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Abstract

Genome and metagenome comparisons based on large amounts of next generation sequencing 

(NGS) data pose significant challenges for alignment-based approaches due to the huge data size 

and the relatively short length of the reads. Alignment-free approaches based on the counts of 

word patterns in NGS data do not depend on the complete genome and are generally 

computationally efficient. Thus, they contribute significantly to genome and metagenome 

comparison. Recently, novel statistical approaches have been developed for the comparison of both 

long and shotgun sequences. These approaches have been applied to many problems including the 

comparison of gene regulatory regions, genome sequences, metagenomes, binning contigs in 

metagenomic data, identification of virus-host interactions, and detection of horizontal gene 

transfers. We provide an updated review of these applications and other related developments of 

word-count based approaches for alignment-free sequence analysis.
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INTRODUCTION

Molecular sequence comparison is one of the most basic and fundamental problems in 

computational biology, and has been widely used to study the evolution of whole genome 

sequences and gene regulatory regions, gene function prediction, sequence assembly, and 

finding the relationships among microbial communities. The most widely used methods for 

molecular sequence comparison are alignment-based including the Smith-Waterman 
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algorithm (1), BLAST (2), BLAT(3), etc. Although alignment-based approaches are most 

accurate and powerful for sequence comparison when they are feasible, their applications are 

limited in some situations. First, for whole genome comparison, there are many duplications, 

translocations, large insertions/delections, and horizontal gene transfers in the genomes. This 

situation makes it difficult to use alignment-based methods to investigate the relationship 

among whole genome sequences. Second, in the current next generation sequencing (NGS) 

era, investigators can sequence the genomes using NGS efficiently and economically. 

However, some parts of the genomes may not be sequenced due to the stochastic distribution 

of the reads along the genomes and the difficulties of sequencing some parts of the genomes, 

especially when the coverage is relatively low. Even if we can assemble the reads into long 

contigs, these contigs may not share long homologous regions making it challenging to 

study the relationships among the genomes using alignment in such situations. Third, 

noncoding regions such as gene regulatory regions are not highly conserved except for some 

functional regions such as transcription binding sites, and cannot be reliably aligned. 

Therefore, alignment-based approaches are not well suited to study the evolution of gene 

regulatory regions. Fourth, alignment is not suitable to compare sequences of large 

divergence. When we investigate the relationship between viruses and their hosts, infecting 

virus-host pairs may only share a tiny fraction of their genomes such as CRISPR regions, 

and thus alignment-based approaches can potentially identify the hosts of only a small 

fraction of viruses. Fifth, many large genome and metagenome data sets from shotgun NGS 

sequencing are available and alignment-based methods are too time consuming. For all these 

scenarios, alignment-free methods for genome and metagenome comparison provide 

promising alternative approaches.

Alignment-free approaches for sequence comparison can be divided into several different 

groups: a) word-counts (4, 5, 6, 7, 8, 9, 10, 11, 12, 13), b) average longest common 

substrings (14), shortest unique substrings (15, 16), or a combination of both (17), c) 

sequence representation based on chaos theory (18, 19, 20), d) the moments of the positions 

of the nucleotides (21), e) Fourier transformation (22), f) information theory (23), and g) 

iterated maps (24). Several excellent reviews on various alignment-free sequence 

comparison methods have been published (25, 26, 27, 28, 29)

In this review, we concentrate on methods that can be applied to the comparison of 

sequences based on NGS data. Since the word-count-based approaches are the most 

adaptable to NGS reads data, we deal with word-count-based approaches as in (27). These 

methods first count the number of occurrences of word patterns (k-mers, k-grams, k-tuples) 

along a sequence or in a NGS sample using different algorithms such as Jellyfish (30), DSK 

(31), and KMC 2 (32). Secondly, a similarity/dissimilarity measure is defined between any 

pair of sequences based on the word-count frequencies. Finally, various clustering 

algorithms such as hierarchical clustering and neighbor-joining are used to group the 

sequences. In the rest of the review, we use “word” and “k-mer” interchangeably.

The use of k-mer frequencies to compare molecular sequences traces back to the early work 

of Carl Woese and colleagues from the early 1970s to the mid 1980s when they generated 

oligonucleotide catalogs of 16S rRNA sequences from about 400 organisms (33, 34, 35, 36, 

37, 38). They used a similarity measure, SAB, for two sequences A and B using k-mers 
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similar to the Bray-Curtis dissimilarity (39). When the whole 16S rRNA sequences for many 

organisms were available, they showed a positive correlation between the dissimilarity of 

two sequences using k-mers with the distance calculated by alignment although the 

correlation is not very high (0.40) (40). Ragan et al. (41) gave an excellent review of these 

early efforts to study the relationships among 16S sequences using oligonucleotide patterns 

and compared the dendrograms derived using multiple sequence alignment, the similarity 

measure SAB, and the newly developed d2
S statistic (10, 11). It was shown that the tree 

constructed based on d2
S for k from 6 to 16 yielded the dendrogram that was most consistent 

with the maximum likelihood tree using multiple sequence alignment.

Many word-count-based methods for sequence comparison have been developed including 

the un-centered correlation of word count vectors between two sequences (9), χ2-statistics 

(7, 8), composition vectors (13), nucleotide relative abundances (42, 43), and the recently 

developed d2
∗ and d2

S statistics (10, 11). It was shown that alignment-free methods are more 

robust than alignment-based methods especially against genetic rearrangements and 

horizontal gene transfers (44, 45). Since word frequencies are generally stable across 

different genomic regions, alignment-free methods work well even with sequences coming 

from different regions of the genomes. Song et al. (27) presented an review of the 

development and applications of these methods before 2013. In the current review, we 

provide further developments of d2
∗ and d2

S and their applications in recent years including a) 

how to determine the background Markov chain model of the sequences, b) genome, 

metagenome, and transcriptome comparison using Markov chains, c) inference of virus-

bacterial host infectious associations, d) identification of horizontal gene transfers, and e) 

integrated software for alignment-free genome and metagenome comparison. We will also 

present an review of other developments related to d2
∗ and d2

S in recent years. For a recent 

review of other alignment-free sequence comparison methods and their applications, see 

(25).

DETERMINATION OF THE BACKGROUND MARKOV CHAIN MODELS OF 

THE GENOMES

Alignment-free sequence comparison methods using k-mers generally involve counting the 

number of occurrences of words of length k in genomic sequences and comparing sequences 

using dissimilarity measures defined based on k-mer frequencies. Different dissimilarity 

measures have been developed using a number of principles. The measures can be broadly 

classified into two groups: measures that require background word frequencies and those 

that do not. Lu et al. (46) developed a one-stop platform for computing a suite of 28 different 

alignment-free measures and provided various forms of visualization tools including 

dendrograms, heatmaps, principal coordinate analysis and network display. The definitions 

of the 28 measures can be found in the supplementary material for (46).

For measures that do not require background word frequencies, the observed word frequency 

or word presence (or absence) are directly used to compute the dissimilarity measures. The 
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measures include but are not limited to, Euclidian distance (Eu), Manhattan distance (Ma), 

d2 (9), Feature Frequency Profiles (FFP) (12), Jensen-Shannon divergence (JS) (47), 

Hamming distance, and Jac-card index. For measures that take background word frequency 

into account, dissimilarity between sequences is computed using the normalized word 

frequencies, where the expected word frequencies estimated using a background model are 

subtracted from the observed word frequencies to eliminate the background noise and 

enhance the signal. This group of measures includes d2
∗, d2

S (11, 10) and their variants (48, 

49, 50), CVTree (13, 51), Teeling (52), EuF (53) and Willner (42, 54), where different forms 

of sequence background models are incorporated.

The second group of measures requires the knowledge about the approximate distribution of 

word counts in the background sequences. Markov chains (MC) are widely used to model 

genomic sequences (55) with many applications including the study of dependencies 

between bases (8), the enrichment and depletion of certain word patterns (56), prediction of 

occurrences of long word patterns from short patterns (57, 58), and the detection of signals 

in introns (59). The defining feature of a MC model is the “memorylessness” property, that 

implies that the future state of the sequence can be well predicted solely based on its latest 

history without knowing the full history. In particular, an r-th order MC assumes that the 

distribution of the future state only depends on the states of the past r positions regardless of 

the earlier history, i.e. P(Xt|X1…Xt−1) = P(Xt|Xt−r…Xt−1), where X1, X2,…Xt, are the states 

in the sequence X, and Xi takes its values from a finite alphabet of size L. For DNA 

sequences, the alphabet set is 𝒜 = A, C, G, T . The MC can be represented in the form of a 

Lr × L matrix, where the element in the matrix corresponds to the transition probability P(w|

w1w2…wr), w ∈ 𝒜. A 0-th order MC is the simplest case; in this case the positions in the 

sequence are independent and identically distributed (i.i.d.).

INFERENCE OF MC PROPERTIES FOR A LONG GENOMIC SEQUENCE

For a long genomic sequence, efficient statistics are available to determine the order of the 

MC (60, 61, 62, 63, 64). For reviews on the application of MCs to molecular sequence 

analysis, see (65, 66, 67, 68). In particular, under the hypothesis that the long sequence 

follows a (k − 2)-th order MC, it holds that twice the log-likelihood ratio of the likelihood of 

the sequence under a (k − 1)-th order MC versus that under the (k − 2)-th order MC model 

follows approximately a χ2-distribution with df k = (L − 1)2Lk−2 degrees of freedom. The 

log-likelihood ratio can be approximated by the Pearson-type statistic

Sk = ∑
w ∈ 𝒜k

(Nw − Ew)2

Ew
, 1.

where w = w1w2⋯wk denotes a k-mer consisting of letters wi ∈ 𝒜, −w = w2 ⋯ wk, w− = 

w1w2⋯wk−1, and −w− = w2⋯wk−1, Nw denotes the count of the word w in the sequence, and 

Ew =
N−w

N
w−

N
w−−

 is the estimated expected count of w if the sequence is generated by a MC of 
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order (k − 2), for k ≥ 3. For k = 2, N
w−−  is replaced by the total number of bases in the 

sequence.

