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Abstract

Many educational testing programs require different test forms with minimal or no item overlap.
At the same time, the test forms should be parallel in terms of their statistical and content-
related properties. A well-established method to assemble parallel test forms is to apply combi-
natorial optimization using mixed-integer linear programming (MILP). Using this approach, in the
unidimensional case, Fisher information (FI) is commonly used as the statistical target to obtain
parallelism. In the multidimensional case, however, FI is a multidimensional matrix, which compli-
cates its use as a statistical target. Previous research addressing this problem focused on item
selection criteria for multidimensional computerized adaptive testing (MCAT). Yet these selec-
tion criteria are not directly transferable to the assembly of linear parallel test forms. To bridge
this gap the authors derive different statistical targets, based on either FI or the Kullback–
Leibler (KL) divergence, that can be applied in MILP models to assemble multidimensional
parallel test forms. Using simulated item pools and an item pool based on empirical items, the
proposed statistical targets are compared and evaluated. Promising results with respect to the
KL-based statistical targets are presented and discussed.
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In educational measurement there are many cases where different sets of items (i.e., test forms

or item pools) are required to be parallel. That is, test forms1 are required to be equivalent in

terms of both their statistical and content-related properties. Without being exhaustive, the need

for parallel test forms can arise in the following situations. High-stakes educational testing pro-

grams may require multiple parallel test forms with minimal or no item overlap for fair, secure,
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and valid test scores. Computerized adaptive testing (CAT) administrations may need multiple

parallel item pools, which can be applied at different time points. Multistage testing may require

the subtests at each stage to be parallel with an ideal, preconceived subtest to meet measurement

precision and content-related requirements. Large-scale low-stakes assessments that apply a

balanced incomplete block design often require item blocks that (a) are nonoverlapping, (b)

have a prespecified expected overall response time, and (c) meet a specified precision across a

predefined ability range. Yet, regardless the situation, constructing these parallel test forms is

not straightforward.

Assembling multiple parallel test forms out of a calibrated item pool has proven to be a com-

plicated combinatorial optimization problem. Rather than by hand, test forms are comonly

assembled automatically. Different automated test assembly (ATA) methods are available; some

are based on sampling-and-classification methods such as the Cell Only and the Cell and Cube

methods (Chen, Chang, & Wu, 2012), and others rely on constrained combinatorial optimization

techniques (e.g., Finkelman, Kim, & Roussos, 2009; Luecht, 1998; van der Linden, 2005). The

most commonly used optimization technique involves translating the ATA problem to a mixed-

integer linear programming (MILP) model (Diao & van der Linden, 2011; Theunissen, 1985;

van der Linden, 2005). This article focuses on the MILP approach for ATA problems, and spe-

cifically on the Minimax approach for the assembly of parallel test forms (Boekkooi-Timminga,

1990; van der Linden, 2005) within item response theory (IRT) framework.

The literature on parallel test assembly is currently limited to unidimensional IRT (UIRT).

Yet multidimensional test administrations may also require parallel test forms. Therefore, the

main aim of this article is to extend the Minimax approach to multidimensional IRT (MIRT;

Reckase, 2009). To bridge this gap, the authors propose new statistical targets and evaluate their

performance in both unidimensional and multidimensional cases. Although the article focuses

on assembling multiple test forms with parallel expected score distributions and parallel mea-

surement error, the proposed methods can also consider different targets (e.g., testing time and

precision) or even assemble one optimal test form.

The remainder of this article is organized as follows. First, the authors introduce the item

response and Fisher information (FI) functions in MIRT. Then, they discuss the MILP model

approach for ATA, with a focus on Minimax models (van der Linden, 2005). Subsequently,

they explain the challenge that arises with ATA of parallel test forms in the multidimensional

case and propose six approaches that mitigate this issue. They first translate the two approaches

proposed by Veldkamp (2002) to the case of parallel test assembly. Then, they introduce the

Kullback–Leibler (KL) divergence and subsequently propose four KL-based approaches. These

sections can be found in Online Appendices A and B. In the ‘‘Method’’ and ‘‘Results’’ sec-

tions, the six approaches are evaluated using simulated one- and two-dimensional item pools,

as well as a three-dimensional bifactor model case that is based on data from an operational

language aptitude test. The article ends with a discussion of the results.

MIRT

Due to its diagnostic feature and potential for exploiting correlated subskills, MIRT has gained

more attention recently. Many certification and admission boards want to enhance their high

stakes tests with multidimensional scale scores that can be used as a diagnostic service to inform

candidates (Mulder & van der Linden, 2009b), but also for decision making. MIRT reflects test-

ing for diagnosis by viewing ability as a p-dimensional vector, while still allowing an overall

score (e.g., Haberman & Sinharay, 2010).

According to the multidimensional extension of the two-parameter logistic model (2PLM;

Birnbaum, 1968), the probability of a correct response on item i given ability u is

18 Applied Psychological Measurement 44(1)



Pi(u) = Pr Xi = 1juð Þ= 1

1 + exp � aT
i u� bið Þ½ � , ð1Þ

where Xi is the response on item i, and the ability u is a p-dimensional latent variable. aT
i is a

vector of slope or discrimination parameters corresponding to the p ability values, and bi is the

intercept or location for item i. For simplicity, in the remainder of this article all items are

assumed to follow the item response function in Equation 1. Extensions to other MIRT models

are straightforward.

