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DISEASES AND DISORDERS

Necrotizing enterocolitis is preceded by increased
gut bacterial replication, Klebsiella, and

fimbriae-encoding bacteria

Matthew R. Olm’, Nicholas Bhattacharyaz, Alexander Crits-Christoph1, Brian A. Firek®,
Robyn Baker?, Yun S. Songs'6’7, Michael J. Morowitz?, Jillian F. Banfield”:%% 1%«

Necrotizing enterocolitis (NEC) is a devastating intestinal disease that occurs primarily in premature infants. We
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performed genome-resolved metagenomic analysis of 1163 fecal samples from premature infants to identify microbial
features predictive of NEC. Features considered include genes, bacterial strain types, eukaryotes, bacteriophages,
plasmids, and growth rates. A machine learning classifier found that samples collected before NEC diagnosis harbored
significantly more Klebsiella, bacteria encoding fimbriae, and bacteria encoding secondary metabolite gene clusters
related to quorum sensing and bacteriocin production. Notably, replication rates of all bacteria, especially Entero-
bacteriaceae, were significantly higher 2 days before NEC diagnosis. The findings uncover biomarkers that could
lead to early detection of NEC and targets for microbiome-based therapeutics.

INTRODUCTION

Necrotizing enterocolitis (NEC) is widely studied yet poorly under-
stood. First described in the early 1800s (1), NEC is a disorder of
intestinal inflammation that can progress to bowel necrosis, sepsis,
and death (2). NEC affects 7% of very low birth weight infants born
in the United States each year, and mortality rates have remained
around 20 to 30% for several decades (2). The direct cause or causes
of NEC remain unknown.

The primary risk factor for NEC is preterm birth (2). Immature
enterocytes exhibit hyperactive immune responses through the
Toll-like receptor 4 (TLR4) pathway in response to bacterial lipo-
polysaccharide (LPS), which can lead to bowel damage (3). Experi-
mental NEC occurs in conventionally raised animals but not those
reared in a germ-free environment (4, 5). These observations suggest
that the intestinal microbiome plays a role in the disease and lead
to the prevailing hypothesis that an excessive immune response to
aberrations in the composition and function of gut microbial com-
munities is the most likely basis for the pathogenesis of NEC. Although
no single microbe has been consistently identified as a biomarker
for NEC, increased abundance of bacteria in the phylum Proteobacteria
is a frequently reported microbial pattern in NEC infants (6). Most
fecal microbiome-based profiling studies of NEC use 168 ribosomal
RNA (rRNA) amplicon sequencing, which provides a general over-
view of the bacteria present but does not reveal metabolic features
that could contribute to NEC pathogenesis.

Genome-resolved methods may provide new insights into NEC
development. The approach has several advantages over 16S rRNA
amplicon sequencing. As the method is not reliant on polymerase
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chain reaction amplification nor specific probes, all DNA can be
sequenced, allowing detection of bacteriophages, plasmids, eukaryotes,
and viruses. Bioinformatic techniques can also infer in situ bacterial
replication rates directly from metagenomic data (7), an important
metric, as some microbiome-related diseases have a signal related to
bacterial replication but not relative abundance (8). Genome assembly
and annotation can provide functional information about organisms
present and possibly reveal genes associated with NEC. Further,
whole-genome comparisons provide strain discrimination and thus
detailed testing of Koch’s postulates. Last, mapping to reference
genomes is not required for genome detection, allowing for the dis-
covery of novel bacterial clades (9). While identification of a single
causative strain, virus, or toxin would be the most actionable result
for clinicians, any associations could potentially be used as bio-
markers to identify early warning signs of NEC, and microbial communi-
ties associated with NEC could be targeted with microbiome-altering
techniques such as probiotics, prebiotics, or other approaches (10).

RESULTS

Metagenomic characterization of premature

infant fecal samples

We analyzed 1163 fecal metagenomes from 34 preterm infants who
developed NEC and 126 preterm infants without NEC (Fig. 1). Pre-
mature infant participants were matched for gestational age and
calendar date and recruited from the University of Pittsburgh Medical
Center Magee-Womens Hospital (Pittsburgh, PA) over a 5-year period.
Fecal samples were banked, and specific samples were later chosen
for DNA extraction and sequencing to preferentially study samples
immediately before NEC onset. An average of 7.2 samples per infant,
mostly from the first month of life, was sequenced, and a total of
4.6 tera-base pairs of shotgun metagenomic sequencing were
generated (table S1). Detailed sequencing information (table S1)
and patient metadata (table S2) are provided.

We performed extensive computational analyses on all samples
to recover genomes de novo and determine their phylogeny, meta-
bolic potential, and replication rates [index of replication (iRep) (7)].
We also searched samples for eukaryotic viruses, virulence factors,
secondary metabolite gene clusters, and previously implicated pathogens
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Fig. 1. Metagenomic characterization of 1163 samples from 160 premature infants. (A) Schematic of metagenomics versus genome-resolved metagenomics.
Metagenomics involves DNA extraction from a microbiome sample, followed by library preparation and sequencing. In genome-resolved metagenomics, this is followed
by sequence assembly and binning to generate draft-quality microbial genomes. (B) Metagenomes were characterized using database-free and database-reliant meth-
ods. The number of features in each category is listed in parentheses. See Materials and Methods for details. (C) Flow chart of the 160 premature infants recruited for in-
clusion in this study from the same neonatal intensive care unit over a 5-year period. Pre-NEC and control samples are a subset of the total fecal samples that are matched
for DOL, gestational age, and recent antibiotic administration (Ab), and for NEC infants, samples are within 2 days before NEC diagnosis. The median and SD of matched

metrics are reported.

