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Abstract

Electronic Health Records (EHR) contain extensive patient data on various health outcomes and 

risk predictors, providing an efficient and wide-reaching source for health research. Integrated 

EHR data can provide a larger sample size of the population to improve estimation and prediction 

accuracy. To overcome the obstacle of sharing patient-level data, distributed algorithms were 

developed to conduct statistical analyses across multiple clinical sites through sharing only 

aggregated information. However, the heterogeneity of data across sites is often ignored by 

existing distributed algorithms, which leads to substantial bias when studying the association 

between the outcomes and exposures. In this study, we propose a privacy-preserving and 

communication-efficient distributed algorithm which accounts for the heterogeneity caused by a 

small number of the clinical sites. We evaluated our algorithm through a systematic simulation 

study motivated by real-world scenarios and applied our algorithm to multiple claims datasets 

from the Observational Health Data Sciences and Informatics (OHDSI) network. The results 

showed that the proposed method performed better than the existing distributed algorithm ODAL 

and a meta-analysis method.
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1. Introduction

Real-world data, including Electronic Health Records (EHR) data, claims data, and many 

others, have become a major source for medical and health research. In particular, EHR 

systems have been increasingly implemented across the nation to investigate various 

research questions in the last few decades [1–4]. EHR data contain various patient health 
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data collected routinely at the point of care including diagnosis, medications, procedures, 

imaging, clinical notes, etc. Researchers conclude that the meaningful use of the data relies 

on the successful integration of clinical information from multiple centers [5]. The 

multicenter study provides researchers a larger sample size of the population to improve the 

estimation and prediction accuracy, which can also contribute to accelerating knowledge 

discovery and enhancing the generalizability of scientific findings [6].

A few successful networks have been founded and have become beneficial to multicenter 

research. For example, the Observational Health Data Sciences and Informatics (OHDSI) 

consortium was founded (https://ohdsi.org/) for the primary purpose of developing open-

source tools that could be shared across multiple sites. OHDSI developed the OMOP 

Common Data Model [7] for data standardization. This tool enables each site to convert a 

variety of datasets into a common format. It also allows a single script to be shared and ran 

across sites without the alteration of format. The standardization procedure decreases the 

probability of translation error when converting a database into another format and increases 

the efficiency of data analysis. Another example is the National Pediatric Learning Health 

System (PEDSnet) that contains data from eight of the nation’s largest pediatric health 

systems [8]. This network comprises clinical information from millions of children and 

provides increasing opportunities for multicenter pediatrics research.

In multicenter research, privacy protection is a major challenge of data sharing [9]. In many 

situations, it is not feasible to share patient-level information, especially for important 

clinical outcomes and demographic information. Thus, some EHR-based studies have been 

done to develop the models to share and integrate patient information with privacy-

preserving feature [10–14]. Currently, the state-of-the-art method for multicenter logistic 

regression without sharing patient-level information is to conduct a meta-analysis, which fits 

a logistic regression model separately within each site and reports the point estimates and 

standard errors of the odds ratios, and obtain a combined result through a weighted average. 

For example, a treatment pathway study [15], a birth season – disease risk study [15, 16] and 

several pharmacovigilance studies [17] have been successfully conducted in such fashion 

within the ODHSI consortium.

In addition to meta-analysis, distributed algorithms have been recently developed to 

decompose computational tasks into multiple components. Each component is computed in 

parallel at a single site and patient-level information is not required to be transferred across 

sites. For example, an algorithm called WebDISCO (a Web service for distributed Cox 

model learning) was developed to fit the Cox proportional hazard model distributively by 

Cox [18], and Wu et al. developed a distributed algorithm for conducting logistic 

regressions, named GLORE (Grid Binary LOgistic Regression). Both algorithms have been 

successfully deployed to the pSCANNER consortium [9, 19]. However, as acknowledged by 

the investigators, the GLORE and WebDISCO are known as iterative algorithms that require 

iterative information transfer across the sites until convergence is reached. These two 

methods could be time-consuming and communication-intensive in practice. To address 

these issues, Duan et al. proposed a non-iterative privacy-preserving distributed algorithm to 

perform logistic regressions (termed as ODAL) [15], which utilizes the patient-level data 

from one site and aggregated information from other sites. The accuracy and efficiency of 
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the ODAL method were proved to be comparable to the pooled patient-level datasets 

through a wide spectrum of settings in practice.

