Skip to main content
. 2019 Dec 5;10:1206. doi: 10.3389/fgene.2019.01206

Figure 2.

Figure 2

Schematic diagrams of the foraging strategies of territorial and traplining hummingbirds and their expected effect on the differentiation of pollen pools sampled among forest fragments and among neighboring plants within forest fragments. Suitable habitat for both H. tortuosa and its pollinators is represented in green with the matrix shown in white. (A) The foraging strategy of territorial hummingbirds is shown by a double-dashed line. These pollinators enhance pollen transfer among neighboring plants and reduce pollen flow among forest fragments. The foraging strategy of traplining hummingbirds is shown by a single-dashed line. These pollinators reduce pollen flow among neighboring plants and enhance pollen transfer among forest fragments. (B) Pollination by territorial hummingbirds leads to neighboring plants sampling the same local pollen pool, as these pollinators transfer pollen among plants within their territory and often visit multiple flowers within a clump of inflorescences. This leads to non-significant differentiation of pollen pools sampled by neighboring plants. (C) Pollination by traplining hummingbirds leads to neighboring plants sampling distinct pollen pools, as these pollinators will visit particular plants along different high-fidelity routes. This leads to significant differentiation of pollen pools sampled by neighboring plants. (D) Pollination by territorial hummingbirds reduces pollen flow among forest fragments, increasing pollen pool differentiation among sites. (E) Long-distance pollen transfer by traplining hummingbirds enhances pollen flow among forest fragments, reducing pollen pool differentiation among sites. Allele frequencies in pollen pools are represented by pie charts, where each color indicates a different allele.