(Fig. 1) (11, 12). This analysis resulted in 36 giga—base pairs of assembled
sequence, 2425 dereplicated bacterial genomes (average of 92% com-
pleteness and 1.1% contamination), 5218 bacteriophage genomes,
1183 plasmid genomes, 7 eukaryotic genomes, and 804,185 de novo
protein clusters (Fig. 1B and table S3). As NEC can be a rapidly pro-
gressive disorder, for most statistical tests, we defined NEC samples
as those taken within 2 days before NEC diagnosis (“pre-NEC” samples).
For infants who did not develop NEC, only one sample from the period
associated with NEC onset was used (“control” samples). Pre-NEC
and control samples were matched for day of life (DOL), gestational
age, and recent antibiotic administration (Fig. 1C and figs. S1 and S2).
For other analyses, when explicitly stated, we used all samples.

Klebsiella pneumoniae is enriched in samples

from infants with NEC

The gut microbiomes of all infants were dominated by Proteobacteria,
regardless of NEC development (Fig. 2, A and B). As compared to
previous studies of full-term infants (13, 14), the premature infants
in this study had increased Enterobacteriaceae (a family of Proteo-
bacteria to which many nosocomial pathogens belong) and notably
low abundances of Actinobacteria and Bacteroidetes. Factors that
could select for these organisms include prophylactic antibiotics given
to all premature infants at birth, high rates of birth by cesarean section,
predominance of formula feeding, and immaturity of the intestine
and immune system. Compared to control infants, the NEC infant
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microbiomes exhibited lower abundances of Firmicutes (P=3.7 x 107/,
Wilcoxon rank sum test) and higher abundances of Enterobacteriaceae
(P = 8.9 x10~7, Wilcoxon rank sum test) than the microbiomes of
control infants (Fig. 2A). The general association of Enterobacteriaceae
and infants who go on to develop NEC has been described previously
(15), but this prior analysis was not restricted to the period immedi-
ately before NEC detection. In our study, the gut microbiomes
of infants who developed NEC were not significantly enriched in
Enterobacteriaceae in pre-NEC versus control samples (P = 0.15,
Wilcoxon rank sum test), so the association of Enterobacteriaceae
and NEC infants overall may be due to the proliferation of these
bacteria after the administration of antibiotics to treat NEC (fig. S2B).
We performed a principal components analysis (PCA) based on
weighted UniFrac distance to compare the microbiomes of all samples
from all time points (Fig. 2B). The first two principal components ex-
plained 73% of the overall variance, but samples collected from NEC
infants (red) did not cluster separately from control infants (black dots).
Consideration of higher principal components (up to the fifth principal
component) did not separate pre-NEC and control samples, and samples
coded by clinical metadata also did not cluster together (fig. S3).
To identify strains enriched in pre-NEC samples, we calculated the
percentage of pre-NEC versus control samples carrying each assembled
bacterial, bacteriophage, and plasmid genome (Fig. 2, C and D).
K. pneumoniae strain 242_2 was the most associated with NEC and
was present above the threshold of detection in 52% of pre-NEC samples
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Fig. 2. Comparison of microbes in premature infants who do and do not develop NEC. (A) The compositional profile of microbes colonizing infants who were and were not
diagnosed with NEC. Bacteria were classified on the basis of their phyla, and other microbes were classified on the basis of their domain. Each color represents the percentage of
reads mapping to all organisms belonging to a taxon, and the stacked boxes for each sample show the fraction of reads in that dataset accounted for by the genomes assembled
from the sample. Proteobacteria were subdivided into the family Enterobacteriaceae and other. All relative abundance values were averaged over a 5-day sliding window. Box-
plots show the DOL in which samples were collected (top) and in which infants were diagnosed with NEC (bottom). (B) Principal components analysis (PCA) based on weighted
UniFrac distance for all samples from NEC infants (red) and control infants (black). (C and D) Percentage of NEC infants versus the percentage of non-NEC infants colonized by
strains of (C) bacteria or (D) bacteriophage (gold) and plasmids (blue). The taxonomies of four strains with extreme values are provided, of which only K. pneumoniae strain 242_2
is significantly enriched in NEC samples (P < 0.05, Fisher's exact test). Colonization by bacteria is defined as the presence of a strain at >0.1% relative abundance. Plasmid and
bacteriophage detection required a read-based genome breadth of coverage of >50%. Each dot represents a strain, and dashed lines show a 1:1 colonization rate.

versus 23% of control samples (P = 0.008, Fisher’s exact test) (table S4).
Closely related bacteria [>99% average nucleotide identity (ANI)]
colonized up to 35% of all infants (Fig. 2C). This is likely the result
of colonization by the same hospital-associated bacteria (16) in multiple
infants. No organisms in this study satisfied Koch’s postulate that a dis-
ease causing organism should be found in all NEC infants and no
healthy patients.
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Bacterial replication rates are higher

before NEC development

Bacterial replication rates are measured from metagenomic data by
determining the difference in DNA sequencing coverage at the origin
versus terminus of replication, yielding an iRep value that correlates
with traditional doubling time measurements (7, 8). iRep values of
bacteria overall were significantly higher in pre-NEC versus control
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samples (P = 0.0003, Wilcoxon rank sum test) in a cohort balanced
for DOL, gestational age, and recent antibiotic administration (Fig. 3).
Further, iRep values followed a notable pattern in relation to NEC
diagnosis: Bacterial replication was stable four or more days before NEC
diagnosis, increased daily in 3 days before diagnosis, and crashed fol-
lowing diagnosis (probably due to subsequent antibiotic administra-
tion) (Fig. 3A). Individual species did not have enough data points
to be plotted confidently (minimum of five measurements per DOL), but
genomes of the family Enterobacteriaceae displayed even higher pre-
NEC iRep values than bacteria overall (Fig. 3, A and B). Increased bac-
terial replication before NEC could promote disease onset or merely
be a reaction to changing conditions in the gut that led to NEC.