The test characteristic curve (TCC) for a test with n items describes the expected test score

for a given ability u. Under the local independence assumption, the TCC, denoted T (u), is the

sum of the Pi(u) of all n items in a test:

T uð Þ=
Xn

i = 1

Pi uð Þ: ð2Þ

In addition, under local independence, the likelihood of a response pattern X on a test simpli-

fies to

f X ; uð Þ= L u, X1, X2, . . . , Xnð Þ=
Yn

i = 1

Pi uð Þ½ �Xi 1� Pi uð Þ½ �1�Xi : ð3Þ

Fisher Information

In maximum likelihood theory, the variance of the score function is referred to as FI. It is a mea-

sure of the information that a random variable carries about an unknown parameter. In MIRT,

with X as the (vector-valued) random variable and assuming item parameters are known, the FI

that concerns the latent ability parameter vector u is defined by

I uð Þ= E
∂

∂u
logf X ; uð Þ

� �
∂

∂u
logf X ; uð Þ

� �T

ju
 !

: ð4Þ

The inverse of this p3p FI matrix is the asymptotic variance–covariance matrix of the maxi-

mum likelihood estimate (MLE) of the ability parameter û: V (û) = I(û)
�1

. The FI matrix for a

single item i, denoted as Ii(û), is usually referred to as the item information function (IIF):

Ii uð Þ= E
∂

∂u
logf Xi; uð Þ

� �
∂

∂u
logf Xi; uð Þ

� �T

ju
 !

, ð5Þ

where f (Xi; u) = ½Pi(u)�Xi ½1� Pi(u)�1�Xi . The IIF is typically interpreted as the information

that an item i carries about the ability u. For a given n-item test, the FI is commonly referred to

as the test information function (TIF). Under local independence, the TIF and thus the asympto-

tic variance–covariance matrix of the MLE simplify to

I uð Þ=
Pn
i = 1

Ii uð Þ and V û
� �

=
Pn
i = 1

Ii û
� �� ��1

: ð6Þ
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Test Assembly via MILP

Translating the ATA problem to a MILP model is a common technique (Diao & van der

Linden, 2011; Theunissen, 1985; van der Linden, 2005). Because MILP and linear program-

ming models are widely used in various industries, efficient algorithms have been developed

and various software packages (usually referred to as ‘‘solvers’’) are available. For an overview

of both commercial and open source solvers that can be used for ATA problems, see Donoghue

(2015).

MILP models are linear programming models for which (some of) the variables are restricted

to integer values. When variables in a MILP model are further restricted to be binary, they can

be interpreted as decision variables. In the context of ATA, each decision variable relates to

whether or not a specific item from the pool is selected into a specific test form. In general, a

MILP model includes two main parts (Ali & van Rijn, 2016; Diao & van der Linden, 2011): (a)

the objective function,

min cT x, ð7Þ

and (b) a set of inequality constraints,

Ax � d, ð8Þ

where x = (x1, . . . , xE)T is a vector of length E that needs to be solved for, and c = (c1, . . . , cE)T

is a numeric vector of known coefficients for the objective function. A is an O3E matrix with

known coefficients, one row for each of the left-hand side values of the O linear inequality con-

straints. The columns of A correspond to the elements of x. Finally, d = (d1, . . . , dO)T is a vec-

tor with the corresponding right-hand side values of the constraints.

The specifications that assembled test forms should satisfy, such as the number of items from

a specific content domain, can also be divided into objectives and constraints (van der Linden,

2005). Constraints require a test or item attribute to satisfy an upper or lower bound. Objectives

require an attribute to take a minimum or maximum possible value. Translating the constraints

and the objectives from the ATA problem to a MILP model with inequality constraints and an

objective function is generally straightforward.

Minimax Models

Although there are other MILP approaches available for the ATA of parallel test forms, the

authors only focus on the Minimax approach (Boekkooi-Timminga, 1990; van der Linden,

2005). The Minimax approach is one of the most commonly used MILP approaches and it

works as follows. First, the desired reference or target test form, which can be based on either

an existing or an ideal test form, is decided. Then, after choosing the statistical target (i.e., the

statistic that is used to attain parallelism), the Minimax model minimizes the maximum dis-

tance between the statistical targets of each assembled test form and the statistical target of the

reference test form (Chen et al., 2012).