Several estimators for the order of MC have been proposed based on the above results of the 

hypothesis testing. Menndez et al. (69) proposed a procedure for estimating the order by 

performing a sequence of tests for increasing orders until the null hypothesis is accepted. 

Papapetrou and Kugiu- matzis (70) similarly used sequential hypothesis tests to find the 

optimal order of MC based on the significance of the conditional mutual information (CMI) 

of different orders. Moray and Weiss (71), Peres and Shields (72) and Dalevi et al. (73) 

developed methods to estimate the order of a MC based on the observation of a maximal 

sharp transition of |Nw − Ew| at the true order. Baigorri et al. (74) estimated the order of MC 

by considering the change of χ2-divergence involving Sk. For the cases where a χ2-test fails 

due to inefficient data, Besag and Mondal (75) provided exact goodness-of-fit tests for 

Markov chains.

Model selection approaches have also been widely used in the determination of the order of 

MC. The Akaike information criterion (AIC) (76), AICc (77), the Bayesian information 

criterion (BIC) (78), and the Efficient Determination Criterion (EDC) (79) were proposed to 

estimate the order of MC, and their consistency were studied in Katz (80) and Peres and 

Shields (72). All of these model selection methods were formulated using the logarithm of 

the maximum likelihood of the sequence and a penalty term related to the number of 

parameters in the model. Let X be a sequence under the r-th order Markov model ℳr. Then 

the log-maximum likelihood of the data under the model ℳr is

l(X; ℳr) = ∑
w1w2…wr ∈ 𝒜r, w ∈ 𝒜

Nw1w2…wrwlog(P(w ∣ w1w2…wr)),

where P(w |w1w2…wr) =
Nw1w2…wrw

Nw1w2…wr
 is the estimated transition probability. Then the optimal 

order r* of the MC is found by minimizing various criteria as follows.

AIC(r) = − 2l(X; ℳr) + 2 ℳr ,
AICc(r) = AIC(r) + 2 ℳr ( ℳr + 1)/( Xr − ℳr − 1),
BIC(r) = − 2l(X; ℳr) + ℳr log Xr ,
EDC(r) = − 2l(X; ℳr) + ℳr c( Xr ),

where |Xr| is the data size of Xr, i.e. the total number of (r + 1)-words in the sequence, ∣ ℳr ∣

is the number of parameters in the model (Lr × L in this case), and c(·) is a general 

increasing function. Narlikar et al. (47) evaluated the AIC, AICc and BIC methods for 

estimating the order of a MC of a genomic sequence. The results showed that the order of a 

MC had marked effects on the performance of sequence clustering and classifications. The 

MC order obtained based on the BIC optimality criterion yielded the best performance 

among all the model selection criteria.
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INFERENCE OF MC PROPERTIES BASED ON NGS DATA

One successful application of alignment-free methods is comparing different genomes using 

NGS reads data for which each sample contains millions of short reads randomly sampled 

from different parts of the genomes. For NGS reads data, it is challenging to assemble short 

reads to recover the original genomic sequences. Ren et al. (81) developed an assembly-free 

method to estimate background MCs based solely on short reads. The NGS reads data are 

modeled as generated by a two-layer stochastic process: first, a (un-observed) long MC 

sequence is generated, and second, short reads are randomly sampled from the long MC 

sequence.

The classic statistic Sk defined in equation 1 for the long sequence was extended to Sk
R for 

the NGS data by replacing the word frequencies in a long sequence with that in NGS short 

reads. Let Nw
R be the count of the k-word w in the NGS short reads (the superscript R refers 

to the “read” data). Define

Sk
R = ∑

w ∈ 𝒜k

(Nw
R − Ew

R)2

Ew
R . 2.

Due to the additional randomness introduced in the process of sampling short reads from 

genomic sequences, the new statistic Sk
R no longer follows the classic χ2- distribution. 

Instead, it was shown that Sk
R follows a gamma distribution when the reads are sampled 

based on the Lander-Waterman model (82). In particular, let fi be the fraction of the genome 

that is covered by exactly i reads, i = 1, 2, ⋯. Define the effective coverage

d =
∑i i

2 f i
∑i i f i

. 3.

The statistic Sk
R d has an approximate χ2-distribution with dfk = (L−1)2Lk−2 degrees-of-

freedom; equivalently, the statistic Sk
R has an approximate gamma distribution with shape 

parameter dfk/2 and scale parameter 2d. Several estimators for the order of a MC based on 

NGS data using various criteria, such as the sharp transition of Sk
R, AIC and BIC, were 

proposed and compared in (81), by extending the classical order estimators for long genomic 

sequences to those for NGS data.

APPLICATIONS OF THE ALIGNMENT-FREE METHODS TO COMPARATIVE 

GENOMICS

Among the various alignment-free sequence comparison methods, the measures using 

normalized k-mer counts, d2
∗ and d2

S (10, 11, 27), have been shown to have superior 

performance for comparing genomic sequences. Wan et al. (10) and Burden et al. (83) 
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studied the theoretical statistical properties of the d2
∗ and d2

S measures. Song et al. (49) 

extended the definition of d2
∗ and d2

S from two long genomic sequences to the comparison of 

two samples based on NGS reads data, and investigated theoretically the properties of the 

measures. As an application, the relationship of 13 tropical tree species in (84) were revealed 

without assembly using d2
∗ and d2

S. Ren et al. (81) clustered genomic sequences of 28 

vertebrate species based on NGS reads using d2
∗ and d2

S under different MC models. Using 

the appropriate order of MC, the pairwise dissimilarity scores using d2
∗ and d2

S are highly 

correlated (Spearman’s rank correlation coefficient 0.92) with the true pairwise evolutionary 

distances inferred based on the multiple sequence alignment of homologous genes in (85). 

Compared to d2
∗, d2

S is less affected by the order of the MC model. For example, the 

Spearman’s rank correlation coefficient using d2
S is 0.86 even under the i.i.d model.

Bernard et al. (44) and Chan et al. (45) systematically assessed the performance of various 

alignment-free measures under different evolutionary scenarios using simulations and 

empirical data. The results showed that the alignment-free methods are sensitive to sequence 

divergence, less sensitive to lateral genetic transfer, and robust against genome 

rearrangement, among-site rate heterogeneity and compositional biases. Chan et al. (45) 

performed phylogenetic inference using alignment-free measures for 4,156 nucleotide 

sequences. The topology obtained using d2
S was most congruent with the phylogeny inferred 

using multiple sequence alignment. Similarly, the relationship among 143 bacteria and 

archaea genomes (44, 86), 63 Enterobacteriaceae genomes (87), 27 Escheriachia coli and 

Shigella genomes (44, 87), 21 primate genomes (46) and 27 primate mitochondrial genomes 

(88), 14 plants (88), and 8 Yersinia genomes (44) were inferred using d2
S and compared with 

the evolutionary tree built based on multiple sequence alignment. Despite some 

incongruence, the clustering results in general had highly similar structures with the classical 

evolutionary trees.

To evaluate the robustness of the clustering, different resampling methods, including 

jackknife (44) and bootstrap (81, 89), were applied for resampling sequences to provide a 

measure of robustness for the branches in the inferred clustering tree. The studies showed 

that alignment-free methods can accurately recover phylogenetic relationship even with low 

sequencing coverage. The time complexity for alignment-free methods was significantly 

lower compared to the traditional maximum likelihood and Bayesian methods based on 

multiple sequence alignment (89). It was estimated that alignment- free methods are 

approximately 140-fold faster than the traditional methods (45). Normalization of the 

background and including inexact matches increases the time complexity. Alignment-free 

methods based on k-mers lend themselves to parallel algorithms, and parallel computational 

methods have been applied to achieve speedup and scalability for alignment-free methods 

(90). When k is large, memory is a main limitation for storing k-mer counts and computing 

alignment-free measures (91).
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PREDICTION OF VIRUS-PROKARYOTIC HOST INTERACTIONS USING 

ALIGNMENT-FREE METHODS

It is widely recognized that bacteria and archaea (prokaryotes) play important roles in many 

ecosystems and significantly impact the health of humans, animals, and plants (92). 

However, much less is known about the viruses that infect prokaryotes. Since viral infections 

can lead to lysis of host cells, viruses consequently can indirectly impact ecological 

processes by regulating and controlling the abundance of prokaryotes. Metagenomic 

sequencing, that uses NGS to recover genetic material of microbial organisms from 

environment samples, can be used for high-throughput identification of bacteria, archaea, 

and viruses regardless of culturability. Increasing numbers of new viruses have been 

discovered by assembling short reads from various environments including human gut (93, 

94, 95, 96, 97), ocean (98, 99, 100), and soil (101, 102, 103). Yet, their biological functions 

and prokaryotic hosts cannot be directly inferred from the metagenomic data.

A few computational approaches have been developed recently for predicting the host given 

a viral sequence. The most straight forward method is alignment-based gene homology 

search and CRISPR search between virus and host genomes (104). However, not many 

viruses share regions with hosts and not many hosts have CRISPR spacers. In contrast, 

alignment-free methods can be powerful for revealing virus-host interaction relationships, 

because it is observed that viruses share highly similar k-mer usage with their hosts, possibly 

due to the fact that virus replication is dependent on translational machinery of its host (53). 

Edwards et al. (105) and Roux et al. (106) used Euclidean and Manhattan distances based on 

tetramers (k = 4) to measure the distance between viruses and hosts, and predicted the host 

as the one with the smallest distance to the query virus.

Ahlgren et al. (107) conducted a comprehensive evaluation of alignment-free dissimilarity 

measures over various k-mer lengths for host prediction. The study evaluated a suite of 11 

measures including those based on the observed word frequencies such as Euclidean and 

Manhattan distances and those based on normalized word frequencies such as d2
∗ and d2

S. The 

prediction accuracy of the measures were assessed based on the largest benchmark dataset 

containing 1,427 virus isolate genomes whose true hosts are known and ~32,000 prokaryotic 

genomes as host candidates. The measures based on normalized frequencies in general have 

better discriminatory power of separating true interacting virus-host pairs from random pairs 

than those based on observed word frequencies. Increasing k-mer length from 4 to 6 also 

improves the discriminatory power. Among the 11 measures, d2
∗ at k = 6 and a second order 

MC yielded the highest host prediction accuracy (Figure 1). Requiring a minimum 

dissimilarity score for making predictions (thresholding) and taking the consensus of the 30 

most similar hosts further improved accuracy. While prediction accuracy decreases for 

shorter contigs, the method is able to make decent predictions on contigs as short as 5 kbp. 