Machine learning identifies additional differences

between NEC and control cases

We measured 2119 features for each of the 1163 metagenomic samples
(Fig. 1 and table S5). To evaluate which features are most different
between pre-NEC and control samples, we developed a machine
learning (ML) classifier. Multiple ML algorithms were evaluated, and
although all performed with similar accuracy (table S4), the boosted
gradient classifier was ultimately chosen because of its known ability
to handle class imbalance. The classifier was trained on all 2119 fea-
tures to predict whether samples were pre-NEC or control, and
accuracy was measured through cross-validation over 100 iterations.
The classifier achieved a median accuracy of 64% on balanced sets;
14% better than random chance. While a classifier with this accuracy
may have limited utility in a clinical setting, it allowed us to interrogate
which features were most informative for differentiating pre-NEC
and control samples.

The most important individual features used by the ML classifier
were replication rates (iRep values), KEGG (Kyoto Encyclopedia of
Genes and Genomes) modules, secondary metabolite gene clusters,
and overall plasmid abundance (Fig. 4). iRep values of both specific

A

All bacteria

iRep

12

-7 -6 -5 -4 -3 -2 -l

Days relative to NEC diagnosis

I
|
I
I
1
I
I
1
I
I
I
I
I
I
1
I
I
l
0

bacterial taxa and median iRep values overall were some of the most
important features (Fig. 4B), while KEGG modules accounted for
more than 50% of the total feature importance (Fig. 4A and table S5).
A similar number of KEGG modules were associated and anti-associated
with NEC (Fig. 4C), but the descriptions of the modules associated
with NEC (e.g., erythritol and galactitol transport systems) and
anti-associated with NEC (e.g., sodium and capsular polysaccharide
transport systems) bear no obvious relationship to the disease (table S5).
Secondary metabolite gene clusters were the second most important
category overall (Fig. 4A), but unlike KEGG modules, very few were
anti-associated with NEC (Fig. 4C). The most significant secondary
metabolite gene cluster encodes an unusual operon of biosynthetic
genes found in Klebsiella (cluster 416). In other species, similar operons
are implicated in the biosynthesis of quorum-sensing butyrolactones
(17). The second most significant cluster of genes occurs in Enterococcus
and is involved in biosynthesis of a sactipeptide resembling subtilosin A1,
an antimicrobial agent with known hemolytic activity (cluster 438)
(table S3) (18). Another cryptic secondary metabolite gene cluster
with a high feature importance (cluster 432) is closely related to a
previously characterized cluster on a plasmid of enterotoxin-producing
Clostridium perfringens adjacent to the enterotoxin gene (cpe) and
B2 toxin gene (cpb2) (19). Overall, high plasmid abundance was
correlated with pre-NEC samples (Fig. 4B), and K. pneumoniae
plasmids in particular were significantly more abundant in pre-NEC
samples (P = 0.03) (fig. S2E). The prevalence of K. pneumoniae in pre-NEC
samples (Fig. 2C) may explain the high abundance of K. pneumoniae
plasmids in these samples.

Feature importances were also analyzed in combination. Each
bacterial strain was assigned an importance value based on the sum
of the importance scores for the KEGG modules encoded by its
genome. A histogram of all genome importance scores was generated
(fig. S4), and 150 genomes were visually determined to have KEGG
importance values higher than the typical distribution (hereinafter
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Fig. 3. Bacterial replication rates are significantly higher before NEC development. (A) Replication rates for bacterial groups relative to day of NEC diagnosis. Dots
represent the mean value for each group on each day, and error bars represent SEM. DOL in which growth rates were calculated from at least five infants are shown.
(B) Growth rates in control (white) versus pre-NEC (gray) samples. P values shown from Wilcoxon rank sum test.
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Fig. 4. ML identifies differences between pre-NEC and control samples. (A) Sum of all individual importances for each feature category. The number of features in
each category is listed in parentheses. (B) Importance of all individual features associated with NEC with classifier importances over 1%. (C) Signed importances of all
individual KEGG modules (top, red) and secondary metabolite clusters (bottom, blue). Negative values are negatively associated with pre-NEC samples, and positive values
are positively associated with pre-NEC samples. (D and E) Relative abundance of genomes enriched in important KEGG modules (D) and important secondary metabolite-
enriched genomes (E) in pre-NEC versus control samples. P values shown from Wilcoxon rank sum test. (F) Distribution of genomes enriched in important KEGG modules
(red stars) and important secondary metabolite clusters (blue stars) around a phylogenetic tree of all recovered bacterial genomes. Genomes enriched in important KEGG
modules are more clustered on the tree than those enriched in important secondary metabolite clusters.