If F new test forms are assembled from an item pool of J items to be parallel with existing or

ideal reference test form t, then we have J3F binary decision variables xjf , j = 1, 2, . . . , J , and

f = 1, 2, . . . , F in x that indicate if item j is selected for test form f . If some statistical target Q is

chosen, a Minimax model minimizes the maximum absolute or relative distance between the Q

of the assembled test forms and the Q of the reference test form (also referred to as the target Q)

at H prespecified ability values (or u-points). For instance, when the maximum relative distance

is minimized, the following constraints are used:
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XJ

j = 1

Qj uhð Þ
Q tð Þ uhð Þ

xjf � yhz � 1,

XJ

j = 1

Qj uhð Þ
Q tð Þ uhð Þ

xjf + yhz � 1, for h = 1, 2, . . . , H ; and f = 1, 2, . . . , F:

ð9Þ

where Qj(uh) is the item-level statistic Q of item j at u-point h and Q(t)(uh) is the test-level sta-

tistic of the reference test form at u-point h. The yh are user-defined (positive) weights that

express the (relative) importance of the difference between assembled and reference test forms

at the different u-points h, and z is an additional positive real-valued variable (i.e., z � 0) in x

that should be minimized: min(z).

When all yh = 1, z corresponds to the maximal relative difference between the Q of a new

test form and the target Q, at one of the prespecified u points. When parallelism with respect to

Q is considered to be more important at a specific u-range, the weights yh can be adjusted

accordingly. As a result, in Equation 9, the differences between the Q of the assembled test(s)

and the target Q will be weighed more heavily at the theta-points with higher yh values. The

constraints in Equation 9 translate to 23H3F rows in A (cf. Equation 8). For instance, for the

first u-point (h = 1) and for the first test form (f = 1), the left-hand side of the upper equation in

Equation 9 results in the following row in A: ( Q1(u1)

Q(t)(u1)
, Q2(u1)

Q(t)(u1)
, . . . , 0, 0, y1). The E = J3F + 1

columns of A correspond to the J3F binary variables xjf and the continuous variable z in x.

Thus, x = (x11, x21, . . . , xJF , z)T . The right-hand values in Equation 9 translate to 23H3F ones

in d. Furthermore, c = (0, 0, . . . , 1)T is a vector of length J3F + 1 containing J3F zeros and

one 1, corresponding with respectively the xjf and z in x, so that Equation 7 becomes min(z).

Constraints related to test length, item content, item format, and so on can be added in a similar

way. For instance, if item overlap is not allowed among test forms,

XF

f = 1

xjf � 1, for j = 1, 2, . . . , J , ð10Þ

results in J extra rows in A and d.

Statistical Targets in Minimax Models

As can be seen in Equation 9, there is an important restriction for a statistical target Q. To be

applicable in Minimax models—and in ATA using MILP in general—Q at the test level has to

be a linear combination of the Qi at the item level. Both the TCC and the TIF satisfy this condi-

tion, while the variance of the MLE V (û) does not (see Equations 2 and 6). When the TIF is

chosen as the statistical target (i.e., parallel precision) in the unidimensional case, Qj(uh) and

Q(t)(uh) in Equation 9 are replaced by Ij(uh) and I (t)(uh), respectively. Similarly, with the TCC

as statistical target (i.e., parallel expected test scores), Pj(uh) and P(t)(uh) are used. Note that

when using the TCC, it is more logical to minimize the maximal absolute, rather than the rela-

tive difference (Debeer, Ali, & van Rijn, 2017).

The Multidimensionality Issue

Regardless the dimensionality of the ability u, Pi(u) and T (u) are always scalar-valued.

Therefore, apart from the number and selection of H u-points, the use of the TCC as statistical

target (Equation 9) does not differ between the unidimensional and the multidimensional case.

Debeer et al. 21



In contrast, Ii(u) and I(u) change from scalars in UIRT to p3p matrices in MIRT. As a result,

ATA methods based on these statistical targets do not simply translate from the unidimensional

to the multidimensional case.

Previously proposed strategies to mitigate this multidimensionality issue mainly focus on

MCAT, where the item selection procedure is based on sequentially selecting the next item.

These MCAT item selection criteria either transform the test information matrix into a scalar

using a function (e.g., D-optimality), or define a new (scalar) statistical target that is derived

from other information measures, such as Shannon’s Entropy (Wang & Chang, 2011), mutual

information (Mulder & van der Linden, 2009a), or the KL divergence (Veldkamp & van der

Linden, 2002). The item selection criteria from MCAT are, however, not directly transferable to

the ATA of linear test forms. In addition, the few strategies that have been proposed specifically

for the ATA of multidimensional linear tests (a) require interventions from the test assembler

(van der Linden, 1996) or (b) focus on the construction of one optimal test, rather than multiple

parallel test forms (van der Linden, 1996; Veldkamp, 2002). Therefore, our main aim is to con-

tribute to the literature by presenting and evaluating six statistical targets that mitigate the multi-

dimensionality issue, with a focus on the assembly of multiple parallel test forms. The authors

first extend the approach proposed by Veldkamp (2002) to parallel test assembly. Then, they

propose four new statistical targets based on KL divergence.

Scalar Aggregates of FI Matrix and Its Inverse

In MCAT, several strategies have been proposed to reduce the FI matrix (or the variance-

covariance matrix) into a single scalar. Two of these methods are A-optimality and D-optimal-

ity. These strategies are, however, not directly applicable in MILP. To overcome this issue,

Veldkamp (2002) proposed to use linear approximation of the A-optimality and D-optimality

constraints. The work of Veldkamp (2002) was limited to the assembly of one optimal test. In

this article the authors extended it to the assembly of multiple parallel test forms. For both D-

optimality and A-optimality the resulting constraints are

PJ
j = 1

kjhxjf � yhz � 1,

PJ
j = 1

kjhxjf + yhz � 1, for h = 1, 2, . . . , H ; and f = 1, 2, . . . , F:

ð11Þ

The principle behind A-optimality and D-optimality, and the formulae and derivations of the

linear approximations kjh are found in Online Appendix A.