However, one common limitation for all of the aforementioned distributed algorithms is that 

they all assume that the data from different sites are homogeneous. This assumption is often 

impractical in biomedical studies. Specifically, data from different study sites within a 

distributed research network are often heterogeneous due to various reasons. For example, 

different coding, labeling systems might be used in different sites, which lead to different 

data structures. In this case, substantial mapping work is required through methods such as 

the OMOP Common Data Model [7] to unify the data structure and coding system to make 

the data sources interoperable. Furthermore, heterogeneity might also be caused by different 

patient population and hospital-level effects due to intrinsic differences in geographical 

locations and variations in clinical operations, etc., which can result in the overall 

distribution of the data in each site to be different. In this paper, we assume the structure of 

the data is unified while the distributions of the data are heterogeneous.

One motivating example is the PEDSnet, a National Pediatric Learning Health System [8], 

for facilitating multi-institutional data integration, cohort discovery, and advanced analytics 

that enables rapid learning. The PEDSnet consortium includes eight hospitals and health 

systems across the nation, such as the Children’s Hospital of Philadelphia, Cincinnati 

Children’s Hospital, Seattle Children’s Hospital. There is a substantial difference in patient 

characteristics as well as clinical practices across these hospitals. Another example is our 

recent collaboration with the Janssen Research and Development at Johnson & Johnson, 

where we are interested in integrating drug safety signals from five massive medical claims/

electronic health records databases. There is also a substantial heterogeneity across these 

five databases.

In general, ignoring heterogeneity across the sites could lead to biased estimates of the 

associations between exposures and outcomes [21, 22]. It is critically important to develop 

robust methods for data integration that can account for the heterogeneity in the data across 

sites. To this end, in this paper, we attempt to develop a simple yet effective privacy-

preserving distributed algorithm for fitting logistic regression within heterogeneous health 

systems without sharing patient-level data. The key idea is to modify the ODAL algorithm 

[20] by communicating robust summary statistics that are less sensitive to the existence of 

“outlying studies”. Through simulation studies and real data analysis using databases from 

the Janssen Research, we found that our new algorithm, which we refer to as the “robust-

ODAL” method, is substantially more robust to the outlying studies and produces less biased 

estimates than the current ODAL method and traditional meta-analysis method.

2. Method

In this section, we introduce the proposed robust-ODAL method. Simulation studies are 

performed to compare the method with state-of-the-art methods in terms of estimation bias.
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2.1. Proposed Algorithm

Suppose we have data stored in K different clinical sites. We assume the majority of the K 

sites (hereafter referred to as Group 1) are relatively homogeneous, and a small number of 

sites (hereafter referred to as Group 2) are considered heterogeneous in terms of the patient 

population, clinician population, data quality, etc. (illustrated in Fig. 1). We are interested in 

integrating the estimates from the majority of the K sites. However, a challenge for such data 

integration is that the identification of which sites belonging to the majority of sites is 

unknown. To handle this type of heterogeneity and keep the algorithm to be entirely data-

driven, we propose the following distributed algorithm by strengthening the algorithm in 

Duan et al. (2019) [20].

Specifically, denote Y to be a binary outcome and x to be a p-dimensional predictor, which 

contains the exposures of interest and potential confounders to be adjusted in a regression 

model. Suppose that we have N observations from K different clinical sites in total and the 

jth clinical site contains nj observations. Let (xij, Yij) denotes the ith observation in the jth 

clinical site. Under the assumption of a logistic regression model, the log-likelihood function 

for the combined data can be written as

LN(β) = 1
N ∑ j = 1

K ∑i = 1
n j Y i jxi j

T β − log (1 + exp xi j
T β (1)

In the distributed algorithm, we assume that the individual patient-level information is not 

allowed to be transferred across the sites. Thus, LN(β) cannot be obtained directly by 

integrating all patient-level data. Suppose we only have access to the data stored in a local 

site (hereafter referred to as Site 1) and Site 1 belongs to Group 1 (i.e., the majority of 

studies). The log-likelihood at Site 1 can be written as

L1(β) = 1
n1

∑i = 1
n1 Y i1xi1

T β − log (1 + exp xi1
T β (2)

With the given initial value β, we can construct the following surrogate likelihood function 

based on the local likelihood function and borrow aggregated information from other sites, 

i.e.,

L(β) = L1(β) + ∇LN(β) − ∇L1(β) β (3)

where ∇LN(β) =
n j
N ∑ j = 1

K ∇L j(β) and ∇L j(β) is the first gradient of the jth site.

