Table 2. Predictive performances of the limited sampling equations for AUC with various sampling time points.
Sampling point | R2 | Model equations for AUC | Prediction error (%) | AIC | |||
---|---|---|---|---|---|---|---|
ME | MAE | RMSE | |||||
One | C0 | 0.673 | C0x15.704+61.203 | -3.169 | 14.531 | 18.113 | 536.5 |
C2 | 0.692 | C2x6.626+34.433 | -2.410 | 12.618 | 17.560 | 531.6 | |
C4 | 0.896 | C4x8.838+23.165 | -1.070 | 7.633 | 10.226 | 446.2 | |
C6 | 0.914 | C6x10.364+20.787 | -0.881 | 6.888 | 9.268 | 430.7 | |
C8 | 0.875 | C8x11.225+22.443 | -1.110 | 8.026 | 11.185 | 460.4 | |
C12 | 0.848 | C12x15.053+14.557 | -1.002 | 9.714 | 12.345 | 476.0 | |
Four | C0, C2, C4, C6 | 0.978 | C0x2.232+C2x1.998+C4x2.539+C6x4.718+4.890 | -0.274 | 4.064 | 4.784 | 329.1 |
Three | C2, C4, C6 | 0.973 | C2x2.136+C4x2.699+C6x5.397+4.827 | -0.277 | 4.293 | 5.277 | 343.6 |
C0, C2, C6 | 0.969 | C0x2.494+C2x2.292+C6x7.051+5.642 | -0.334 | 4.563 | 5.691 | 355.5 | |
C0, C2, C4 | 0.954 | C0x3.715+C2x2.127+C4x5.654+8.251 | -0.501 | 5.700 | 6.849 | 384.8 | |
C0, C4, C6 | 0.950 | C0x3.715+C2x2.127+C4x5.654+8.251 | -0.501 | 5.700 | 7.187 | 392.4 | |
Two | C2, C6 | 0.962 | C2x2.468+C6x7.981+5.623 | -0.342 | 4.926 | 6.204 | 368.2 |
C4, C6 | 0.940 | C4x3.981+C6x6.079+16.603 | -0.678 | 5.633 | 7.820 | 404.8 | |
C2, C4 | 0.939 | C2x2.415+C4x6.773+9.014 | -0.567 | 6.649 | 7.887 | 406.2 | |
C0, C6 | 0.929 | C0x3.677+C6x8.743+19.219 | -0.813 | 6.133 | 8.503 | 418.0 | |
C0, C4 | 0.922 | C0x4.747+C4x7.094+20.024 | -0.909 | 6.796 | 8.885 | 425.0 | |
C0, C2 | 0.834 | C0x9.352+C2x4.150+21.921 | -1.178 | 9.801 | 12.972 | 484.8 |
AUC, area under the curve; ME, mean error; MAE, mean absolute error; RMSE, root mean squared error; AIC, Akaike’s information criterion.