KL-Based Statistical Targets

The FI is not the only measure that can be used to quantify the information contained in a ran-

dom variable or in a distribution. Alternative information measures have been proposed, such as

the KL divergence, which expresses the divergence (i.e., nonsymmetric distance) between two

probability distributions f (Y ) and g(Y ) over the same parameter space (Cover & Thomas, 2012;

Lehmann & Casella, 1998; Wang, Chang, & Boughton, 2011). Although the KL divergence has

been applied in CAT and MCAT, to our knowledge it has not been applied to the problem of

ATA of multidimensional test forms.
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Online Appendix B discusses how an KL Index (KLI) can be derived from the KL diver-

gence and applied in CAT and MCAT. From this starting point, it is explained how KL-based

statistical targets can be defined. Three KLIs that can be applied as statistical targets in ATA

using MILP are proposed: the KLIMLE, the KLILocal, and the KLIGlobal.

Method

In this section the authors describe the design and the technical details of three simulation stud-

ies. Simulation 1 focuses on the unidimensional case and compares the performance of the pro-

posed KLIs with the performance of the FI and TCC as the statistical targets in Minimax

models. Simulation 2 applies the KLIs, the linear approximations of D- and A-optimality, and

the TCC to two-dimensional item pools. Finally, Simulation 3 is based on an operational lan-

guage aptitude assessment and focuses on a three-dimensional bifactor model.

Simulation 1: Unidimensional Item Pool

In the first simulation, five 30-item test forms are assembled out of an item pool with J = 450

unidimensional 2PLM items. Because solving a MILP model is time consuming, only 20 repli-

cations were run using the following settings.

Item pool. In each replication an item pool was generated by sampling the item discriminations

from a uniform distribution ai;U (:5, 2) and the item locations from a standard normal distribu-

tion bi;N(0, 1). In addition, each item was randomly assigned to one of five content types (c1–

c5) and one of three item formats (v1–v3) while maintaining a balanced design with 30 items in

each of the 533 = 15 cells.

Reference test form. Because a simulated rather than an empirical item pool was used, each ref-

erence test was proportional to the corresponding item pool. The target values for the statistical

targets Q(uh) at uh were computed as follows:

Q tð Þ uhð Þ=
n

J

XJ

j = 1

Qi uhð Þ: ð12Þ

Minimax models. In total, for each generated item pool, 2 sets of u-points 35 statistical targets

32 approaches (single or combined) –2 (no combined approach with the TCC as statistical tar-

get) = 18 Minimax models were applied. The number of u-points H was either three (�1:5, 0,

and 1.5) or five (�2, �1, 0, 1, and 2) per dimension. The statistical targets were the TIF, the

KLIMLE, the KLILocal, the KLIGlobal, and the TCC. Finally, either a single or a combined

approach was applied. In the single approach, the Minimax models included the constraints in

Equation 9 with respect to a single statistical target.2 In the combined approach, the constraints

used in the single approach were combined with additional constraints pertaining to a second

statistical target: the TCC. For a given statistical target, the combined approach was equivalent

to the single approach but with the following additional constraints:

XJ

j = 1

Pj uhð Þxjf � T tð Þ uhð Þ+ yT
h ,

XJ

j = 1

Pj uhð Þxjf � T tð Þ uhð Þ � yT
h , for h = 1, 2, . . . , H , and f = 1, 2, . . . , F,

ð13Þ
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so that the TCCs of the assembled test forms were constrained to be within an absolute distance

of yT
h from the target TCC at u-point h (i.e., one of the combined approaches proposed by

Debeer et al., 2017). In Equation 13 yT
h was set to 0:25 at all u-points. Hence, the difference

between the TCCs of two assembled test at the u-points could be 0:5 points maximum.3

Constraints with respect to item content/format were added to all the Minimax models:X
j2Vw

xjf =
n

J
3nw, for all w 2 c1, c2, c3, c4, c5, v1, v2, v3ð Þ, and f = 1, 2, . . . , F, ð14Þ

where Vw is the subset of items in the item pool belonging to item format or item content w, and

nw is the cardinal number of Vw. As a result, the new test forms were constrained to contain a

number of items from each item format and item content that was proportional to the number of

items in the item pool belonging to that item format or item content. Finally, item overlap was

not allowed by including the constraints in Equation 10.

Simulation 2: Two-Dimensional Item Pool

In the second simulation study, the authors focused on a scenario where five 30-item parallel

test forms are assembled out of an item pool with J = 450 two-dimensional items. Twenty repli-

cations were run, using similar settings as in the unidimensional simulation study.