referred to as “organisms of interest”) (table S3). The organisms of
interest were significantly more abundant in pre-NEC samples as
compared to control samples (P = 0.004) (Fig. 4D), and they cluster
phylogenetically (Fig. 4F). A total of 97% were in the family Entero-
bacteriaceae, and of those, 90% were in the genus Klebsiella.
Secondary metabolite biosynthetic gene clusters identified as
important by the ML classifier occur in 218 organisms that are sig-
nificantly associated with pre-NEC samples (Fig. 4E). Several types
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of secondary metabolite gene clusters were enriched in these genomes
(P < 0.01, Fisher’s exact test), including sactipeptides, bacteriocins,
and butyrolactones (encoded by 382, 286, and 11 genomes,
respectively) (table S3). As opposed to organisms of interest, these
bacteria were spread around the phylogenetic tree (Fig. 4F). This
may indicate that the clusters themselves are associated with
pre-NEC samples. Overall, the results point to an association of quorum
sensing and antimicrobial peptide production with NEC onset.
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Bacteria associated with NEC encode

specific types of fimbriae

We leveraged the gene content information provided by genome-
resolved metagenomics to search for proteins associated with (i)
pre-NEC samples and (ii) organisms of interest. Three clustering
algorithms were evaluated for their ability to reconstruct known
clusters of ribosomal proteins (table S4), and a hybrid Markov
Cluster algorithm approach (20) performed best. Application of
the algorithm to the 36,701,491 proteins reconstructed in this
study yielded 804,277 protein clusters, none of which was statis-
tically associated with NEC (Fisher’s exact test with false discovery
rate correction) (Fig. 5A). However, 85 protein clusters were
associated with organisms of interest with high precision and
recall (>0.7) (Fig. 5B). The most common protein family (pFam)
annotations for these clusters were fimbriae and adenosine
triphosphate-binding cassette (ABC) transport proteins (table S6).
However, only genomes encoding fimbrial proteins also had a
significant association with NEC (P = 0.02, Wilcoxon rank
sum test with Benjamini-Hochberg false discovery rate correc-
tion; table S6).

Comparison of fimbrial operons against public databases re-
vealed that the majority encode chaperone-usher (CU)-type fimbriae.
A classification scheme exists for CU fimbriae based on usher pro-
tein pFam [PF00577.19 (21)]. The 32,646 usher proteins identified
in our sequencing data (table S6) were clustered into groups based
on amino acid sequence identity, and the 10 most prevalent groups
were placed in a phylogenetic tree with reference sequences from
each subtype of CU fimbriae (Fig. 5D). All 10 fimbriae clusters fit
into the established CU fimbriae taxonomy, with 9 of 10 falling in
the y superclade and 1 into the & clade (Fig. 5D). Four fimbriae clus-
ters identified in this study were significantly more abundant in
pre-NEC samples, and genomes encoding cluster 49 (y4 clade) also
had significantly higher iRep values in pre-NEC samples (Fig. 5C).
Twenty-seven genomes that encode fimbrial cluster 49 were not
identified as genomes of interest, yet they were at significantly higher
abundance and have significantly higher iRep values when consider-
ing all samples from NEC versus control infants (P < 0.01, Wilcoxon
rank sum test) (fig. S4). This suggests that fimbrial cluster 49 itself
may be associated with NEC and not incidentally associated with
metabolically important genomes.
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Biomarkers of NEC are most informative closer

to NEC diagnosis

Statistical tests uncovered four factors significantly associated with
pre-NEC samples (samples taken within 2 days before NEC diagnosis):
iRep values overall (Fig. 3B), genomes encoding specific types of
secondary metabolite gene clusters (sactipeptides, bacteriocins, and
butyrolactones) (table S3), Klebsiella (Fig. 2C), and fimbriae cluster
49 (Fig. 5C). We performed a similar analysis each day up to 8 days
before NEC diagnosis (Fig. 6). Genomes encoding specific types of
secondary metabolite gene clusters and Klebsiella genomes were
always significantly more abundant in NEC samples, although the
effect size of the difference became slightly higher closer to NEC
diagnosis. iRep values and the abundance of genomes encoding
fimbriae cluster 49, on the other hand, were only significantly higher
3 days and 1 day before diagnosis, respectively.

DISCUSSION

Given that we found no single predictor of NEC and identified several
factors as important by ML, our results support prior indications
that NEC is a complex and likely multifactorial disease (2, 22). Of
the four aspects of the gut microbiome that differ in pre-NEC com-
pared to control samples (Fig. 6), the iRep values of all organisms in
each sample had the highest effect size. Given that iRep is a measure
of bacterial replication rather than relative abundance, the result
highlights that reliance on relative abundance alone could be mis-
leading. This is largely due to the fact that relative abundance metrics
are themselves misleading because an organism can increase in rela-
tive abundance simply due to the decline in relative abundances of
other organisms. For this reason, it is also unclear whether increased
replication leads to increased bacterial biomass, as there could be
concomitantly higher death rates from heightened inflammatory
response during NEC, production of antimicrobials, etc. The higher
bacterial replication rate before NEC diagnosis could be sustained
by nutrient release from the breakdown of gut tissue. Alternatively,
increased bacterial replication may trigger the onset of NEC, possibly
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Fig. 6. Biomarkers of NEC are most informative closer to NEC diagnosis. The
effect size for difference of each feature in pre-NEC versus control samples is shown
based on a Wilcoxon rank sum test over a 2-day sliding window (e.g., -5 compares
samples collected from —6 to —4 days relative to NEC diagnosis to control samples).
Comparisons with P < 0.05 are marked with asterisks.
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because high activity of a specific organism leads to imbalance in
concentrations of compounds in the gut environment.

Secondary metabolite gene clusters of specific types (bacteriocins,
sactipeptides, and butyrolactones) were significantly enriched in
pre-NEC compared to control samples (table S3). Bacteriocins are
small peptides thatkill closely related bacteria, and when produced, cell
lysis could contribute to onset NEC via release of immunostimulatory
compounds such as LPS. Sactipeptides are a class of posttranslationally
modified peptides with diverse bioactivities (23). The sactipeptide
with the highest overall importance is related to a subtilosin (anti-
microbial agent) with known hemolytic activity. All sactipeptides
identified in this study were encoded by Firmicutes, including
C. perfringens and Clostridium difficile (fig. S2 and table S3). Pro-
duction of sactipeptides by these species could trigger NEC through
direct toxicity to human cells or via release of immunostimulatory
bacterial compounds following bacterial cell lysis. This phenomenon
could explain previous reports that implicate Clostridium in develop-
ment of NEC (24-26). Follow-up studies involving proteomics and/
or transcriptomics are needed to establish whether these gene clusters
are expressed in situ in the infant gut.