The term ∇LN(β) is essentially the sample-size weighted average of the first-order gradients 

obtained from the sites. Under the homogenous assumption that data are identically and 

independently distributed across sites, ∇LN(β) is used to correct the shape of ∇L1(β) around 

the initial value β. However, if the data from the sites in Group 2 have a different distribution 
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from the data in Group 1, ∇LN(β) will be influenced by Group 2 and be different from 

∇L1(β), leading to biased estimation of the regression parameters.

In order to reduce the bias caused by the heterogeneous sites in Group 2, instead of taking 

the mean of the first-order gradients across sites, we propose to simply take the element-

wise median of ∇L j(β) across sites, which is known to be more robust to potential outliers. 

The new proposed surrogate likelihood function can be written as

LR(β) = L1(β) + ∇LN
med(β) − ∇L1(β) β (4)

where ∇LN
med(β) = median ∇L1(β), …, ∇LK(β) . In Equation (4), L1(β) and ∇L1(β) can be 

obtained using data from Site 1; ∇LN
med(β) can be computed once we obtain each ∇L j(β)

from all sites. Notably, the intermediate quantity ∇L j(β) contains only aggregated 

information and has the dimension being the same as the parameter β. An illustration of the 

method is provided in Figure 2. The robust-ODAL estimator can be obtained by maximizing 

the objective function in equation (4):

β = arg max 
β

LR(β)

Regarding the initial value β, a natural choice of β is the maximum likelihood estimator of 

the local likelihood L1(β). A detailed algorithm is outlined below.

2.2. Simulation Design

To evaluate the empirical performance of the proposed robust-ODAL algorithm and compare 

with existing algorithms ODAL and meta-analysis, we conducted extensive simulation 

studies. To cover a wide spectrum of practical settings, we set the total number of sites, K = 

10 or 50, the sample size of each site was randomly sampled from a discrete Uniform 

distribution on (750, 1250). In addition, to mimic the assumption that a small number of the 

sites were outlying studies, we considered 10% or 20% of the sites being in Group 2. In 

other words, there were 1 (or 2) out of 10 sites and 5 (or 10) out of 50 sites in Group 2, 

being substantially different from the majority group (Table 1).
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We considered a setting where a binary outcome was associated with two risk factors, (x1, 

x2), where x1 represented a continuous confounder and x2 was a binary exposure of interest 

(such as medication usage). The binary outcome Y (e.g., presence/absence of an adverse 

event) was generated from a Bernoulli distribution, with the conditional probability specified 

by the following logistic regression model,

logit(Pr(Y = 1 x)) = β0 + β1x1 + β2x2,

where logit(p) = log{p/(1 - p)}, β1 and β2. were the coefficients of x1 and x2. respectively, 

and β0 was the intercept, characterizing the prevalence of the outcome Y.

The choice of the parameter values was motivated by the empirical distributions of data in 

the real application. We simulated the continuous covariate variable to mimic the empirical 

distribution of BMI. Besides, the binary covariate variable was generated to mimic the 

prevalence of the risk factors in the real data (e.g., Hypertensive disorder). Table 2 specifies 

the distributions for generating the risk factors (x1, x2). Specifically, the distribution of x1 for 

each study site within Group 1 was a normal distribution with mean α1 and variance of 1, 

where this study-specific mean α1 was drawn from a uniform distribution on [−0.25, 0.25]. 

Such setup allowed for both within-study variation (with a variance of 1) and between-study 

variation (over a range between −0.25 to 0.25). In addition, the study sites within Group 1 

were relatively homogeneous because the between-study variation is ¼ of the within-study 

variation.