Item pool. In each replication the item pool consisted of three types of items, from each item

type 150 items were generated. Type 1 items were generated by sampling the slope parameters

for the first and second dimension from respectively a uniform distribution between 0 and 0:5
and a uniform distribution between 1:5 and 2: a1i;U (0, 0:5) and a2i;U (1:5, 2). Type 2 items

were generated with respectively a1i;U (1:5, 2) and a2i;U (0, 0:5). Finally, for Type 3 respec-

tively a1i;U (1, 1:5) and a2i;U (1, 1:5) were used. Note that the three types have roughly the

same expected multidimensional discrimination (Reckase & McKinley, 1991). For all the items,

the locations were randomly sampled from a standard normal distribution: bi;N (0, 1). In addi-

tion, each item was randomly assigned to one of five content types (c1–c5) and one of three item

formats (v1–v3) while maintaining a balanced design with 10 items in each of the 33533 = 45

cells.

Reference test form and Minimax models. As in Simulation 1, the target values were obtained

using Equation 12. The number of u-points per dimension was either three (H = 32) or five

(H = 52), with the ability values used in Simulation 1. In addition to the TCC, the KLIMLE, the

KLILocal, and the KLIGlobal, the linear approximations of the A- and D-optimality criteria and the

trace of the TIF were the applied statistical targets. Both the single and the previously described

combined approach were applied, except when the TCC was the statistical target. Hence, in

total, for each generated item pool 23732� 2 = 26 Minimax models were applied. In the appli-

cation of the A-optimality approximation the weights of the diagonal M matrix (cf. Equation

A.2 in Online Appendix A) were set to m1 = m2 = 1.

As in Simulation 1, item content and item format constraints (cf. Equation 14) as well as

item-overlap constraints (cf. Equation 10) were added to each Minimax model. Note that there

were no constraints related to the three item types.

Simulation 3: Three-Dimensional Bifactor Item Pool

The third simulation study was based on empirical data from an operational language aptitude

assessment. Twenty item pools with J = 750 items were randomly created based on operational

24 Applied Psychological Measurement 44(1)



items following a bifactor structure with one common and two group dimensions. From each

item pool five parallel test forms were assembled, each containing n = 50 items.

Item pool. Data from an operational language aptitude assessment consisting of 79 items were

fit to several IRT models. A bifactor model with one common dimension and two orthogonal

group dimensions provided the best relative fit. For each of the 20 item pools 750 new binary

items were generated in two steps. First, 750 items were randomly drawn (with replacement)

from the 73 binary items.4 Second, for each drawn original item a new item was generated by

sampling its parameters from normal distributions using the parameter estimates and standard

errors of the original item. Online Appendix C lists the calibrated item parameters and standard

errors of the 73 binary operational items.

Reference test form and Minimax models. As in Simulations 1 and 2, the target values were

obtained using Equation 12. The number of theta-points per dimension was either three (H = 33)

or five (H = 53). The TCC, the KLIMLE, the KLILocal, and the KLIGlobal, and the trace of the TIF

were the statistical targets within either the single or the previously described combined

approach. Hence, for each generated item pool, 23532� 2 = 18 Minimax models were applied

to assemble the test forms. No content or item type constraints were included, only the item-

overlap constraints (cf. Equation 10) were added to each Minimax model.

Evaluation Criteria

The parallelism of the constructed test forms in each simulation study was evaluated using dif-

ferent statistics. First, for each test form the root mean square deviation (RMSD) statistic was

computed with respect to the target TCC (RMSDT). For a assembled test form f ,

RMSDT =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k = 1

T fð Þ ukð Þ � T tð Þ ukð Þ½ �2
vuut , ð15Þ

where the superscript (f ) refers to the observed value for the assembled test form f , with f = 1,

2, 3, 4, or 5 in this study. Furthermore, K is the number of u-points over which the RMSDT is

computed. The RMSDT can be interpreted as the average difference between the expected test

scores of the assembled test form and the reference test form.

Second, with respect to the variance of the MLE estimate (i.e., the error variance) in dimen-

sion p, the mean relative deviation (MRD) was computed. The MRD is the average relative

deviation of the error variance in dimension p of a new test form, from the target error variance

in that dimension, expressed as a proportion of the target error variance:

MRDVp
=

1

K

XK

k = 1

V fð Þ
p ûk

� �
� V tð Þ

p ûk

� �
V

tð Þ
p ûk

� �
					

					: ð16Þ

Third, as a more locally oriented evaluation criterion with respect to the TCC, the maximum

score gap (MSG) was computed for each Minimax model. The MSG is the maximal absolute

difference between the conditional expected test scores of the assembled forms, within a speci-

fied ability range:

MSG = max
u

max
f

T (f ) uð Þ

 �

�min
f

T (f ) uð Þ

 �� 

: ð17Þ
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Finally, the maximum relative error variance gap (MREVG) was computed (per dimension).