A software called VirHostMatcher was developed for predicting hosts of viruses and 

visualizing the predicted results using alignment-free methods.

Following the same principle that the virus-host genomes tend to have high similarity, Galiez 

et al. (108) developed a program, WIsH, that computes the likelihood of the query viral 
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sequence under each of the Markov models for candidate bacteria genomes, and predicts the 

host as the one whose model yields the highest likelihood. Since the program only relies on 

the Markov models for bacteria complete genomes, the method achieves decent accuracy 

even for viral contigs as short as 3 kbp, and it is generally faster than VirHostMatcher. WIsH 

uses a fixed 8th order MC to model the bacteria genomes, so the method may not be readily 

applicable for metagenomic contigs where the host contigs are so short that no sufficient 

data is available for estimating a high order MC.

Another group of host prediction methods is based on the observation that similar viruses 

often share the same host range. Different virus-virus similarity measures have been 

investigated using various principles (109, 110, 111), and the clusters in the gene-based 

virus-virus similarity network show high association with the host classes (111). Villarroel et 

al. (112) developed a host prediction tool, HostPhinder, that predicts the host of a query 

virus as the host of the most similar reference virus. The similarity was defined based on the 

proportion of the shared k-mers between the query and the reference virus genomes. Zhang 

et al. (113) developed machine learning based classifiers to predict if a query virus can infect 

a particular host genus, based on the common k-mer features learned from the existing 

infectious viruses. However, the method is only applicable to hosts that have a relatively 

large number of known infecting viruses.

GENOME AND TRANSCRIPTOME COMPARISON USING ALIGNMENT-FREE 

APPROACHES WITH VARIABLE LENGTH MARKOV CHAINS

Using Fixed Order Markov Chains (FOMC) to model the background sequence has several 

potential limitations. First, the MC order needs to be set manually. However, for most 

sequences of interest, there is no prior knowledge available for setting the correct MC order. 

Second, FOMC is not structurally rich. The number of parameters in an r-th order MC is (L 
− 1)Lr where L is the alphabet size, and there are no MC models with number of parameters 

between (L − 1)Lr and (L − 1)Lr+1. Third, the number of parameters grows exponentially 

with the MC order r. When the length of the sequence is short or sequencing depth is 

relatively low, the parameters cannot be accurately estimated.

Therefore, Liao et al. (114) investigated the use of the data-driven Variable Length Markov 

Chain (VLMC) (115) model as an alternative to FOMC to model background sequences. 

VLMC was originally designed for modeling one long sequence and was represented as a 

context tree structure (115, 116). Liao et al. (114) designed a three-step approach for 

prunning a tree based on NGS short reads data. First, a full prefix tree based on 1, 2, ⋯, 10-

mer frequency vectors was built. However, the tree usually overfits the data. Second, the full 

prefix tree was pruned to remove the redundant branches based on the Kullback-Leibler 

divergence (117). The pruned tree is called a context tree (116). The threshold value K for 

the Kullback-Leibler divergence determines the complexity of the pruned tree. The value of 

K was chosen by optimizing the Akaike Information Criterion (AIC) (118) designed for the 

high-throughput sequencing data. AIC measures the relative quality of statistical models for 

a given set of data. Third, transition probabilities were estimated with respect to the VLMC 

from the context tree, and the probabilities of words were then computed accordingly.
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Liao et al. (114) evaluated the performance of d2
S and d2

∗ using both simulations and real 

data. It was shown that VLMC outperformed FOMC to model the background sequences in 

transcriptomic and metatranscriptomic samples. Moreover, d2
S based on VLMC background 

model can identify underlying relationships among metatranscriptomic samples from 

different microbial communities, and can reveal a gradient relationship among the 

metatranscriptomic samples. VLMC is easier to apply than FOMC because of being free 

from MC order selections. The flexible number of parameters in VLMC avoids estimating 

the vast number of parameters of high-order MC under limited sequencing depth. In 

contrast, the VLMC model does not work as well as FOMC for investigating the relationship 

among whole genome or metagenome data. It was hypothesized that whole genomes and 

metagenomes contain mixtures of coding and noncoding regions and are too complex to be 

modeled by relatively concise VLMC models. Yet, the coding regions are more 

homogeneous than the whole genome. The clustering performance can be improved for 

metatranscriptomic data using the VLMC to model the background sequence, but not for 

whole genome or metagenomic data. For the comparison of metagenomes, Jiang et al. (119) 

showed that d2
S with the i.i.d background model and k-mer length between 6 to 9 bps 

generally performs well compared to other measures.

It is time-consuming to model VLMC due to the generation and the pruning of the prefix 

tree. Behnam and Smith (120) measured the dissimilarity between metagenomic samples 

with dot product distance based on the i.i.d. model, and they integrated a randomized 

hashing strategy based on locality-sensitive hashing and the regular nearest neighbor graph 

to reach logarithmic query time for identifying similar metagenomes even as the database 

size reaches into the millions. Meanwhile, also focusing on fast comparisons among large-

scale multiple metagenomic samples, Benoit et al. (121) developed the program, Simka, to 

compute 16 standard ecological distances by a parallel K-mer counting strategy on multiple 

data sets. Simka was able to compute in a few hours both qualitative and quantitative 

ecological distances based on hundreds of metagenomic samples.

IMPROVING METAGENOMIC CONTIG BINNING USING d2
S

Wang et al. (122) used d2
S to improve contig binning. Assigning assembled contigs into 

discrete clusters, known as bins, is a key step toward investigating the taxonomic structure of 

microbial communities (123). Contig binning using k-mer composition is based on the 

observation that relative sequence compositions are similar across different regions of the 

same genome, but differ between distinct genomes (42, 124). Contigs in the same bin are 

expected to come from the same taxonomic group. Three different types of strategies have 

been used to bin contigs: sequence composition, abundance and a hybrid between the two. 

Sequence composition based methods use k-mer frequencies with k=2-6 as genomic 

signatures of contigs (125, 126). Abundance based methods use the relative abundance 

levels of species and the distribution of the number of reads containing certain k-mers to bin 

contigs (127, 128). The hybrid approaches use both composition and abundance of k-mers to 

bin contigs (129, 130). Most of the currently available binning methods used the frequency 

of k-mers directly, but this represented absolute, not relative, sequence composition. Here, 
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“absolute” frequency refers to the number of occurrences of a k-mer over the total number of 

occurrences of all k-mers. On the other hand, “relative” frequency refers to the difference 

between the observed frequency of a k-mer and the corresponding expected frequency under 

a given background model. The dissimilarity measures d2
S based on relative frequencies of k-

mers have been successfully used for sequence comparison as reviewed above. Therefore, 

we expected that calculating the dissimilarity between contigs using d2
S would improve 

contig binning compared to other contig binning methods that are based on the difference of 

absolute k-mer frequencies. However, directly using d2
S for contig binning is too time 

consuming and is impractical for most metagenomic data.

Instead of binning contigs directly using d2
S, Wang et al. (122) developed d2

S Bin that uses d2
S

to improve reasonable contig binning results using other fast and efficient programs such as 

MetaCluster3.0 (125), MetaWatt (131), SCIMM (132), MaxBin1.0 (129), and MyCC (130). 

Each contig was modeled with a MC based on its k-mer frequency vector. The center of the 

bin was represented by the average k-mer frequency vectors of all contigs in this bin and was 

also modeled with a MC. Then, d2
S was used to measure the dissimilarity between a contig 

and the center of a bin based on relative k-mer composition. Finally, a K-means clustering 

algorithm was applied to cluster the contigs based on the d2
S dissimilarities. Recall, precision 

and Adjusted Rand Index (ARI) were used to evaluate the binning performance. Wang et al. 

(122) showed that d2
S Bin consistently achieved the best performance with k= 6-mers under 

the i.i.d. background model. d2
S Bin improves the binning performance in 28 out of 30 testing 

experiments. Experiments showed that d2
S accurately measures the dissimilarity between 

contigs of metagenomic reads and that measures defined based on relative sequence 

composition are more suitable for contig binning. Also, d2
S Bin can be applied to any existing 

contig-binning tools for single metagenomic samples to improve binning results.

IMPROVING THE IDENTIFICATION OF HORIZONTAL GENE TRANSFER 

USING d2
∗ OR CVTree

Horizontal gene transfer (HGT) or lateral gene transfer (LGT) describe the transmission of 

genetic material between organisms that are not in a parent-offspring relationship. HGT 

plays an important role in the evolution of microbes and is responsible for metabolic 

adaption (133) and the spread of antibiotic resistance (134). Existing computational methods 

for HGT inference can be broadly separated into two groups: alignment-based and 

alignment-free methods.

Alignment-based, or phylogenetic methods for detecting HGT rely on phylogenetic 

conflicts; that is, finding genes whose phylogenetic relationships among multiple organisms 

differ significantly from that of other genes (135, 136). Although alignment-based methods 

are considered to be the gold standard (137) for HGT detection because of their explicit 

models, finding topological incongruences is computationally demanding, requires large 
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memory, and requires that genomes of interest are annotated and their phylogenetic 

relationships are known. In addition, alignment-based methods can only be applied to coding 

sequences and thus have limited ability to detect horizontal transfer in non-coding regions.

Instead, alignment-free methods, also called compositional parametric methods, can be used 

to avoid these limitations. Alignment-free methods infer horizontal gene transfer by 

detection of regions in a genome with atypical word pattern composition based on the 

observation that sequences transferred from donor genomes have different composition 

signatures from that of the host genome (43). Recently, Cong et al. (138, 139, 140) 

introduced TF-IDF as a scalable alignment-free approach for HGT detection in large 

molecular-sequence data sets by combining multiple genomes and k-mer frequencies. 

