 4.002
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Table 7:

The 1-norm condition number estimate and five maximum and minimum eigenvalues (λi) of the raw local Ks 

matrix.

Ks: Condition number=3.169×104

λi 1st 2nd 3rd 4th 5th

Max 7.706 7.469 7.389 7.325 7.294

Min(×10−3) 1.374 1.404 1.468 1.510 1.529
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Table 8:

The 1-norm condition number estimates and five maximum and minimum eigenvalues (λi) of the 

preconditioned local matrices A f
∗, K*, L* without resistance BC and Ks

∗. The 5th maximum eigenvalue of 

local A f
∗ is complex, with imaginary part of −3.257 × 10−5.

A f
∗

: Condition number=645

λi 1st 2nd 3rd 4th 5th

Max 2.271 2.248 2.248 2.247 2.244

Min(×10−2) 2.557 3.558 4.623 5.183 5.795

K*: Condition number=14

λi 1st 2nd 3rd 4th 5th

Max 2.249 2.248 2.248 2.244 2.244

Min 0.579 0.580 0.582 0.582 0.583

L*: Condition number=1.662 × 1018

λi 1st 2nd 3rd 4th 5th

Max 2.290 2.224 2.216 2.213 2.201

Min(×10−2) 0.000 0.200 0.555 0.798 1.019

Ks
∗

: Condition number=1.517×104

λi 1st 2nd 2rd 4th 5th

Max 3.567 3.556 3.214 3.181 3.161

Min(×10−3) 1.173 1.193 1.205 1.222 1.238
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Table 9:

The 1-norm condition number estimates and five maximum and minimum eigenvalues (λi) of the 

preconditioned local matrix A f
∗, K∗ and HK.

A f
∗

: Condition number=9243

λi 1st 2nd 3rd 4th 5th

Max 55.15 2.262 2.247 2.247 2.243

Min(×10−1) 0.232 0.358 0.467 0.492 3.99

K∗
: Condition number=1862

λi 1st 2nd 3rd 4th 5th

Max 55.16 2.248 2.247 2.244 2.241

Min 0.217 0.384 0.392 0.396 0.399

HK: Condition number=76

λi 1st 2nd 3rd 4th 5th

Max 2.248 2.247 2.244 2.241 2.241

Min 0.217 0.384 0.392 0.396 0.399
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