Butyrolactones are generally involved in quorum sensing in
Actinobacteria (17) but, in this study, were mostly found encoded
in genomes of Proteobacteria, and more than half were identified
in Klebsiella genomes. Whereas known quorum-sensing systems in
Proteobacteria are responsible for the production of virulence factors,
including fimbriae (27, 28), the functions of butyrolactones in
Proteobacteria remain unstudied. Higher proportions of Klebsiella
were found in infants who went on to develop NEC, and their capacity
to produce secondary metabolites and fimbriae could explain this
association.

Organisms with genomes encoding for fimbriae cluster 49 were
at significantly higher abundances on both the day of and the day
before NEC diagnosis. Fimbriae are known stimulants of TLR4 re-
ceptors (29), immune receptors that are overexpressed in premature
infants and previously linked to NEC in animal studies (30, 31).
Fimbriae are the hallmark pathogenicity factors of uropathogenic
Escherichia coli (32), a group of organisms that have been previously
implicated as a causative agent of NEC (11). Uropathogenic E. coli
was specifically evaluated in this study and not found to be signifi-
cantly enriched in pre-NEC compared to control samples (table S5
and Fig. 2C). The associations in prior work and the current study
may instead reflect a general link between fimbriae and TLR4 re-
ceptor stimulation.

An advantage of genome-resolved metagenomics is that it pro-
vides whole community information, going far beyond what can be
deduced from 16S rRNA gene surveys that are the hallmark of most
prior and much current human microbiome research. Here, we
applied this approach to a sufficiently large dataset to achieve statis-
tical power unprecedented in a genome-resolved metagenomic
study and found that there is likely no single bacteriophage, plasmid,
eukaryote, virus, or even gene that is responsible for NEC. However,
we identify several promising associations through ML, many of
which have previously been proposed to explain NEC onset, but none
of which alone can explain all cases. Bacteria of the genus Klebsiella
emerged from our analyses as organisms of potential importance,
with secondary metabolite, LPS, and fimbriae production all being
possible contributors. The association of these bacteria, as well as
bacteria of the Clostridium genera, with NEC and their presence in
the neonatal intensive care unit (16) supports prior reports proposing
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that colonization by nosocomial microbes in premature infants
may be clinically significant. Overall, we provide insight into how
previously proposed but distinct explanations for the development
of NEC are interconnected and identify bacterial growth rates as the
strongest predictor of disease onset.

MATERIALS AND METHODS

Subject recruitment, sample collection, and

metagenomic sequencing

This study was reviewed and approved by the University of Pittsburgh
Institutional Review Board (IRB PRO12100487 and PRO10090089).
This study made use of many different previously analyzed infant
datasets. These datasets have previously published descriptions of
the study design, patient selection, and sample collection and are
referred to as NIH1 (33), NIH2 (16), NIH3 (34), NIH4 (35), NIH5
(36), and Sloan2 (16). Stool samples were collected from infants and
stored at —80°C. DNA was extracted from frozen fecal samples using
a MoBio PowerSoil DNA isolation kit with modifications (33).
DNA libraries were prepared using the Illumina Nextera kit (NIHI,
NIH2, and NIH3), KAPA Biosciences Hyper Plus Illumina library
preparation reagents (NIHS5), or PrepX DNA library preparation
kits in conjunction with the Apollo 324 robot following factory recom-
mendations (NIH4 and Sloan2). Libraries were sequenced on an
[lumina HiSeq 2500 (NIH1, NIH2, NIH3, and Sloan2), Illumina
HiSeq 3000 (NIH4), or Illumina HiSeq 4000 (NIH5). All samples
were collected with parental consent. Collated sequencing and health
information for all infants and samples are provided in the Supple-
mentary Materials of this manuscript (tables S1 and S2).

Metagenomic profiling

Read processing and assembly

Reads from all samples were trimmed using Sickle (www.github.
com/najoshi/sickle), and reads that were mapped to the human
genome with Bowtie 2 (37) under default settings were discarded.
Reads from all samples were assembled independently using IDBA-UD
(38) under default settings. Coassemblies were performed for each
infant as well, where reads from all samples from that infant were
combined and assembled together. Scaffolds of <1 kb in length were
discarded, and remaining scaffolds were annotated using Prodigal
(39) to predict open reading frames using default metagenomic settings.
Recovery of de novo bacterial genomes

DasTool (40) was used to select the best bacterial bins from the com-
bination of three programs for automatic binning—abawaca
(https://github.com/CK7/abawaca), concoct (41), and maxbin2 (42).
Cross-mapping was performed between samples for each infant to
generate differential abundance signals, and each sample was binned
independently. For each infant, dRep v1.4.2 (43) was then used on
all bins created from all samples from that infant to generate an
infant-specific genome set, using a minimum completeness of 50%,
maximum contamination of 15%, the ANImf algorithm, 99% second-
ary clustering threshold, and 25% minimum coverage overlap.