However, these methods require the phylogenetic relationship among a group of genomes 

and they can only detect HGT within this group of genomes. More widely used alignment-

free methods apply a sliding window approach to scan a single genome and calculate the 

dissimilarity between each window and the whole genome. Consecutive windows with 

dissimilarity higher than a threshold are inferred as HGT. The performances of k-mer-based 

alignment-free methods depend largely on the choice of dissimilarity measures between a 

genomic region and the whole genome, on the k-mer length, on the sliding window size, and 

on the evolutionary distance between host and donor genomes. Manhattan and Euclidean 

distances between the k-mer frequency vector of a genomic region and that of the whole 

genome are the most frequently used measures for detecting HGTs because of their 

simplicity. For example, Dufraigne et al. (141) analyzed HGT regions of 22 genomes by 

using Euclidean distance with k-mer length of 4 bps. Rajan et al. (142) used Manhattan 

distance with k-mer length of 5 bps to detect HGT in 50 diverse bacterial genomes.

Several papers compared the performances of different dissimilarity measures for HGT 

detection. Because the true HGT history is unknown, the evaluation and benchmarking of 

HGT detection methods typically relies on simulated artificial genomes, for which the true 

simulated history is known. Tsirigos and Rigoutsos (143) investigated several dissimilarity 

measures between the relative frequencies of a genomic region and the whole genome under 

the i.i.d. model including correlation, covariance, Manhattan distance, Mahalanobis distance, 

and Kullback–Leibler (KL) distance for HGT detection. They showed that k-mers of length 

6-8 bps with covariance dissimilarity perform the best under their simulated situations. Becq 

et al. (144) reviewed alignment-free methods on horizontal gene transfer detection and 

showed that k-mer-based methods with a 5 kbps sliding window outperformed other 

alignment-free methods based on features such as GC content (145), codon usage (145) and 

dinucleotide content (43). However, they only tested Euclidean distance with k-mer length 4 

bps as genomic signature (141) for k-mer-based methods.

Recently, we evaluated the performance of different dissimilarity measures including 

Manhattan, Euclidean, CVtree, d2, d2
∗, d2

s  with different choices of k-mer length and Markov 

order. We also studied the influence of window size and evolutionary distance between host 

and donor genomes on HGT detection by both simulation and real data in terms of 

precision-recall curve (PRC). We showed that none of these dissimilarity measures work 

well when the donor and host genomes are within the same order level since the donor and 
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host genomes are too similar and it is challenging to distinguish the transferred regions. All 

dissimilarity measures perform well when the donor and host genomes are in different class 

levels since the host and donor genomes are highly different and most of these methods can 

identify their differences. For HGT between genomes from different order levels but in the 

same class level, background adjusted dissimilarity measures that consider Markov order of 

sequences, such as CVtree with k = 4 and d2
∗ with k = 3 and Markov order 1 can achieve 

significantly better performance than the other methods. The PRC results for different 

scenarios are shown in Figure 2.

Therefore, k-mer-based alignment-free methods for HGT detection are suitable when host 

and donor genomes are in different order levels and HGT length is greater than 5 kbps. 

Therefore, alignment-free methods should not replace alignment-based methods in all cases. 

Instead, they are complimentary as each has unique advantages in different scenarios and 

they also tend to find complimentary sets of HGT regions (146). Alignment-free methods 

are preferred when no evolutionary trees are available or genomes are not well annotated. 

Our study suggests that CVTree with word length of 4, d2
∗ with word length 3, Markov order 

1, and d2
∗ with word length 4, Markov order 1 all perform well in most situations.

OTHER WORD-COUNT BASED APPROACHES FOR SEQUENCE 

COMPARISON

Many other sequence dissimilarity measures based on k-mer frequencies have been 

developed in recent years. Liu et al. (48) proposed local alignment-free measures by 

summing up the maximal pairwise scores between any sub-fragments of a fixed length in the 

sequence. Ren et al. (50) developed a suite of alignment-free multiple sequence comparison 

methods to enable measuring similarity among a set of more than two sequences. Several 

alignment-free methods incorporating potential mismatches, sequencing errors, or spaced 

word patterns have been developed for sequence comparison (87, 88, 147, 148). Fan et al. 

(89) developed a method called Assembly and Alignment-Free (AFF) that defines the 

distance based on the proportion of shared k-mers as an indication of the amount of 

divergence between the species.

In most of the dissimilarity measures reviewed above, the k-mers are treated equally. 

Differential weighting of the k-mers may help study the relationship among the sequences. 

Patil and McHardy (149) generalized Euclidean distance to a weighted Euclidean distance 

where the weights are learned from the training data, and evaluated on the independent test 

data. The learned weighted Euclidean distances specified for a group of species increase the 

accuracy for inferring taxonomic relationships of a new species from the same group.

Qian and Luan (150) developed an alternative approach for weighting the different k-mers 

by maximizing the weighted L1 norm between the frequency vectors among all the 

sequences with cw being the weight for the word w. Qian and Luan (150) proposed to 

maximize
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∑
w ∈ 𝒜k

∑
i, j = 1

n
cw | f iw − f jw | ,

with the constraint of Σ
w ∈ 𝒜kcw = 1, where n is the number of sequences to be compared. 

Once the values of cw were determined, they modified the definitions of d2, d2
∗ and d2

S by 

putting the weight cw in front of the corresponding terms. Applications to the identification 

of homologous genes and cis-regulatory modules (CRM) showed that the weighted versions 

of these measures outperformed the original ones.

It was reasoned that if a k-mer is present/absent in a small fraction or most of the sequences, 

it does not markedly contribute to distinguishing the different sequences. Therefore, 

weighting the different k-mers according to the frequency of being present/absent in the 

sequences of interest can increase our understanding of the relationships among the 

sequences (151). For a k-mer w, let Fw be the fraction of the sequences with w present. The 

entropy of the word is defined as

Hw = − (Fwlog2(Fw) + (1 − Fw)log2(1 − Fw)) .

The weighted similarity measure between sequence i and sequence j was defined as

Ki j = ∑
w ∈ 𝒜k

Hw f iw f jw,

and then normalized using

Kij′ =
Ki j

KiiK j j
.

Finally, the dissimilarity between the two sequences was defined as dij = 2(1 − Kij′ ) (151). 

To speed up computational time as well as to save memory, Murray et al. (151) bin the k-

mers into different groups so that a group contains multiple k-mers. The authors showed that 

this weighted version outperformed the traditional d2 statistic and the Mash program (152).

DETERMINATION OF WORD SIZE k

In alignment-free sequence comparison using word counts, an important yet challenging 

problem is the length of word patterns. Although many studies are available, there are still 

no definitive answers to the optimal choice of word length. The optimal word length 

depends on the statistical measures for comparing the sequences, and the background 

models, the lengths, and the diversity of the sequences to be compared. For example, if the 

sequences are short, the optimal word length may be short since the sequences do not 

contain a large number of distinct words. Otherwise, the sequences may rarely share 
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common word patterns. However, short word patterns do not have high power to 

discriminate closely related sequences. If the sequences to be compared are highly similar, 

we expect that the optimal word length should be long as short word patterns will not be 

able to distinguish them. On the other hand, if the sequences to be compared are diverse, 

relatively short word patterns may suffice to distinguish the sequences.

Recently, Bai et al. (153) investigated the optimal word length when comparing two 

Markovian sequences using the χ2-statistic in (7). Bai et al. (153) framed sequence 

comparison as a hypothesis testing problem of evaluating if the two sequences come from 

two different Markov chains and used power under the alternative hypothesis as an 

optimality criterion. They showed both theoretically and by simulations that the optimal 

word length equals the maximum of the Markov orders of the two sequences plus one. This 

conclusion also holds for NGS data. Using the estimated Markov orders resulted in minimal 

loss of power when comparing two sequences. Applications to real sequences to find 

homologs of the human protein HSLIPAS and the cis-regulatory modules (CRM) in four 

mouse tissues (forebrain, heart, limb and midbrain) confirmed the theoretical results. 

Preliminary simulation results showed that this k-mer length may also be optimal for other 

measures including CVTree (13), d2
∗ and d2

S (10, 11). However, we could not prove this claim 

theoretically.

In a series of papers, Kim and colleagues (5, 6, 12, 154) investigated the optimal word 

length when using the Jensen–Shannon (JS) divergence between the word frequency vectors 

to measure the dissimilarity between two sequences. The lower limit of the word length was 

suggested as logL(n), where n is the average length of the sequences to be compared and L is 

the alphabet size. To obtain an upper bound, they defined cumulative relative entropy (CRE) 

as follows. Let Fk = (fw, w ∊ Ak) be the frequency vector of all the words of length k and 

Fk = ( f w, w ∈ 𝒜k) be the corresponding expected frequency under the k − 2-th order Markov 

chain. The CRE function is defined by

CRE(t)= ∑
k = t

∞
KL(Fk, Fk),

where K L is the Kullback-Leibler divergence. The upper bound of the optimal k is the value 

of t such that CRE(t) is close to zero. In practice, they used the t such that CRE(t) is less 

than 10% of the maximum CRE. For the pairwise comparison among a set of sequences, if 

the lengths of the sequences to be compared are not highly different, the above approach will 

give similar lower and upper bounds for the optimal word length. The final k-mer length can 

be chosen within the overlapping ranges of the optimal word length among the sequences. If 

the sequences have highly different lengths, the authors suggested to divide the large 

genomes into blocks of equal length so that the sequences to be compared have similar 

length. They applied the method to investigate the relationships among the Escherichia coli/

Shigella group (6), prokaryotes (5), and dsDNA viruses (154). Recently, Zhang et al. (155) 

used the approach to investigate the relationship among close to 4,000 viruses with very 

different lengths.
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INTEGRATED SOFTWARE FOR ALIGNMENT-FREE SEQUENCE 

COMPARISON

As reviewed in the above sections, a large number of alignment-free sequence comparison 

approaches have been developed and most of the individual studies have accompanying 

software tools available. To facilitate the use of the different alignment-free methods, a 

general-purpose alignment-free platform is desirable, which is expected to include the 

support of both assembled genome sequences and unassembled NGS shotgun reads as input, 

integration of exhaustive alignment-free sequence comparison measures, and visualization of 

results.