In contrast, the predictor x1 in Group 2 was generated from a normal distribution with the 

mean of 2 and the variance of 0.5. Such specification mimicked a setting with outlying 

studies of substantially different distribution in mean and variance in Group 2, compared to 

Group 1.

Following a similar rationale, we generated predictor x2 in Group 1 from a Bernoulli 

distribution with probability equal to α2, where α2 ranged from 0.25 to 0.35. For Group 2, 

x2 was generated from a Bernoulli distribution with probability equal to 0.7. This setup was 

mimicking a setting that medication is less commonly prescribed in the majority of clinical 

sites (with a probability of prescribing as 0.25~0.35), whereas the medication is very 

commonly prescribed (with a probability of 0.7) in the outlying sites due to difference in 

clinical practice. For example, 6-mercaptopurine has been less commonly prescribed for 

treating pediatric Crohn disease at the Children’s Hospital of Philadelphia (with a 

probability of prescribing of 23%), but is commonly prescribed at the Boston’s Children’s 

Hospital (with a probability of prescribing of 80%) [23, 24, 25].

To cover a wide spectrum of practical scenarios, we considered both common and rare 

outcomes. The prevalence for the common disease was set at 37% (mimicking Type 2 

diabetes) and for the rare disease was set at 0.8% (mimicking the prevalence of AMI which 

is around 1% in the real data), which corresponded to the values of β0 equal to −0.5 and −4.8 

respectively (Table 3).

Tong et al. Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As illustrated in Table 3, we conducted simulation studies under two different settings to 

mimic two types of heterogeneity. In setting one (left part of Table 3), we assumed there 

exists heterogeneity only in the distribution of covariates while the disease prevalence and 

the coefficients (i.e., log odds ratio) of the covariates were the same across all sites. In 

setting two (right part of Table 3), we assumed not only the distributions of variables were 

different but also the disease prevalence and the coefficients (i.e., log odds ratio) of the 

covariates across the sites were different.

3. Results

In this section, we present the simulation results under different settings to compare three 

methods: meta-analysis, ODAL, and robust-ODAL. We also show the data evaluation results 

with three methods using the data from the Janssen Research and Development at Johnson & 

Johnson.

3.1. Simulation Results

Fig. 3 presents the estimations of β2, the parameter of interest. We compared the estimators 

of ODAL, robust-ODAL, and meta-analysis when the number of sites is 10 (upper two 

panels) or 50 (lower two panels) for common disease (A1 and A2) and rare disease (B1 and 

B2).

The box plots in panel A1 and B1 are the simulation results for setting one where variables 

x1 and x2 are heterogeneous across the sites and the values of disease prevalence and 

coefficients are the same across all of the sites. The box plots in panel A2 and B2 are the 

results for setting two, where the distributions of variables, disease prevalence, and β1’s are 

different in Group 1 and 2.

The y-axes in the box plots present the values of estimated log odds ratio for β2 under 100 

times iterations and the x-axes are three models to compare: ODAL (yellow), robust-ODAL 

(green), and meta-analysis (blue). The solid black segment in each box shows the median of 

the estimates, and the boundaries of the colored boxes give the interquartile ranges for the 

estimates.

Common disease: Setting one shows that when the heterogeneity only exists in the 

distributions of variables, the ODAL, the robust-ODAL, and the meta-analysis perform 

similarly when the outcome is common (panel A1 in Fig. 3). Setting two presents that when 

the heterogeneity exists in variables, disease prevalence, and the coefficient of the 

confounder, estimates with the robust-ODAL method have smaller bias than those using 

ODAL (panel A2 in Fig. 3) and have similar performance with the meta-analysis.

Rare disease: Setting one shows that when the heterogeneity only exists in the 

distributions of variables when the disease is rare, the robust-ODAL performs better than 

both ODAL and meta-analysis (panel B1 in Fig. 3). A similar conclusion can be made under 

setting two (panel B2 in Fig. 3). Compared with setting one, the results show that the robust-

ODAL performs much better than ODAL in setting two.
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To summarize, when the disease is common, the robust-ODAL performs better than (e.g., in 

setting two) or at least similar (e.g., in setting one) compared to the ODAL; the robust-

ODAL performs similar to meta-analysis. When the outcome is rare, the robust-ODAL is 

more accurate in estimating the association between the outcome and exposure than both 

ODAL and meta-analysis.