To determine the taxonomy of bins, the amino acid sequences of
all predicted genes were searched against the UniProt database using
the usearch ublast command with a maximum e value of 0.0001.
tRep (https://github.com/MrOlm/tRep/tree/master/bin) was used
to convert the list of identified taxIDs into taxonomic levels. Briefly,
this assigns a call to each taxonomy level when at least 50% of pro-
tein hits reach that taxonomic level.
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Bacterial growth rates

iRep values (7) were calculated by first mapping reads from all sam-
ples in each infant to the dereplicated genome set from that infant
using Bowtie 2. iRep values resulting from genomes with less than
0.9 breadth of coverage were discarded. To visualize growth rates
over time (Fig. 3A), all iRep values from all bacteria were averaged
together for each DOL relative to NEC and plotted using seaborn
(https://seaborn.pydata.org/) with a confidence interval of 68% and
discarding outliers. DOL in which less than five infants were pro-
filed were manually removed.

Bacteriophages, plasmids, and eukaryotes

For all assemblies, circular contigs were identified using VICA (44),
and bacteriophages were identified using VirSorter (45) and VirFinder
(46). Bacteriophages were defined as scaffolds that were considered
“level 2” or “level 1” by VirSorter or P < 0.01 by VirFinder. Plasmids
were defined as scaffolds, which were circular, but not identified as
bacteriophage according to the above definition. Bacteriophages and
plasmids more than 10 kb in length were then each dereplicated
separately on a per-infant basis using dRep version 2.0.5 with a
primary clustering threshold of 0.9, the ANImf genomic comparison
algorithm, a minimum coverage threshold of 0.5, a minimum length
of 10 kilo-base pairs, an N50 weight score of 0, a contig length
weight score of 1, no quality filtering, and the nearest point algorithm
for genome clustering. All plasmid and bacteriophage genomes were
then compared to each other using the same dRep command.
Eukaryotes were assembled and binned from the gut samples of
premature infants as previously reported (36).

Eukaryotic viruses

Eukaryotic viruses were analyzed using the 2014 vFam A HMM
(Hidden Markov Model) collection (47), a set of HMMs designed
for the identification of eukaryotic viruses within metagenomic
sequence data. All hits with e values less than 1 x 10> were considered
significant and retained. Reads were also mapped to a previously curated
list of human viruses (48). This led to the identification of no viruses
when individual samples were used and a very small number of viruses
when combined sets of reads from each infant were used (Torque teno
midi virus 2, Torque teno virus 14, and Macaca mulatta polyomavirus 1).
This line of work was not followed up on due to lack of signal.
Diversity

Shannon diversity and overall bacterial richness were calculated for
each sample. Shannon diversity was calculated using skbio.diversity.
alpha.shannon (http://scikit-bio.org/). Richness was calculated as
the number of bacteria with relative abundances over 0.1%.

KEGG modules

KEGG modules were annotated by using HMMER against an in-house
HMM database built from the KEGG orthology groups (KOs)
(www.genome.jp/kegg/). Briefly, all KEGG database proteins with
KOs were compared with all-v-all global similarity search using
USEARCH (49). MCL (Markov Cluster Algorithm) was then used to
subcluster KOs (inflation_value = 1.1). Each subcluster was aligned
using MAFFT (multiple alignment using fast Fourier transform) (50),
and HMMs were constructed from subcluster alignments. HMMs
were then scored against all KEGG sequences with KOs, and a score
threshold was set for each HMM at the score of the highest-scoring
hit outside of that HMM subcluster. KEGG modules were considered
present in a genome if all necessary KOs were present in that
genome. The abundance of each KEGG module in a sample was
calculated as the summed relative abundance of all bacterial ge-
nomes containing that module.
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Secondary metabolite gene clusters

To identify secondary metabolites, antismash-4.0.2 was run on each
infant coassembly (51). The results were parsed using the custom script
parse_antismash.py (https://github.com/MrOlm/Public-Scripts),
and resulting key proteins were clustered using diamond with
default settings (52). Alignments were filtered to only retain those
with >75% amino acid identity and 50% alignment coverage.
Hierarchical clustering was then performed using average amino
acid identity and resolved using a distance threshold of 0.5 to assign
each secondary metabolite gene cluster to a gene cluster family.
Next, for each infant, the nucleotide sequences of all genes in a rep-
resentative for each gene cluster family were concatenated together.
The reads from each sample from that infant were mapped to this
concatenation of genes to determine the dynamics of these genes in
all samples from that infant. The breadth of each cluster was calcu-
lated as the weighted breadth (considering gene length) for all genes
in that cluster.

Virulence factors

Virulence Factors Database (VFDB) was used to search for virulence
factors (53). The database used was from 17 March 2017, containing
2597 sequences. Abricate was used to search all predicted protein
sequences against the VEDB (https://github.com/tseemann/abricate).
Metadata from the VFDB website (www.mgc.ac.cn/VFs/) were used
to get additional information about the virulence factors. Approxi-
mately 15% of virulence factors were not included in this metadata
file and were excluded from additional analysis.

Botulinum toxin

A blast database of all subtypes of botulinum neurotoxin was down-
loaded from https://bontbase.org/ (as accessed on 15 February 2018).
Blastp was used to search the predicted amino acid sequences of all
genes against the database. Hits with an e value less than 1 x 107
were considered valid.

Pathogenic E. coli

It was previously reported that pathogenic E. coli may be associated
with NEC development, specifically the clades 73, 95, 127, 131, 144,
998, and 69 (11). To identify E. coli genomes of these sequencing
types in our dataset, all genomes were multilocus sequence typing
(MLST)-profiled using PubMLST (54) and the program “mlst”
(https://github.com/tseemann/mlst). The MLST definition requires
having seven genes; in cases where only six genes could be identified, if
only one sequence type (ST) existed with those six gene types, the
sequence type was inferred. Each sample with an E. coli genome of
the above STs at more than 1% relative abundance was considered
to have a “pathogenic” E. coli, in accordance with the previous study
implicating pathogenic E. coli in NEC development (11).