CAFE (46) is a stand-alone alignment-free sequence comparison platform for studying the 

relationships among genomes and metagenomes through a user-friendly graphical user 

interface. Overall, CAFE integrates 28 distinct alignment-free measures, including 10 

conventional measures based on k-mer counts (e.g., Euclidean, Manhattan, d2, Jensen-

Shannon divergence (5), feature frequency profiles (FFP) (12), Co-phylog (87), etc.), 15 

measures based on presence/absence of k-mers (e.g., Jaccard, Hamming, etc.), and 3 

measures based on background adjusted k-mer counts (CVTree (13), d2
∗ (11), and d2

S (11)). 

All measures have been evaluated using whole primate and vertebrate genomes, whole 

microbial genomes, and NGS short reads from mammalian gut metagenomic samples. 

CAFE significantly speeds up the calculation of the background-adjusted measures such as 

CVTree, d2
∗ and d2

S, with reduced memory requirements. Moreover, the resulting pairwise 

dissimilarities among the sequences form a symmetric distance matrix, which can be directly 

saved in a standard PHYLIP format (http://evolution.genetics.washington.edu/phylip/

credits.html). CAFE also provides four types of built-in downstream visualized analyses, 

including clustering the sequences into dendrograms using the UPGMA algorithm, heatmap 

visualization of the matrix, projecting the matrix to a twodimensional space using principal 

coordinate analysis (PCoA), and network display. A screenshot of CAFE is shown in Figure 

3.

Alternatively, Alfree (25) provides a publicly accessible web-based sequence comparison 

platform for studying the relationships among nucleotide and protein sequences. Alfree 

integrates 38 popular alignment-free measures, including 25 word-based measures (e.g., 

Euclidean, Minkowski, FFP, Jaccard, Hamming, etc.), 8 Information-theoretic measures 

(e.g., Lempel-Ziv complexity (156), normalized compression distance (157), etc.), 3 graph-

based measures (158), and 2 hybrid measures (i.e., Kullback–Leibler divergence (159) and 

W-metric (160)). The majority of measures have been evaluated using simulated DNA 

sequences, primate mitochondrial genomes, prokaryotic genomes and proteomes, plant 

genomes, etc. Moreover, the resulting dissimilarities among the sequences are reported as 

phylogenetic trees, heat maps, and tables.

With the advances of efficient and affordable sequencing technologies, the high volumes of 

sequence data have brought computational challenges even for alignment-free sequence 

comparison. This concern is alleviated by Mash (152) that uses the MinHash 

dimensionality-reduction technique to reduce large amount of sequences to compressed 
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sketch representations. Generally, Mash estimates the Jaccard distance between pairwise k-

mer vectors in terms of compressed sketch representations, with moderate memory and 

computation overhead. Similarly, kWIP (151) counts k-mers, hashes them into a compressed 

sketch, and introduces an information-theoretic weighting to elevate the relevant k-mers 

against irrelevant ones. Finally, it computes the similarity as inner products of weighted 

frequency vectors, normalized by Shannon entropy. In addition, Benoit et al. (121) 

developed a program, Simka, for fast calculation of various distance measures between 

sequences for k-mers up to 30 bps long.

DISCUSSION AND CONCLUSIONS

With the development of NGS technologies, huge amounts of sequencing data can be 

generated efficiently and economically. Sequence comparison plays crucial roles to analyze 

the large amount of sequence data and to extract biological knowledge from them. Although 

alignment-based sequence comparison will continue to dominate molecular sequence 

analysis, alternative alignment-free sequence comparison has become increasingly important 

due to its efficiency in analyzing huge amount of sequence data as well as its comparable 

performance with alignment-based methods. In recent years, there is a surge of interest in 

using alignment-free sequence comparison approaches for investigating a variety of different 

problems including the study of evolutionary relationships of whole genome sequences and 

gene regulatory regions, comparison of metagenomes and metatranscriptomes, binning of 

contigs, detection of horizontal gene transfer, and virus-host infectious associations based on 

NGS data. Among the many types of alignment-free sequence comparison approaches, 

word-count based approaches are most popular due to their easy adaption to NGS data.

Most word-count based alignment-free approaches use the absolute word frequencies for 

sequence comparison. These approaches have the advantage of being simple, easy to 

calculate, and using less memory. On the other hand, relative word frequency based 

alignment-free methods that were originally developed by Karlin’s group (42, 43) and Hao’s 

group (13, 51) and were recently revitalized by our group (10, 66) outperformed absolute 

word-count based approaches in all the applications we have investigated including the 

comparison of genomes (49, 81), gene regulatory regions (27), metagenomes (119), and 

metatranscriptomics (114). They have also been used to improve the binning of contigs in 

metagenomes (122) and to predict virus-host interactions (107). By subtracting the expected 

word counts based on the background MC model from the observed word counts, the words 

distinguishing the sequences are strengthened while the weights of the irrelevant words are 

minimized resulting in the excellent performance of the background adjusted methods. 

However, the calculation of the background adjusted measures such as CVTree, d2
∗ and d2

S

adds extra burdens in memory and computational speed. Further improvements to speed up 

the computation of these measures and to reduce memory are needed.

Although there have been some studies on the optimal choice of word length for some 

measures such as χ2-statistic (153) and Jensen-Shannon entropy (5, 6, 12, 154), the optimal 

word length for many other measures is not known. In these studies, the optimal word length 

was determined by the individual sequences, not by the relationship among the sequences. 
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We expect that for the comparison of highly divergent sequences, short word length should 

suffice, while for the study of closely related sequences, long word patterns are needed. 

However, no studies are available on the optimal word length considering the divergency 

among the sequences. A few recent studies (151, 152) used long words of length up to 30 

bps and absolute word frequencies to compare genome sequences with excellent results and 

fast computation speed. It will be interesting to compare the performance of these 

approaches with the background adjusted measures with relatively short k-mers under 

realistic assumptions on sequencing errors and NGS data.

With the large number of alignment-free sequence comparison measures available, it is time 

to establish some benchmark data sets to evaluate the pros and cons of the different 

measures. Zielezinski et al. (25) built a benchmark data set of protein structures and 

evaluated a variety of different alignment-free sequence comparison measures and the 

Smith-Waterman algorithm. Following up from their data set, there is a need for a collection 

of community-agreed data sets for the comparison of genomes, gene regulation regions, and 

metagenomes.

In summary, alignment-free sequence comparison methods have shown great promise for 

NGS data analysis as shown by many applications. They are generally computationally fast 

and use less memory compared to alignment based methods. Further studies on the choice of 

length of k-mers, differential weighting of the k-mers, and benchmark data sets are needed 

to explore the full potential of alignment-free methods.

ACKNOWLEDGMENTS

We thank Drs. Nathan A. Ahlgren, David Chew, Minghua Deng, Jed A. Fuhrman, Bai Jiang, Kai Song, Lin Wan, 
Michael S. Waterman, Xuegong Zhang, Ms. Weinan Liao and Ms. Kun Wang for collaborations on the investigation 
of alignment-free sequence comparison and applications. The preparation of the manuscript was supported by US 
NSF National Science Foundation (NSF) [DMS-1518001] and National Institutes of Health [R01GM120624]. Dr. 
Ying Wang was supported by National Natural Science Foundation of China (61673324, 61503314), China 
Scholarship Council (201606315011) and Natural Science Foundation of Fujian (2016 J01316).

References

1. Smith TF, Waterman MS. 1981 Identification of common molecular subsequences. Journal of 
Molecular Biology 147:195–197 [PubMed: 7265238] 

2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990 Basic local alignment search tool. 
Journal of Molecular Biology 215:403–410 [PubMed: 2231712] 

3. Kent WJ. 2002 BLAT: the BLAST-like alignment tool. Genome Research 12:656–664 [PubMed: 
11932250] 

4. Wang H, Xu Z, Gao L, Hao B. 2009 A fungal phylogeny based on 82 complete genomes using the 
composition vector method. BMC Evolutionary Biology 9:195 [PubMed: 19664262] 

5. Jun S, Sims G, Wu G, Kim S. 2010 Whole-proteome phylogeny of prokaryotes by feature frequency 
profiles: An alignment-free method with optimal feature resolution. Proceedings of the National 
Academy of Sciences of the United States of America 107:133–138 [PubMed: 20018669] 

6. Sims GE, Kim SH. 2011 Whole-genome phylogeny of escherichia coli/shigella group by feature 
frequency profiles (ffps). Proceedings of the National Academy of Sciences 108:8329–8334

7. Blaisdell B 1986 A measure of the similarity of sets of sequences not requiring sequence alignment. 
Proceedings of the National Academy of Sciences of the United States of America 83:5155–5159 
[PubMed: 3460087] 

Ren et al. Page 18

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



8. Blaisdell BE. 1985 Markov chain analysis finds a significant influence of neighboring bases on the 
occurrence of a base in eucaryotic nuclear DNA sequences both protein-coding and noncoding. 
Journal of Molecular Evolution 21:278–288

9. Torney D, Burks C, Davison D, Sirotkin K. 1990 Computation of d2: A measure of sequence 
dissimilarity. Computers and DNA :109–125

10. Wan L, Reinert G, Sun F, Waterman M. 2010 Alignment-free sequence comparison (II): 
Theoretical power of comparison statistics. Journal of Computational Biology 17:1467–1490 
[PubMed: 20973742] 

11. Reinert G, Chew D, Sun FZ, Waterman MS. 2009 Alignment-free sequence comparison (I): 
Statistics and power. Journal of Computational Biology 16:1615–1634 [PubMed: 20001252] 

12. Sims G, Jun S, Wu G, Kim S. 2009 Alignment-free genome comparison with feature frequency 
profiles (FFP) and optimal resolutions. Proceedings of the National Academy of Sciences of the 
United States of America 106:2677–2682 [PubMed: 19188606] 

13. Qi J, Luo H, Hao B. 2004 CVTree: a phylogenetic tree reconstruction tool based on whole 
genomes. Nucleic Acids Research 32:W45 [PubMed: 15215347] 