3.2. Data Evaluation

We applied the robust-ODAL method to study the risk factors of acute myocardial infarction 

(AMI) in a population with pharmaceutically-treated major depressive disorder using data 

from five insurance claims databases in the Janssen Research and Development at the 

Johnson & Johnson. The databases have been converted to the OMOP Common Data Model 

[7]. The outcome, AMI, was defined as the occurrence of the respective diagnosis codes in 

an inpatient or emergency room setting. We restricted the first occurrence per patient. The 

summaries of patients’ characteristics of the five sites are listed in Table 4

The risk factors we included in the logistic model include: obesity, alcohol dependence, 

hypertensive disorder, major depressive disorder, type 2 diabetes, and hyperlipidemia 

[26,27], i.e.,

logit P(AMI = 1) Obesity + Alcohol dependence + Hypertensive disorder + Major depressive disorder
+ Type 2 diabetes mellitus + Hyperlipidemia

Figure 4 shows the estimated log odds ratios as well as the 95% confidence intervals for six 

risk factors from four different methods. One direct observation is that there is a substantial 

difference between the ODAL estimates and estimates from our proposed robust-ODAL 

algorithm. For most of the risk factors, ODAL provides the point estimates of the log odds 

ratio closer to the pooled analysis. However, comparing the distributions of the data at the 

five claims databases, it is highly likely that the data stored in JMDC are very different from 

the other sites as it is a Japanese database while others are all from the US. Among the four 

US sites, MDCR tends to have older patients and therefore has a higher prevalence of AMI, 

hypertensive disorder, Type 2 diabetes, and Hyperlipidemia. Thus, data are heterogeneously 

distributed across the five datasets, and JMDC and MDCR are likely more different from the 

other three sites. As a consequence, it is believed that fitting a joint logistic regression model 

across all sites might lead to bias as it ignores the difference between the sites. And the 

estimates from the pooled analysis are possibly biased. Our proposed robust-ODAL 

algorithm is designed to account for such heterogeneity and as a result, it is shown to have 

the widest confidence interval, which properly reflects the potential impact of heterogeneity.

4. Discussion

Motivated by the critical need for data integration that can account for heterogeneity across 

clinical sites, we proposed a simple yet effective privacy-preserving distributed algorithm for 

logistic regressions. Our algorithm is designed to provide an estimator of multi-site logistic 

regression that is robust to the presence of outlying studies. The proposed robust-ODAL 

requires to transfer the same aggregated information as the original ODAL. However, the 

robust-ODAL is shown to have higher accuracy, compared to the ODAL, in practical settings 
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where the data are not independently and identically distributed. In addition, the robust-

ODAL also outperforms traditional meta-analysis with less bias in settings with rare 

diseases.

There are several advantages of the proposed algorithm compared to the existing distributed 

algorithms. First, compared to the iterative algorithms such as GLORE and WebDISCO 

[9,18,19], robust-ODAL does not require iterative communication across the sites, reducing 

the communication cost and the amount of administrative efforts. Secondly, implementation 

of the robust-ODAL only requires the access of individual patient-level data in a single 

clinical site. Only aggregated information is transferred from other sites to construct the 

surrogate likelihood function which avoids sharing patient-level information. Thirdly, 

compared to the ODAL, the robust-ODAL produces substantially less biased estimates of 

regression coefficients.

However, the proposed method has a few limitations. First, compared to the original ODAL 

algorithm, the robust-ODAL is preferred if there exist potential outlying clinical sites. When 

the data are considered to be relatively homogeneous, the ODAL method is preferred. 

Secondly, based on the real data application, it suggested that the total number of clinical 

sites might affect the performance of the proposed method. When the total number of sites is 

small, the robust-ODAL may not perform well because the median is more sensitive (with 

larger variation) when the number of sites is small. Thirdly, the proportion of the outlying 

sites among all the sites also makes an impact on the proposed method. In this paper, we 

assume there exists a small proportion of outlying sites among all the sites. However, when 

the proportion is large, other methods should be considered.