Proteins

Three protein clustering methods were evaluated for use in this
study—MMseqs2 (55) (run using default settings), CD-HIT (0.9 global
sequence identity threshold and 200,000 MB memory limit), and a
previously described hybrid Markov Cluster approach (20). Algorithms
were evaluated on the basis of their ability to reconstruct known
protein clusters, and the hybrid Markov Cluster approach performed
best (table S4). This method was used to cluster the amino acid se-
quences of all predicted genes from all assembled scaffolds.

The average microbiome of NEC and control infants

To calculate the relative abundance of all microbes in each infant, a
full “genome inventory” was generated for each infant by resolving
the overlap between the recovered bacteria, eukaryote, bacteriophage,
and plasmid genomes. Bacteriophage and plasmid genomes were
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first aligned using MUMmer (56), and in all cases where scaffolds
were aligned with more than 95% ANI on more than 50% of the
scaffold, the scaffold was removed from the plasmid list. The resulting
scaffolds were next aligned to bacterial genomes, and all phage/
plasmid scaffolds that aligned to bacterial genomes with the same
thresholds were removed. Last, eukaryotic genomes were aligned to
the remaining scaffolds, and in cases where similar scaffolds were
detected, the scaffold was removed from the eukaryotic genome.
Reads from all samples were then mapped to that infant’s genome
inventory using Bowtie 2, and the relative abundance of each organism
was calculated as the percentage of total sample reads that map to
that genome (table S4).

To compare the microbiome between NEC and control infants,
the microbiome of each cohort was averaged across all infants in that
cohort (Fig. 2A) using the relative abundance values described in
the previous paragraph. For each DOL, the average relative abun-
dance of each taxon was first calculated. A 5-day sliding window was
next applied, and values from samples in each window were averaged.
For example, DOL 10 represents the average abundances from
DOL 8 to 12.

Strain-level differences between NEC and control infants

To calculate the relative abundance of each bacterium in each sample,
each sample was mapped to the infant-specific bacterial genome set
for that infant using Bowtie 2. Relative abundances of all bacteria
were calculated as the percentage of total sample reads mapping to
each genome. Bacteria assembled from all infants were then com-
pared to each other using dRep, and bacterial genomes with at least
99% ANI were considered to be the same “strain.” A bacterium was
considered present in a sample if it had more than 0.1% relative
abundance, and the fraction of pre-NEC and control samples in
which each strain was present was calculated and plotted in Fig. 2C.

Similar procedures were performed for the bacteriophage and
plasmid genome sets of each infant. Mapping was performed to
each infant set separately, and genomes were considered to be the
same strain if they had 99% ANI over at least 50% of their genomes.
Organisms were considered present in a sample if they were present
with more than 50% genome breadth of coverage.

Principal components analysis

PCA was performed on the basis of the relative abundance of bacteria
in each sample as assessed using weighted UniFrac distance. A phy-
logenetic tree was created by comparing all assembled bacterial
genomes to each other using dRep primary clustering with a mash
sketch size of 100,000, the weighted UniFrac distance between all
samples was calculated using scikit-bio (http://scikit-bio.org/), and
PCA was performed using scikit-learn.

Machine learning

Preparation of metagenomic data for ML

Many individual features were summarized before inclusion in the
ML training dataset (table S5). For each sample, BTtoxin_abund
describes the summed relative abundance of all botulinum toxins
detected, BacteriaNCBIGrowth describes the average iRep value of
each identified bacterial taxonomic family, BacteriaNCBITax
describes the summed relative abundance of each identified bacterial
taxonomic family, Bacteriophage_overall describes the summed rela-
tive abundance of all bacteriophage genomes with a breadth of at
least 0.75, CatInfSampleMetadata describes clinical metadata about
the infant (e.g., breastfeeding versus formula feeding, gender, and
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birth mode), CatSampleMetadata describes clinical metadata about
the sample (e.g., current antibiotic administration, antibiotic adminis-
tration in the last 5 days), Diversity describes the bacterial richness
and shannon diversity, Eukaryotes_overall describes the summed
relative abundance of all eukaryotic genomes with a breadth of at
least 0.1, HumanViralProteins describes whether each vFam is
detected, KEGG_modules describes the summed relative abundance
of each KEGG module, Plasmid_overall describes the total summed
relative abundance of all plasmid genomes with a breadth of at least
0.75, SampleMetadata describes continuous clinical variables (e.g.,
gestational age, weight, and days since antibiotic administration),
SecMetabolites_cluster_mapping describes the coverage of each gene
cluster family with a breadth of at least 0.5, VirFactor_cat_abund
describes the summed relative abundance of each detected virulence
factor category, Ward_ecoliPathogen_PE describes whether patho-
genic E. coli was detected, and median_irep describes the median
measured iRep value. In total, this leads to the calculation of 2119
features for each sample (table S5). See above methods for details on
how individual features were calculated.

Algorithm development

Three ML methods were evaluated for their ability to classify pre-
NEC versus control samples—a random forest classifier (sklearn.
ensemble.RandomForestClassifier with 460 estimators and 10 max
features) balanced using SMOTE (synthetic minority over-sampling
technique; imblearn.combine. SMOTEENN), a gradient boosting
classifier (sklearn.ensemble.GradientBoostingClassifier with 0.1
learning_rate, 10 max_depth, 46 max_features, 1483 minimum
samples to split an internal node, and 200 estimators) balanced using
SMOTE, and the same gradient boosting classifier without balancing.
Hyperparameters were empirically determined using sklearn.mod-
el_selection.RandomizedSearchCV, and in general, many different
combinations of hyperparameters gave similar results. Models were
trained and evaluated using cross-validation for five iterations each
(using sklearn.model_selection.StratifiedKFold with 10 splits, sklearn.
model_selection.cross_val_predict, and sklearn.metrics.accuracy_score)
and all achieved similar prediction ability (table S4).