14. Ulitsky I, Burstein D, Tuller T, Chor B. 2006 The average common substring approach to 
phylogenomic reconstruction. Journal of Computational Biology 13:336–350 [PubMed: 
16597244] 

15. Yang L, Zhang X, Fu H, Yang C. 2016 An estimator for local analysis of genome based on the 
minimal absent word. Journal of Theoretical Biology 395:23–30 [PubMed: 26829314] 

16. Yang L, Zhang X, Zhu H. 2012 Alignment free comparison: Similarity distribution between the 
dna primary sequences based on the shortest absent word. Journal of Theoretical Biology 
295:125–131 [PubMed: 22138094] 

17. Yang L, Zhang X, Wang T, Zhu H. 2013 Large local analysis of the unaligned genome and its 
application. Journal of Computational Biology 20:19–29 [PubMed: 23294269] 

18. Almeida JS, Carrico JA, Maretzek A, Noble PA, Fletcher M. 2001 Analysis of genomic sequences 
by chaos game representation. Bioinformatics 17:429–437 [PubMed: 11331237] 

19. Wang Y, Hill K, Singh S, Kari L. 2005 The spectrum of genomic signatures: from dinucleotides to 
chaos game representation. Gene 346:173–185 [PubMed: 15716010] 

20. Jeffrey HJ. 1990 Chaos game representation of gene structure. Nucleic Acids Research 18:2163–
2170 [PubMed: 2336393] 

21. Yau SST, Yu C, He R. 2008 A protein map and its application. DNA and Cell Biology 27:241–250 
[PubMed: 18348704] 

22. Yin C, Yau SST. 2015 An improved model for whole genome phylogenetic analysis by fourier 
transform. Journal of Theoretical Biology 382:99–110 [PubMed: 26151589] 

23. Vinga S 2013 Information theory applications for biological sequence analysis. Briefings in 
Bioinformatics 15:376–389 [PubMed: 24058049] 

24. Almeida JS. 2013 Sequence analysis by iterated maps, a review. Briefings in Bioinformatics 
15:369–375 [PubMed: 24162172] 

25. Zielezinski A, Vinga S, Almeida J, Karlowski WM. 2017 Alignment-free sequence comparison: 
benefits, applications, and tools. Genome Biology 18:186 [PubMed: 28974235] 

26. Bonham-Carter O, Steele J, Bastola D. 2013 Alignment-free genetic sequence comparisons: a 
review of recent approaches by word analysis. Briefings in Bioinformatics 15:890–905 [PubMed: 
23904502] 

27. Song K, Ren J, Reinert G, Deng M, Waterman MS, Sun F. 2014 New developments of alignment-
free sequence comparison: measures, statistics and next-generation sequencing. Briefings in 
Bioinformatics 15:343–353 [PubMed: 24064230] 

28. Vinga S, Almeida J. 2003 Alignment-free sequence comparison-a review. Bioinformatics 19:513–
523 [PubMed: 12611807] 

29. Li Q, Xu Z, Hao B. 2010 Composition vector approach to whole-genome-based prokaryotic 
phylogeny: success and foundations. Journal of Biotechnology 149:115–119 [PubMed: 20036699] 

30. Marçais G, Kingsford C. 2011 A fast, lock-free approach for efficient parallel counting of 
occurrences of k-mers. Bioinformatics 27:764–770 [PubMed: 21217122] 

Ren et al. Page 19

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



31. Rizk G, Lavenier D, Chikhi R. 2013 Dsk: k-mer counting with very low memory usage. 
Bioinformatics 29:652–653 [PubMed: 23325618] 

32. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. 2015 Kmc 2: fast and resource-frugal 
k-mer counting. Bioinformatics 31:1569–1576 [PubMed: 25609798] 

33. Sobieski JM, Nan Chen K, Filiatreau JC, Pickett MH, Fox GE. 1984 16s rrna oligonucleotide 
catalog data base. Nucleic Acids Res. 12:141–148 [PubMed: 6694898] 

34. Gca Fox, Stackebrandt E, Hespell R, Gibson J, Maniloff J, et al. 1980 The phylogeny of 
prokaryotes. Science 209:457–463 [PubMed: 6771870] 

35. Fox GE, Magrum LJ, Balch WE, Wolfe RS, Woese CR. 1977 Classification of methanogenic 
bacteria by 16s ribosomal rna characterization. Proceedings of the National Academy of Sciences 
74:4537–4541

36. Woese C, Stackebrandt E, Macke T, Fox G. 1985 A phylogenetic definition of the major 
eubacterial taxa. Systematic and Applied Microbiology 6:143–151 [PubMed: 11542017] 

37. McGill TJ, Jurka J, Sobieski JM, Pickett MH, Woese CR, Fox GE. 1986 Characteristic 
archaebacterial 16s rrna oligonucleotides. Systematic and Applied Microbiology 7:194–197 
[PubMed: 11542064] 

38. Woese C, Stackebrandt E, Ludwig W. 1985 What are mycoplasmas: the relationship of tempo and 
mode in bacterial evolution. Journal of Molecular Evolution 21:305–316

39. FOX GE, Pechman KR, Woese CR. 1977 Comparative cataloging of 16s ribosomal ribonucleic 
acid: molecular approach to procaryotic systematics. International Journal of Systematic and 
Evolutionary Microbiology 27:44–57

40. Woese CR. 1987 Bacterial evolution. Microbiological Reviews 51:221 [PubMed: 2439888] 

41. Ragan MA, Bernard G, Chan CX. 2014 Molecular phylogenetics before sequences: 
oligonucleotide catalogs as k-mer spectra. RNA Biology 11:176–185 [PubMed: 24572375] 

42. Karlin S, Mrázek J. 1997 Compositional differences within and between eukaryotic genomes. 
Proceedings of the National Academy of Sciences of the United States of America 94:10227–
10232 [PubMed: 9294192] 

43. Karlin S, Burge C. 1995 Dinucleotide relative abundance extremes: a genomic signature. Trends in 
Genetics 11:283–290 [PubMed: 7482779] 

44. Bernard G, Chan CX, Ragan MA. 2016 Alignment-free microbial phylogenomics under scenarios 
of sequence divergence, genome rearrangement and lateral genetic transfer. Scientific Reports 
6:28970 [PubMed: 27363362] 

45. Chan CX, Bernard G, Poirion O, Hogan JM, Ragan MA. 2014 Inferring phylogenies of evolving 
sequences without multiple sequence alignment. Scientific Reports 4:6504 [PubMed: 25266120] 

46. Lu YY, Tang K, Ren J, Fuhrman JA, Waterman MS, Sun F. 2017 Cafe: accelerated alignment-free 
sequence analysis. Nucleic Acids Research :10.1093/nar/gkx35145(W1):W554–W559 [PubMed: 
28472388] 

47. Narlikar L, Mehta N, Galande S, Arjunwadkar M. 2013 One size does not fit all: On how markov 
model order dictates performance of genomic sequence analyses. Nucleic Acids Research 
41:1416–1424 [PubMed: 23267010] 

48. Liu X, Wan L, Li J, Reinert G, Waterman M, Sun F. 2011 New powerful statistics for alignment-
free sequence comparison under a pattern transfer model. Journal of Theoretical Biology 284:106–
116 [PubMed: 21723298] 

49. Song K, Ren J, Zhai Z, Liu X, Deng M, Sun F. 2013 Alignment-free sequence comparison based 
on next-generation sequencing reads. Journal of Computational Biology 20:64–79 [PubMed: 
23383994] 

50. Ren J, Song K, Sun F, Deng M, Reinert G. 2013 Multiple alignment-free sequence comparison. 
Bioinformatics 29:2690–2698 [PubMed: 23990418] 

51. Qi J, Wang B, Hao BI. 2004 Whole proteome prokaryote phylogeny without sequence alignment: a 
k-string composition approach. Journal of Molecular Evolution 58:1–11 [PubMed: 14743310] 

52. Teeling H, Waldmann J, Lombardot T, Bauer M, Glöckner FO. 2004 Tetra: a web-service and a 
stand-alone program for the analysis and comparison of tetranucleotide usage patterns in dna 
sequences. BMC Bioinformatics 5:163 [PubMed: 15507136] 

Ren et al. Page 20

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



53. Pride DT, Wassenaar TM, Ghose C, Blaser MJ. 2006 Evidence of host-virus co-evolution in 
tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genomics 7:8 
[PubMed: 16417644] 

54. Willner D, Thurber RV, Rohwer F. 2009 Metagenomic signatures of 86 microbial and viral 
metagenomes. Environmental Microbiology 11:1752–1766 [PubMed: 19302541] 

55. Almagor H 1983 A Markov analysis of DNA sequences. Journal of Theoretical Biology 104:633–
645 [PubMed: 6316035] 

56. Pevzner PA, Borodovsky MY, Mironov AA. 1989 Linguistics of nucleotide sequences i: the 
significance of deviations from mean statistical characteristics and prediction of the frequencies of 
occurrence of words. Journal of Biomolecular Structure and Dynamics 6:1013–1026 [PubMed: 
2531596] 

57. Hong J 1990 Prediction of oligonucleotide frequencies based upon dinucleotide frequencies 
obtained from the nearest neighbor analysis. Nucleic Acids Research 18:1625–1628 [PubMed: 
2158083] 

58. Arnold J, Cuticchia AJ, Newsome DA, Jennings WW, Ivarie R. 1988 Mono-through 
hexanucleotide composition of the sense strand of yeast DNA: a Markov chain analysis. Nucleic 
Acids Research 16:7145–7158 [PubMed: 3043378] 

59. Avery PJ. 1987 The analysis of intron data and their use in the detection of short signals. Journal of 
Molecular Evolution 26:335–340 [PubMed: 3131534] 

60. Hoel PG. 1954 A test for Markov chains. Biometrika 41:430–433

61. Anderson TW, Goodman LA. 1957 Statistical inference about Markov chains. The Annals of 
Mathematical Statistics 28:89–110

62. Avery PJ, Henderson DA. 1999 Fitting Markov chain models to discrete state series such as DNA 
sequences. Journal of the Royal Statistical Society: Series C (Applied Statistics) 48:53–61