That is, the maximal relative difference in conditional error variance in dimension p across the

test forms, expressed as a proportion of the target error variance in dimension p:

MREVGp = max
u

max
f

V fð Þ
p û
� �h i

�min
f

V fð Þ
p û
� �h i

V
tð Þ

p uð Þ

8><
>:

9>=
>;: ð18Þ

In the unidimensional case, K = 81 equally spaced u-points ranging from�2 to + 2 were con-

sidered to compute the four statistics. In the two- and three-dimensional case, respectively, a

square grid with K = 212 and a cubic grid with K = 113 equally spaced u-points ranging from �2

to + 2 on all dimensions were used.

In addition, as more global measures of performance, the RMSDT and the MRDVp
were aver-

aged across the five test forms (denoted by RMSDT and MRDVp
, respectively).

Technical Details

To compute the KLIMLE at each u-point h, 10 Legendre quadrature points was used per dimen-

sion. By setting r = 1%, 68%, 47%, and 32% of the MLE confidence region was covered in the

uni-, two-, and three-dimensional case, respectively. The KLIGlobal was computed using 10

Legendre quadrature points per dimension across a 0:01-wide ability region. Finally, for the

KLIGlobal 10 Gauss–Hermite quadrature points were used per dimension. In the two- and three-

dimensional case, the ability dimensions were considered orthogonal. Solutions for each

Minimax model were computed using GUROBI (Gurobi & Optimization, 2017) through R (R

Development Core Team, 2017). For each Minimax model, the maximum computing time on a

Fujitsu Lifebook S710 with an i5-560M 2.66 GHz processor was set to 20 min.

Results

In the three simulation studies, GUROBI found at least one feasible solution (satisfying all con-

straints) for all Minimax models, after 20 min of computing time. For each study, a graphical

representation of the results can be found in Online Appendix D.

Simulation 1—Unidimensional Item Pool

As can be seen in Online Appendix D, the following was observed. First, as could be expected

giving previous research (cf. Ali & van Rijn, 2016; Debeer et al., 2017), using the TCC as the

statistical target results in a better performance with respect to the TCC, but a worse perfor-

mance with respect to the error variance. Second, for all the other Minimax models the differ-

ence in performance with respect to the error variance is limited, but the combined approach

with additional TCC constraints performs better with respect to TCC parallelism (cf. Ali & van

Rijn, 2016; Debeer et al., 2017). Third, increasing the number of u-points from three to five

improves the parallelism both with respect to the error variance and the TCC. However, the

effect is limited. Finally, and most important for this study, the performance of the three KLIs

is very similar to the performance of the FI.

These results indicate that in the unidimensional case, the proposed KLIs are valuable repla-

cements for the commonly used TIF as statistical targets in Minimax models.
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Simulation 2—Two-Dimensional Item Pool

With respect to Simulation 2, the following was observed (cf. Online Appendix D). First, the

combined approach with additional TCC constraints outperforms the single approach, both with

respect to the error variance and the TCC evaluation criteria. Second, although increasing the

number of u-points per dimension from three to five has a beneficial effect, the performance

with three u-points per dimension is already at a satisfactory level. Third, the six FI- and KLI-

based statistical targets all perform about equally well in the combined approach. In the single

approach, the performance of the linear approximations and the KLIMLE seems a little worse.

Finally, and unexpectedly, the TCC as statistical target outperforms almost all other statistical

targets in the single approach with respect to the error variance; furthermore, it performs only

slightly worse than the combined approaches.

Overall, the results suggest that for two-dimensional item pools, the six proposed targets are

applicable, preferably using a combined approach. When using the single approach there is a

preference for the trace of the FI, the KLIGlobal and the KLILocal, and the TCC.

Simulation 3—Bifactor Item Pool

Overall, the results are similar to the results in the two-dimensional case (i.e., Simulation 2; see

Online Appendix D). First, the combined approach with additional TCC constraints outperforms

the single approach, but the difference in performance seems small. Second, although increasing

the number of u-points per dimension from three to five has a beneficial effect, the performance

with three u-points per dimension is already at a satisfactory level. Moreover, when using the

combined approach, three u-points per dimension (H = 27) seem to be enough. Third, the four

KLI-based statistical targets perform about equally well in the combined approach. In the single

approach, the performance of KLIMLE seems a little worse. Finally, the Minimax model with

only the TCC as the statistical target performs remarkably well. Even with respect to the error

variance its performance competes with the best KLI-based statistical targets in the single and

the combined approach.

The performance with respect to the measurement error on the third dimension is overall

worse than those on the first and second dimensions. At the same time, only minor differences

are present between the error variance performance on the first and second dimension. The

worse performance on the third dimension, especially by the KLILocal and the trace of the FI, is

related to the lower IRT reliability of the third dimension (see Online Appendix C). Therefore,

Dimension 3 can be considered noisy, and probably less relevant. In practice, one could decide

to leave this dimension out of the computation of the different KLIs. However, because the goal

of the simulation study was to investigate the feasibility of the proposed statistical targets in a

three-dimensional situation, the authors chose to consider all estimated dimensions.

Conclusion

The results of the three simulation studies combined show that the proposed KLIs can be used

as statistical targets for assembling test forms using Minimax models via MILP. In the unidi-

mensional case the three proposed KLIs’ performance is similar to the performance of FI. In

the multidimensional cases, the parallelism achieved by using the KLIs was at an overall satis-

factory level. The performance of the linear approximations of the A- and D-optimality criteria

was similar, but these statistical targets are limited to the two-dimensional case.