To determine the accuracy of the gradient boosting classifier,
100 iterations were performed where each iteration consisted of
(i) randomly balancing the input to include 21 pre-NEC samples and
21 control samples, (ii) classifying each sample in the input using
10-fold cross-validation (same methods as above), and (iii) calculating
the percentage of samples that were correctly classified. The median
accuracy value was reported.

Feature importance analysis

Feature importances were determined by 100 iterations of training
the gradient boosted classifier on the full dataset of pre-NEC and
control samples. Importance values were scaled for each iteration
such that the overall sum equals 1. The median importance value
for each feature is reported (table S5).

KEGG and secondary metabolite enriched genomes

Each bacterial genome was assigned a metabolic importance value
by summing the median feature importances of each KEGG module
encoded by that genome (see above methods for how KEGG modules
were determined). A distribution of KEGG genomes importances
was generated (fig. S4A), and on the basis of this distribution,
genomes with importance values of more than 15 were considered
organisms of interest. Each bacterial genome was also assigned an
importance value equivalent to the highest importance value of all
secondary metabolite clusters encoded by that genome. A distribu-
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tion was generated (fig. S4B), and genomes with importances of
more than 0.5 were considered enriched in important secondary
metabolite clusters.

Phylogenetic tree

A phylogenetic tree was made to visualize the distributions of or-
ganisms of interest and organisms enriched in important secondary
metabolite clusters (Fig. 4F). Ribosomal protein S3 was identified in
bacterial genomes using pFam PF00189.19 and HMMER with a
score cutoff of 50 (57). An archaeal outgroup was added, and all
sequences were aligned using MAFFT (50) under default parameters.
All positions with gaps in more than 50% of sequences were
trimmed from the alignment, and FastTree was used with default
parameters to generate a phylogenetic tree (58). The tree was visualized
and annotated using iTOL (59).

Protein clustering

Protein association with NEC

Each protein cluster was considered present in a sample if a protein
from that cluster had been assembled from the sample. Fisher’s exact
test was run on each protein cluster to determine whether it was en-
riched in pre-NEC or control samples, and after Benjamini-Hochberg
correction, no P values were statistically significant.

Protein association with organisms of interest

Each protein cluster was considered present in an organism of in-
terest if a protein from that cluster was encoded in the organism’s
genome. The recall and precision of each cluster with organisms of
interest were calculated as follows: recall = the number of organisms
of interest the cluster is in/the total number of organisms of interest;
precision = the number of organisms of interest the cluster is in/the
total number of genomes the cluster is in. The recall and precision
of each protein cluster were plotted (Fig. 5B), and a threshold of
0.7 recall and 0.7 precision was visually established. Protein clusters
with recall and precision of more than 0.7 were considered enriched
in organisms of interest.

The 85 protein clusters enriched in organisms of interest were
profiled using the pFam database (57) with provided noise cutoffs,
and the two most common pFams were PF00419.19 (Fimbrial) and
PF00005.26 (ABC transporter) with four proteins each. We next
determined whether organisms encoding these proteins were en-
riched in pre-NEC samples. For each pFam with at least three
proteins enriched in organisms of interest, we compared the total
relative abundance of all bacteria encoding that pFam in pre-NEC
versus control samples, as well as all iRep values of bacteria encoding
that pFam in pre-NEC versus control samples using the Wilcoxon
rank sum test with Benjamini-Hochberg P value correction (table S6).

Fimbriae

CU fimbriae were identified in our dataset using pFam PF00577.19
(usher protein) and clustered using usearch (49) with an identity
threshold of 0.9. The taxonomic profile of each fimbriae cluster was
determined on the basis of the taxonomy of organisms encoded by
that cluster, and relative abundance and iRep associations with pre-
NEC versus control samples were calculated using the Wilcoxon
rank sum test applied to all bacterial genomes encoding each cluster.
A similar procedure was performed using genomes that were not
classified as organisms of interest but did encode fimbriae cluster 49,
comparing between pre-NEC and control samples and between all
samples from NEC infants and all samples from control infants (fig. S4).
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A phylogenetic tree was made to establish the type of usher pro-
teins identified in our study. Three reference sequences from each
previously established type (21) were aligned with three representatives
of each of our clusters using MAFFT. All columns with gaps in
more than 50% of sequences were trimmed from the alignment,
IQ-TREE was used with default parameters to generate a phylogenetic
tree (60), and tree annotation was performed using iTOL (59).

Effect size calculations

To determine when signals first become apparent relative to NEC
diagnosis, control samples were compared to samples collected over
different sliding 3-day windows (Fig. 6). To compare the signal at
5 days before NEC diagnosis, for example, a rarefied set of samples
was chosen from 4 to 6 days before diagnosis where one sample
from each infant that has a sample in that window was randomly
chosen. This procedure was repeated 10 times, and the average effect
size and 95% confidence intervals were plotted. The effect size was
calculated on the basis of the Wilcoxon rank sum test statistic [as
calculated by SciPy (scipy.stats.ranksums)] using the formula: effect
size = {test statistic/square root [(observations in population 1) +
(observations in population 2)]}. For iRep, all iRep values were
compared between the two sets; for secondary metabolite gene clus-
ters, the total relative abundance of genomes encoding secondary
metabolite gene clusters classified as producing sactipeptides, bac-
teriocins, or butyrolactones was compared; for Klebsiella, the total
relative abundances of all genomes classified as the genus Klebsiella
were compared; and for Fimbriae cluster 49, the total relative abun-
dances of all genomes encoding fimbriae cluster 49 were compared.
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