63. Billingsley P 1961 Statistical Inference for Markov Processes, vol. 2 University of Chicago Press 
Chicago

64. Billingsley P 1961 Statistical methods in Markov chains. The Annals of Mathematical Statistics 
32:12–40

65. Waterman MS. 1995 Introduction to Computational Biology: Maps, Sequences and Genomes 
Chapman & Hall/CRC Interdisciplinary Statistics. Taylor & Francis

66. Reinert G, Schbath S, Waterman M. 2000 Probabilistic and statistical properties of words: an 
overview. Journal of Computational Biology 7:1–46 [PubMed: 10890386] 

67. Reinert G, Schbath S, Waterman MS. 2005 Statistics on words with applications to biological 
sequences Lothaire: Applied Combinatorics on Words, Berstel J and Perrin D, eds. 105:251–328

68. Ewens WJ, Grant GR. 2005 Statistical methods in bioinformatics: an introduction. Springer

69. Menéndez ML, Pardo L, Pardo M, Zografos K. 2011 Testing the order of Markov dependence in 
DNA sequences. Methodology and Computing in Applied Probability 13:59–74

70. Papapetrou M, Kugiumtzis D. 2013 Markov chain order estimation with conditional mutual 
information. Physica A: Statistical Mechanics and its Applications 392:1593–1601

71. Morvai G, Weiss B. 2005 Order estimation of Markov chains. Information Theory, IEEE 
Transactions on 51:1496–1497

72. Peres Y, Shields P. 2005 Two new Markov order estimators. arXivpreprint math/0506080

73. Dalevi D, Dubhashi D, Hermansson M. 2006 A new order estimator for fixed and variable length 
Markov models with applications to DNA sequence similarity. Statistical Applications in Genetics 
and Molecular Biology 5:8

74. Baigorri A, Goncalves C, Resende P. 2009 Markov chain order estimation and χ 2-divergence 
measure. arXiv preprint arXiv:0910.0264

75. Besag J, Mondal D. 2013 Exact goodness-of-fit tests for Markov chains. Biometrics 69:488–496 
[PubMed: 23432148] 

76. Tong H 1975 Determination of the order of a Markov chain by Akaike’s information criterion. 
Journal of Applied Probability 12:488–497

77. Hurvich CM, Tsai CL. 1995 Model selection for extended quasi-likelihood models in small 
samples. Biometrics :1077–1084 [PubMed: 7548692] 

Ren et al. Page 21

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



78. Zhao LC, Dorea CCY, Goncalves CR. 2001 On determination of the order of a Markov chain. 
Statistical Inference for Stochastic Processes 4:273–282

79. Dorea C, Lopes J. 2006 Convergence rates for Markov chain order estimates using edc criterion. 
Bulletin of the Brazilian Mathematical Society 37:561–570

80. Katz RW. 1981 On some criteria for estimating the order of a Markov chain. Technometrics 
23:243–249

81. Ren J, Song K, Deng M, Reinert G, Cannon CH, Sun F. 2016 Inference of markovian properties of 
molecular sequences from ngs data and applications to comparative genomics. Bioinformatics 
32:993–1000 [PubMed: 26130573] 

82. Lander ES, Waterman MS. 1988 Genomic mapping by fingerprinting random clones: a 
mathematical analysis. Genomics 2:231–239 [PubMed: 3294162] 

83. Burden CJ, Jing J, Wilson SR. 2012 Alignment-free sequence comparison for biologically realistic 
sequences of moderate length. Statistical Applications in Genetics and Molecular Biology 11:1–28

84. Cannon CH, Kua CS, Zhang D, Harting J. 2010 Assembly free comparative genomics of short-read 
sequence data discovers the needles in the haystack. Molecular Ecology 19:146–160 [PubMed: 
20092033] 

85. Miller W, Rosenbloom K, Hardison R, Hou M, Taylor J, et al. 2007 28-way vertebrate alignment 
and conservation track in the UCSC genome browser. Genome Research 17:1797–1808 [PubMed: 
17984227] 

86. Bernard G, Ragan MA, Chan CX. 2016 Recapitulating phylogenies using k-mers: from trees to 
networks. F1000Research 5

87. Yi H, Jin L. 2013 Co-phylog: an assembly-free phylogenomic approach for closely related 
organisms. Nucleic Acids Research 41:e75 [PubMed: 23335788] 

88. Leimeister CA, Boden M, Horwege S, Lindner S, Morgenstern B. 2014 Fast alignment-free 
sequence comparison using spaced-word frequencies. Bioinformatics 30:1991–1999 [PubMed: 
24700317] 

89. Fan H, Ives AR, Surget-Groba Y, Cannon CH. 2015 An assembly and alignment-free method of 
phylogeny reconstruction from next-generation sequencing data. BMC Genomics 16:522 
[PubMed: 26169061] 

90. Cattaneo G, Petrillo UF, Giancarlo R, Roscigno G. 2017 An effective extension of the applicability 
of alignment-free biological sequence comparison algorithms with hadoop. The Journal of 
Supercomputing 73:1467–1483

91. Bernard G, Chan CX, Chan Yb, Chua XY, Cong Y, et al. 2017 Alignment-free inference of 
hierarchical and reticulate phylogenomic relationships. Briefings in Bioinformatics

92. Rappé MS, Giovannoni SJ. 2003 The uncultured microbial majority. Annual Reviews in 
Microbiology 57:369–394

93. Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, et al. 2014 A highly abundant 
bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nature 
Communications 5

94. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, et al. 2015 Disease-specific alterations 
in the enteric virome in inflammatory bowel disease. Cell 160:447–460 [PubMed: 25619688] 

95. Reyes A, Blanton LV, Cao S, Zhao G, Manary M, et al. 2015 Gut DNA viromes of Malawian twins 
discordant for severe acute malnutrition. Proceedings of the National Academy of Sciences 
112:11941–11946

96. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, et al. 2011 The human gut virome: inter-individual 
variation and dynamic response to diet. Genome Research 21:1616–1625 [PubMed: 21880779] 

97. Waller AS, Yamada T, Kristensen DM, Kultima JR, Sunagawa S, et al. 2014 Classification and 
quantification of bacteriophage taxa in human gut metagenomes. The ISME Journal 8:1391–1402 
[PubMed: 24621522] 

98. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, et al. 2015 Patterns and 
ecological drivers of ocean viral communities. Science 348:1261498 [PubMed: 25999515] 

99. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, et al. 2010 Viruses in the faecal microbiota 
of monozygotic twins and their mothers. Nature 466:334–338 [PubMed: 20631792] 

Ren et al. Page 22

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



100. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, et al. 2005 Rna viral community in human 
feces: prevalence of plant pathogenic viruses. PLoS Biol 4:e3

101. Pearce DA, Newsham KK, Thorne MA, Calvo-Bado L, Krsek M, et al. 2012 Metagenomic 
analysis of a southern maritime antarctic soil. Front. Microbiol 3:403 10.3389/fmicb.2012.00403 
[PubMed: 23227023] 

102. Adriaenssens EM, Van Zyl L, De Maayer P, Rubagotti E, Rybicki E, et al. 2015 Metagenomic 
analysis of the viral community in namib desert hypoliths. Environmental Microbiology 17:480–
495 [PubMed: 24912085] 

103. Zablocki O, van Zyl L, Adriaenssens EM, Rubagotti E, Tuffin M, et al. 2014 High-level diversity 
of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of 
antarctic soils. Applied and Environmental Microbiology 80:6888–6897 [PubMed: 25172856] 

104. Roux S, Enault F, Hurwitz BL, Sullivan MB. 2015 Virsorter: mining viral signal from microbial 
genomic data. PeerJ 3:e985 [PubMed: 26038737] 

105. Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. 2016 Computational approaches to predict 
bacteriophage-host relationships. FEMS Microbiology Reviews 40:258–272 [PubMed: 
26657537] 

106. Roux S, Hallam SJ, Woyke T, Sullivan MB. 2015 Viral dark matter and virus-host interactions 
resolved from publicly available microbial genomes. Elife 4:e08490

107. Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. 2017 Alignment-free d2
∗ oligonucleotide 

frequency dissimilarity measure improves prediction of hosts from metagenomically-derived 
viral sequences. Nucleic Acids Research 45:39–53 [PubMed: 27899557] 

108. Galiez C, Siebert M, Enault F, Vincent J, Soding J. 2017 Wish: who is the host? predicting 
prokaryotic hosts from metagenomic phage contigs. Bioinformatics 33:3113–3114 [PubMed: 
28957499] 

109. Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, et al. 2016 
Uncovering earth’s virome. Nature 536

110. Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. 2008 Reticulate representation of 
evolutionary and functional relationships between phage genomes. Molecular Biology and 
Evolution 25:762–777 [PubMed: 18234706] 

111. Shapiro JW, Putonti C. 2017 Gene networks provide a high-resolution view of bacteriophage 
ecology. bioRxiv :148668

112. Villarroel J, Kleinheinz KA, Jurtz VI, Zschach H, Lund O, et al. 2016 Hostphinder: a phage host 
prediction tool. Viruses 8:116

113. Zhang M, Yang L, Ren J, Ahlgren NA, Fuhrman JA, Sun F. 2017 Prediction of virus-host 
infectious association by supervised learning methods. BMC Bioinformatics 18:60 [PubMed: 
28361670] 

114. Liao W, Ren J, Wang K, Wang S, Zeng F, et al. 2016 Alignment-free transcriptomic and 
metatranscriptomic comparison using sequencing signatures with variable length markov chains. 
Scientific Reports 6:37243 [PubMed: 27876823] 

115. Bühlmann P, Wyner AJ, et al. 1999 Variable length markov chains. The Annals of Statistics 
27:480–513

116. Rissanen J 1983 A universal data compression system. IEEE Transactions on information theory 
29:656–664

117. Kullback S, Leibler RA. 1951 On information and sufficiency. The annals of mathematical 
statistics 22:79–86

118. Akaike H 1987 Factor analysis and aic. Psychometrika 52:317–332

119. Jiang B, Song K, Ren J, Deng M, Sun F, Zhang X. 2012 Comparison of metagenomic samples 
using sequence signatures. BMC Genomics 13:730 [PubMed: 23268604] 