Our current investigation can be extended in several aspects. First, since currently we only 

have access to this data, we plan to apply this method to other datasets in the future. 

Secondly, we plan to develop methods to integrate other types of outcomes, including 

continuous, categorical, and time-to-event data. The integration of evidence from statistical 

models such as Cox proportional hazard models poses unique challenges due to the need for 

communicating risk sets across sites. Finally, we have been developing an open-source 

software R package for the direct implementation of our methods in distributed research 

networks. We believe that our algorithm can be a good complement to the existing 

distributed algorithms for better facilitating data integration across health systems while 

accounting for heterogeneity across clinical sites.
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Fig. 1. 
Among K sites, a small number of the sites are considered heterogeneous taking into the 

factors of the patient population, clinician population, data quality, etc., compared with other 

relatively homogeneous sites.
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Fig. 2. 
Illustration of the robust-ODAL method. I: Using data from Site 1 (i.e., local site) to 

estimate the local estimator β, and transfer β to other sites. II: Intermediate term ∇L j(β) is 

evaluated at each site and transfer back to Site 1. III: With ∇L1(β) and L1(β), we obtain the 

surrogate function LR(β) and the robust-ODAL estimator β is obtained by maximizing the 

surrogate function (4).
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Fig. 3. 
Simulation results of K = 10 and K = 50 for setting one and setting two with common 

disease prevalence (37%) and rare disease prevalence (0.8%). Setting one: heterogeneity 

only exists in the distribution of covariates while the disease prevalence and the coefficients 

of the covariates are the same across all sites. Setting two: distributions of variables, disease 

prevalence, and coefficients of the covariates are all different across the sites.
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Fig. 4. 
Comparison between the log odds ratio estimates from the ODAL (yellow), robust-ODAL 

(green), meta-analysis (blue), and pooled analysis (black) with data from OHDSI network 

for AMI as the outcome and CCAE as the local site.
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Table 1:

Sizes of Groups 1 and 2 when the total number of sites K = 10 and 50

Total number of sites Size of Group 1 Size of Group 2

K= 10
9 (90%) 1 (10%)

8 (80%) 2 (20%)

K= 50
45 (90%) 5 (10%)

40 (80%) 10 (20%)
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Table 2:

Distributions of variables x1 and x2 in simulation studies

Covariates Group 1 Group 2

x1 (confounder) Normal (−0.25 ~ 0.25, 1) Normal (2, 0.5)

x2 (parameter of interest) Bernoulli (0.25 ~ 0.35) Bernoulli (0.7)
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Table 3:

Values of coefficients in heterogeneous setting one and two

Outcome

Setting One Setting Two

β0 β1 β2 β0 β1 β2

Group 1 Group 2 Group 1 Group 2

Common −0.5
1.0 −1.0

−0.5 −1.0
1.0 1.8 −1.0

Rare −6 −4.8 −6
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Table 4.

Characteristics of the five claims datasets at the Janssen Research and Development at Johnson & Johnson.

Dataset CCAE JMDC MDCD MDCR Optum

Number of subjects 64,222 1,976 59,861 69,164 62,348

Median Age 43 42 35 71 47

% of Female 69.21 36.69 73.82 68.08 69.68

Number of outcomes

 Acute myocardial infarction (AMI) 155 2 438 1,207 360

% of AMI 0.24 0.10 0.73 1.75 0.58

% of Obesity 7.15 0.71 16.54 6.71 9.62

% of Alcohol dependence 7.15 1.01 16.54 6.71 9.62

% of Hypertensive disorder 20.81 14.37 31.80 57.70 32.96

% of Major depressive disorder 4.17 3.88 3.55 3.16 3.34

% of Type 2 diabetes mellitus 7.49 2.83 14.63 21.83 12.71

% of Hyperlipidemia 20.96 19.23 22.00 43.21 33.85

*
The full names of the five claims datasets are CCAE (IBM MarketScan® Commercial), JMDC (Japanese Medical Data Center), MDCD (IBM 

MarketScan® Medicaid), MDCR (IBM MarketScan® Medicare) and Optum (Optum© De-Identified Clinformatics).
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