Although some differences were found in the performance of the KLIs, when applied in the

single approach, these differences mostly vanished when they were applied in the combined
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approach with the additional TCC constraints. Moreover, the combined approach generally out-

performed the single approaches, with the exception of the single approach with the TCC as the

statistical target, for which the performance in the multidimensional cases was remarkably good.

Hence, in practice, including the TCC (e.g., in a combined approach) in the Minimax model is

recommended, especially when number-correct scoring is to be used.

Discussion

Many testing scenarios require multiple test forms that are parallel with respect to their content

and statistical properties. A popular and efficient way to automatically assemble parallel test

forms is to write the assembly problem as a Minimax model and solve this model via MILP. In

this article the authors focused on the ATA of multidimensional parallel test forms. The statisti-

cal targets that are commonly applied in UIRT are not directly applicable in MIRT. Therefore,

they proposed six statistical targets that can mitigate the multidimensionality issue. Two of those

are based on linear approximations of either the A- or D-optimality criterion (cf. Veldkamp,

2002), and are limited to the two-dimensional case. The other four statistical targets are based

on the KL divergence. They can be interpreted as alternative information indexes, and they can

be applied to both uni- and multi-dimensional cases.

Using simulated item pools, of which some were based on operational items, the perfor-

mance of the proposed statistical targets was compared in a uni-, a two-, and a three-

dimensional bifactor case. The results indicated that (a) the KLIs can replace the traditional

TIF as statistical target in the unidimensional case, (b) the proposed statistical targets can be

successfully applied in two- and three-dimensional cases (note that the linear approximations

are limited to the two-dimensional case), (c) the combined approach with additional TCC con-

straints (Ali & van Rijn, 2016; Debeer et al., 2017) outperforms the single approach regardless

of the item pool or the chosen statistical target, and (d) in contrast with the unidimensional

case, using only the TCC as the statistical target also results in good parallelism with respect to

the error variance in the multidimensional case.

In the remainder of this discussion, the practical implications related to the proposed statisti-

cal targets and their performance are discussed. Subsequently, the limitations of our study are

critically discussed and suggestions for future extensions are provided.

Practical Implications

Given the findings in the simulation studies, the authors would advise to use one of the proposed

KLIs in multidimensional situations combined with constraints with respect to the TCC when

this is applicable. Depending on the situation, other combined approaches (cf. Debeer et al.,

2017) may also be appropriate. When it is not possible or not advisable to include constraints

with respect to the TCC (see below) in the Minimax model, the KLIGlobal should be preferred,

because, generally, it demonstrated the best performance in the single approach. The linear

approximations of A- and D-optimality can also be applied, but only in the two-dimensional

case. In the unidimensional case, there is no need to replace the FI as the statistical target in

Minimax models. Nevertheless, the proposed KLIs seem valid alternatives.

The simulation study suggests that, when applying the combined approach with additional

TCC constraints, the performance of the different KLIs is similar. Therefore, the choice for a

specific KLI can be driven by factors other than the performance with respect to parallelism.

First, the interpretation of the KLIs can be a deciding factor. Practitioners responsible for the

assembly of new parallel test forms can decide on which KLI to use, based on which type of

information index they find most appropriate. Should the used information measure quantify
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how well an item/test can discriminate ability values from (a) other abilities in a very small

region around the ability value (cf. KLILocal), (b) other abilities in a region based on the MLE

confidence (cf. KLIMLE), or (c) all abilities in the (assumed) population (cf. KLIGlobal)?

A second factor that may guide the choice for a specific KLI is computation speed. First, in

the multidimensional case, and when appropriate, using the TCC is a straightforward and good

performing alternative. Second, the trace of the FI, which is the (proportional) linear approxi-

mation of the KLILocal, computes faster than the three other KLIs, because the latter require

Gaussian quadrature integration. However, even for larger multidimensional item pools, the

computation of the KLIs for a high number of u-points should not take longer than 10 to 15

min. In addition, the computation of the KLIs can be done well before the actual ATA.

Moreover, regardless the chosen statistical target, the assembly of the test forms (using MILP)

will be the real computational burden.

In situations where there is ample time for the ATA, the authors would suggest to implement

the assembly using different statistical targets. Then, the parallelism performance with respect

to the relevant statistics (i.e., measurement error, expected test score) can be compared across

the different solutions, and the best performing solution can be chosen.

In contrast with the undimensional case (Ali & van Rijn, 2016; Debeer et al., 2017), the per-

formance of the TCC as the statistical target in Minimax models in the multidimensional case

was very good. Therefore, it seems advisable to include constraints with respect to the TCC in

the ATA Minimax model. However, this may not always be appropriate. First, when pattern

scoring methods (e.g., maximum likelihood estimation, expected a priori estimation) are used,

and when the expected testing time is the target, rather than the number of items, constraints

with respect to the TCC may be undesirable. Such situations are not unlikely when assembling

multi-stage assessments, where modules should have equal testing time but not necessarily

equal number of items. In these cases, constraining the TCC could result in harder MILP mod-

els and suboptimal test assembly. Second, previous research indicated that in the unidimen-

sional case the performance of using only the TCC decreases when the item pool consist of

mixed format items (Debeer et al., 2017). A similar deterioration could also be present in multi-

dimensional mixed format item pools.