120. Behnam E, Smith AD. 2014 The amordad database engine for metagenomics. Bioinformatics 
30:2949–2955 [PubMed: 24974201] 

121. Benoit G, Peterlongo P, Mariadassou M, Drezen E, Schbath S, et al. 2016 Multiple comparative 
metagenomics using multiset k-mer counting. PeerJ Computer Science 2:e94

Ren et al. Page 23

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



122. Wang Y, Wang K, Lu YY, Sun F. 2017 Improving contig binning of metagenomic data using d2s 
oligonucleotide frequency dissimilarity. BMC Bioinformatics 18:425 [PubMed: 28931373] 

123. Mande SS, Mohammed MH, Ghosh TS. 2012 Classification of metagenomic sequences: methods 
and challenges. Briefings in bioinformatics 13:669–681 [PubMed: 22962338] 

124. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, et al. 2009 Community-wide 
analysis of microbial genome sequence signatures. Genome biology 10:R85 [PubMed: 
19698104] 

125. Leung HC, Yiu SM, Yang B, Peng Y, Wang Y, et al. 2011 A robust and accurate binning 
algorithm for metagenomic sequences with arbitrary species abundance ratio. Bioinformatics 
27:1489–1495 [PubMed: 21493653] 

126. Kislyuk A, Bhatnagar S, Dushoff J, Weitz JS. 2009 Unsupervised statistical clustering of 
environmental shotgun sequences. BMC bioinformatics 10:316 [PubMed: 19799776] 

127. Wu YW, Ye Y. 2011 A novel abundance-based algorithm for binning metagenomic sequences 
using l-tuples. Journal of Computational Biology 18:523–534 [PubMed: 21385052] 

128. Wang Y, Hu H, Li X. 2015 Mbbc: an efficient approach for metagenomic binning based on 
clustering. BMC bioinformatics 16:36 [PubMed: 25652152] 

129. Wu YW, Tang YH, Tringe SG, Simmons BA, Singer SW. 2014 Maxbin: an automated binning 
method to recover individual genomes from metagenomes using an expectation-maximization 
algorithm. Microbiome 2:26 [PubMed: 25136443] 

130. Lin HH, Liao YC. 2016 Accurate binning of metagenomic contigs via automated clustering 
sequences using information of genomic signatures and marker genes. Scientific reports 6 
[PubMed: 28442741] 

131. Strous M, Kraft B, Bisdorf R, Tegetmeyer HE. 2012 The binning of metagenomic contigs for 
microbial physiology of mixed cultures. Frontiers in microbiology 3 [PubMed: 22279445] 

132. Kelley DR, Salzberg SL. 2010 Clustering metagenomic sequences with interpolated markov 
models. BMC bioinformatics 11:544 [PubMed: 21044341] 

133. Pál C, Papp B, Lercher MJ. 2005 Adaptive evolution of bacterial metabolic networks by 
horizontal gene transfer. Nature Genetics 37:1372 [PubMed: 16311593] 

134. Gyles C, Boerlin P. 2014 Horizontally transferred genetic elements and their role in pathogenesis 
of bacterial disease. Veterinary Pathology 51:328–340 [PubMed: 24318976] 

135. Ravenhall M, Škunca N, Lassalle F, Dessimoz C. 2015 Inferring horizontal gene transfer. PLoS 
Computational Biology 11:e1004095 [PubMed: 26020646] 

136. Lu B, Leong HW. 2016 Computational methods for predicting genomic islands in microbial 
genomes. Computational and Structural Biotechnology Journal 14:200–206 [PubMed: 27293536] 

137. Keeling PJ, Palmer JD. 2008 Horizontal gene transfer in eukaryotic evolution. Nature Reviews 
Genetics 9:605

138. Cong Y, Chan Yb, Phillips CA, Langston MA, Ragan MA. 2017 Robust inference of genetic 
exchange communities from microbial genomes using tf-idf. Frontiers in Microbiology 8 
[PubMed: 28144237] 

139. Cong Y, Chan Yb, Ragan MA. 2016 A novel alignment-free method for detection of lateral 
genetic transfer based on TF-IDF. Scientific Reports 6 [PubMed: 28442741] 

140. Cong Y, Chan Yb, Ragan MA. 2016 Exploring lateral genetic transfer among microbial genomes 
using tf-idf. Scientific Reports 6:29319 [PubMed: 27452976] 

141. Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P. 2005 Detection and characterization 
of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Research 33:e6–e6 
[PubMed: 15653627] 

142. Rajan I, Aravamuthan S, Mande SS. 2007 Identification of compositionally distinct regions in 
genomes using the centroid method. Bioinformatics 23:2672–2677 [PubMed: 17724060] 

143. Tsirigos A, Rigoutsos I. 2005 A new computational method for the detection of horizontal gene 
transfer events. Nucleic Acids Research 33:922–933 [PubMed: 15716310] 

144. Becq J, Churlaud C, Deschavanne P. 2010 A benchmark of parametric methods for horizontal 
transfers detection. PLoS One 5:e9989 [PubMed: 20376325] 

Ren et al. Page 24

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



145. Karlin S 2001 Detecting anomalous gene clusters and pathogenicity islands in diverse bacterial 
genomes. Trends in Microbiology 9:335–343 [PubMed: 11435108] 

146. Tamames J, Moya A. 2008 Estimating the extent of horizontal gene transfer in metagenomic 
sequences. BMC Genomics 9:136 [PubMed: 18366724] 

147. Goke J, Schulz MH, Lasserre J, Vingron M. 2012 Estimation of pairwise sequence similarity of 
mammalian enhancers with word neighbourhood counts. Bioinformatics 28:656–663 [PubMed: 
22247280] 

148. Horwege S, Lindner S, Boden M, Hatje K, Kollmar M, et al. 2014 Spaced words and kmacs: fast 
alignment-free sequence comparison based on inexact word matches. Nucleic Acids Research 
42:W7–W11 [PubMed: 24829447] 

149. Patil KR, McHardy AC. 2013 Alignment-free genome tree inference by learning group-specific 
distance metrics. Genome Biology and Evolution 5:1470–1484 [PubMed: 23843191] 

150. Qian K, Luan Y. 2017 Weighted measures based on maximizing deviation for alignment-free 
sequence comparison. Physica A: Statistical Mechanics and its Applications 481:235–242

151. Murray KD, Webers C, Ong CS, Borevitz J, Warthmann N. 2017 kwip: The k-mer weighted inner 
product, a de novo estimator of genetic similarity. PLOS Computational Biology 13:e1005727 
[PubMed: 28873405] 

152. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, et al. 2016 Mash: fast genome 
and metagenome distance estimation using minhash. Genome Biology 17:132 [PubMed: 
27323842] 

153. Bai X, Tang K, Ren J, Waterman M, Sun F. 2017 Optimal choice of word length when comparing 
two markov sequences using a χ 2-statistic. BMC Genomics 18:732 [PubMed: 28984181] 

154. Wu G, Jun S, Sims G, Kim S. 2009 Whole-proteome phylogeny of large dsDNA virus families by 
an alignment-free method. Proceedings of the National Academy of Sciences of the United States 
of America 106:12826–12831 [PubMed: 19553209] 

155. Zhang Q, Jun SR, Leuze M, Ussery D, Nookaew I. 2017 Viral phylogenomics using an 
alignment-free method: A three-step approach to determine optimal length of k-mer. Scientific 
Reports 7:40712 [PubMed: 28102365] 

156. Otu HH, Sayood K. 2003 A new sequence distance measure for phylogenetic tree construction. 
Bioinformatics 19:2122–2130 [PubMed: 14594718] 

157. Li M, Chen X, Li X, Ma B, Vitányi PM. 2004 The similarity metric. IEEE Transactions on 
Information Theory 50:3250–3264

158. Yu C, Liang Q, Yin C, He RL, Yau SST. 2010 A novel construction of genome space with 
biological geometry. DNA Research 17:155–168 [PubMed: 20360268] 

159. Wu TJ, Hsieh YC, Li LA. 2001 Statistical measures of DNA sequence dissimilarity under Markov 
chain models of base composition. Biometrics 57:441–448 [PubMed: 11414568] 

160. Vinga S, Gouveia-Oliveira R, Almeida JS. 2004 Comparative evaluation of word composition 
distances for the recognition of SCOP relationships. Bioinformatics 20:206–215 [PubMed: 
14734312] 

Ren et al. Page 25

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2019 December 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Prediction accuracy using various distance/dissimilarity measures at k-mer length 6 on a 

benchmark data set of 1,427 complete viral RefSeq genomes whose hosts are known versus 

~ 32,000 possible archaea and bacteria host genomes. Predictions were made for all 1,427 

viruses from Ahlgren etal. (107).
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Figure 2: 
The Precision-Recall Curves (PRC) of different HGT detection methods along artificial 

genomes using E.coli as host genome. Precision and recall values were calculated by 

defining different thresholds for HGT. Numbers in the brackets indicate the word length k 

used by different methods and Markov order used by d2
∗. For example, d2

∗(3, 1) means that d2
∗

was the dissimilarity measure with word length 3 and Markov order 1. (a) PRC when using 

S.sonnei as donor genome, which is at the same species level as E.coli. None of the methods 

perform well. (b) PRC when using B.abortus as donor genome, which is at the same class 
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but different order level as E.coli. In this scenario, CVT(3), CVT(4), d2
∗(3, 1), and d2

∗(4, 1)

outperform other methods. (c) PRC when using C.coli as donor genome, which has different 

order level from E.coli. All methods perform reasonably well.
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Figure 3: 
Screenshot of the CAFE user interface based on a toy example comprising of 11 bacterial 

genomes. The user interface layout divides into six parts in terms of functionality: (1) data 

selection toolbar (top left), (2) dissimilarity setting toolbar (top middle), (3) image toolbar 

(top right), (4) input data list (middle left), (5) run-time information console (bottom left), 

and (6) visualized analyses (bottom right).
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