Although the focus of this article was on the assembly of parallel test forms, the described

approaches also apply to cases where only one test form is assembled to be as close as possible

to some ideal or existing reference test form. For instance, when only one test form/item set

needs to be assembled, rather than using optimal test assembly—which usually involves maxi-

mizing the precision—one can specify an ideal test form and and apply the Minimax approach

to approximate this ideal form as accurate as possible. The advantage of this approach is that

the assembled test satisfies the required properties, without depleting the item pool. Especially

when the item pool will be used in the future, the Minimax approach should be preferred over

the optimal test assembly.

Finally, when optimal test assembly is the preferred option, both the KLILocal and the

KLIGlobal can be applied as the statistical targets. The KLIMLE cannot be used because there is

no reference test form that can be used to specify the confidence regions.

Limitations and Extensions

Simulation studies can never completely cover all the practically relevant situations, nor pro-

vide an exhaustive evaluation of methods. In that sense, the present simulation study is also

limited. In addition, due to the computational demands of assembly problems, we were required

to limit the number of conditions and replications to keep the overall computing time reason-

able. Therefore, additional simulations are desirable, as they will be able to provide evidence
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that the proposed statistical targets are also feasible in bigger/smaller item pools, for different

reference test forms (for instance, with a flat information surface), for other numbers of test

forms, and for mixed format item pools.

In the operationalization of the different KLIs, there were several tuning parameters for

which the authors attempted to use sensible values. First, to compute the KLILocal they used a

hypercube with a volume of 0:01p around the ability point as the region for integration. Second,

for the KLIMLE the used confidence values (1� a) decreased with the dimensionality of the

item pool, because in MIRT the confidence regions can grow rapidly in low precision regions.

Future research could investigate the impact of these tuning parameters on the test assembly

performance. Ideally, optimal values would be found.

According to the rationale behind the KLIGlobal, the extent to which an item/test can discri-

minate one ability value from all the other ability values in the population of interest is a rele-

vant information measure. Since the actual distribution is generally unknown, the authors

suggested to assume that the ability is normally distributed in the population. The normal distri-

bution not only facilitates the computation of the KLIGlobal, for many human characteristics it is

also the commonly accepted population distribution. Nevertheless, in some situations intelligi-

ble assumptions about the distribution of ability can be made, for which the normal distribution

(or a mixture of normals) is not a good approximation. It is not yet clear how the KLIGlobal can

be computed efficiently in these situations. Future research could address this issue. However,

whether this issue would be relevant for ATA in practice seems questionable.

As an alternative for the trace of the FI, which the authors introduced as an proportional

approximation of the KLILocal, a reviewer proposed to separately use the FI matrix’s diagonal

elements as multiple statistical targets in a Minimax model. Like the trace of the FI, this

approach would reduce to the traditional (scalar) FI in the unidimensional case. In the multidi-

mensional case, however, this alternative approach would result in a multi-objective problem.

Future research could compare the performance of this alternative approach with the per-

formance of the approaches proposed in this article. In addition, it would be interesting to

investigate whether and to what extent this multi-objective approach is sensitive to the multidi-

mensionality issue.

In our simulation studies, the authors assumed that the ability dimensions were orthogonal.

However, in certain MIRT models ability dimensions may be correlated (e.g., simple-structure

models). Although it is not impossible to incorporate them into FI-based statistical targets, the

KLIGlobal can take these correlations more explicitly into account. Future research could investi-

gate whether including or ignoring the correlation structure of ability has a differential impact

on the assembly performance when the KLIGlobal is used as the statistical target.

Also, the authors did not take into account the uncertainty in the item parameter estimates.

This can impact the TCC-, FI-, and KL-based statistical targets and, in practice, lead to assem-

bled test forms, whose true FI and TCCs are less parallel than expected. Future research could

assess whether or not the Minimax approach is more robust against these uncertainties than opti-

mal test assembly, and whether the approach of Veldkamp, Matteucci, and de Jong (2013) can

be extended to the Minimax approach and the statistical targets proposed in this article.

Finally, in this article the authors focused on the unidimensional and multidimensional

versions of the 2PLM. The current methods could be extended for application to other com-

monly used compensatory IRT models, but also to noncompensatory MIRT models. From a

theoretical perspective, there are no obstacles to compute and apply the KLIs to other IRT mod-

els. Yet from a practical viewpoint, the R-code provided in the online appendix needs to be

extended.
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Notes

1. The authors consistently discuss test forms, yet the described methods also apply to other types of item

sets.

2. The absolute rather than the relative maximum distance to the target was minimized when the test

characteristic curve (TCC) was used as statistical target in the single approach.

3. Because the constraints in Equation 13 are redundant when the absolute distance with respect to the

target TCC is minimized, only the single approach was applied for the TCC as the statistical target.

4. The six polytomous items were not considered.
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