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The ability to characterize and predict tumor phenotypes is crucial to precision medicine. In

this study, we present an integrative computational approach using a genome-wide asso-

ciation analysis and an Elastic Net prediction method to analyze the relationship between

DNA copy number alterations and an archive of gene expression signatures. Across breast

cancers, we are able to quantitatively predict many gene signatures levels within individual

tumors with high accuracy based upon DNA copy number features alone, including pro-

liferation status and Estrogen-signaling pathway activity. We can also predict many other key

phenotypes, including intrinsic molecular subtypes, estrogen receptor status, and TP53

mutation. This approach is also applied to TCGA Pan-Cancer, which identify repeatedly

predictable signatures across tumor types including immune features in lung squamous and

basal-like breast cancers. These Elastic Net DNA predictors could also be called from DNA-

based gene panels, thus facilitating their use as biomarkers to guide therapeutic decision

making.
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Tumorigenesis is often driven by multiple types of aberra-
tions in DNA leading to diseases of enormous complexity
and heterogeneity. The ability to dissect this heterogeneity

is crucial to understanding cancer mechanisms, and for identi-
fying patient subgroups for personalized treatments. One lim-
itation to capture this heterogeneity lies in the characterization of
disease phenotypes. With the effort of many consortiums
including The Cancer Genome Atlas (TCGA), large-scale multi-
platform genomic data are now available, providing an oppor-
tunity to study cancer phenotypes on a molecular level and
through multiple technology types1–4. In particular, many gene
expression signatures have been developed to define specific
cancer phenotypes varying from proliferation rates to features of
the tumor microenvironment5–7. These mRNA expression fea-
tures, along with protein expression, somatic mutations, and
clinical features provide a comprehensive molecular portrait of
tumors. Integrating multi-platform genomic data together to
elucidate the relationship between genotype and phenotype is
critical to understanding genetic causes underlying tumor beha-
viour8. Building predictive models for key tumor driving phe-
notypes would be valuable to stratify patients for personalized
treatments, especially in the clinical setting where gene expression
profiling is usually not available and DNA information is routi-
nely collected thanks to available somatic mutation gene panel
tests.

In this study, we use an archive of experimentally and com-
putationally derived gene expression signatures, alongside other
well-known clinical and molecular features, as a framework to
identify genetic drivers and build predictive models for solid
epithelial cancer phenotypes. We use an integrative genomics
approach including a genome-wide association analysis8, as well
as an Elastic Net predictive modeling strategy9, to build models of
complex tumor phenotypes using somatic DNA copy number
alterations (CNAs). Our results identify associations between
many gene expression signatures and CNAs, and between protein
expression features and CNAs. Generally, we present an approach
that could be applied to many other tumor types for which multi-
platform genomic data are available, to evaluate the relationship
between CNAs and complex phenotypes, and where predictive
models of therapeutic importance could be developed using what
are now common place DNA-based clinical tools.

Results
Characterize gene signature-specific copy number alterations.
We first aimed to investigate the possible associations between
DNA copy number alterations (CNAs) and multiple gene
expression signatures. We initially focused on breast tumors,
where multiple gene expression signatures are already in com-
mon clinical use10–12. We applied a panel of 543 published gene
expression signatures measuring diverse tumor phenotypes
including active signaling pathways, the aforementioned known
prognostic clinical models, tumor microenvironment features
(i.e., immune cells, fibroblasts), and features of DNA amplicons
and deletions13, onto 1038 breast cancers from the TCGA breast
cancer project4 (Supplementary Fig. 1, Supplementary Data 1).
DNA copy number data were used to identify possible associa-
tions linking DNA CNAs to each signature-based phenotype
through a genome-wide association analysis, using a previously
developed approach from a much smaller cohort of patients and
a limited panel of 52 gene signatures8 (Fig. 1a). For each sig-
nature, we used two independent statistical methods to test for
associations. We used spearman rank correlation to identify
positive or negative correlations between an expression signature
score and gene-level DNA segment values. We also used
Fisher’s exact test to compare the frequency of CNA gains

or losses in samples with high signature score (top quartile) and
those with low signature score (all others). Both tests were
Benjamini–Hochberg corrected to control the false discovery
rate14. To further reduce potential false positive results, we only
called a DNA CNA feature associated with an expression sig-
nature if the value was statistically significant in both analyses
(q < 0.01). Potential DNA CNA drivers of a signature should
have positive correlations and increased copy number gains in
samples with high signature scores, whereas potential repressors
would have negative correlations and increased frequencies of
copy number losses. Through this approach, we analyzed asso-
ciation landscapes for each signature, noting many expression
signatures had no such associations.

We looked at the reproducibility of the association landscapes
by comparing our results to those from Gatza et al. for the same
signatures8. All 52 signatures of Gatza et al. were included here,
and in particular we focused on the RB-LOH signature15, noting
that the current analysis used data on a much larger cohort of
TCGA breast tumors (n= 1038 vs. n= 476); in addition, another
systematic difference between the two studies is that Gatza et al.
used gene expression microarrays while we used mRNA-seq.
Despite these methodological differences, there was a high
concordance between our association landscape for RB-LOH
signature and that published by Gatza et al. (Fig. 1b); both
landscapes highlighted the identification of known RB-E2F
components including DNA loss of RB1 and gains of E2F1 and
E2F3, as well as the amplification of multiple cell cycle drivers
including MYC and CCND2 (ref. 16).

We then examined new, and old, possible associations using all
543 gene signatures. Associations to previously determined DNA
amplicon gene expression signatures were found and all
encompassed regions of the corresponding amplicons (Supple-
mentary Fig. 2), showing that the association analysis was able to
identify known DNA-based drivers of expression signatures. Two
important “Gene Program” universal expression signatures
defined from a 12 tumor type PanCan (n= 3500) tumor analysis
of Hoadley et al.17, namely a “basal signaling” signature and an
“estrogen signaling” signature, both showed many informative
associations. For the basal signaling signature, we identified
previously known associations including loss/deletion of genes
involved in DNA repair such as RAD17, RAD50, PALB2 and
BRCA1 (Fig. 1c). For estrogen signaling signature, we identified
many distinct luminal tumor DNA copy number changes
including 16p gain and 16q loss2 (Fig. 1d). Collectively, these
results demonstrate that our strategy is able to objectively find
associations linking CNAs to specific gene signatures, many of
which were previously known.

To further test if the associations depend on intrinsic molecular
subtype, we modified the association analysis, replacing the
spearman rank correlation with linear regression taking subtypes
as covariates to identify universal positive or negative correla-
tions. This led to fewer significant associations to CNAs for some
signatures and the same associations for others compared to
previous unadjusted results. For example, for RB-LOH signature,
associations to SOS1 and CDK6 were no longer significant when
accounting for subtype, while all associations remained significant
for estrogen signaling signature (Supplementary Fig. 3). This
analysis shows that molecular subtype confounds for some CNA
and gene signature associations.

CNA-based gene signature predictions by Elastic Net models.
Given the strengths of these associations, we next sought to assess
the feasibility of building computational predictors of gene
expression signature levels based upon DNA CNAs features only.
To successfully build predictive models, we used a statistical
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modeling approach called Elastic Net, which is a regularized
regression model that is capable of handling large numbers of
potential co-linear variables and then is able to select the most
relevant features to build the final model9. Instead of using gene-
level CNA scores as predictors, we calculated 536 segment-level
CNA scores using predefined chromosome regions that have been
shown to be important in cancers18–22 (Supplementary Data 2).
These DNA segments included pan-cancer significant somatic
CNAs as well as breast cancer subtype-specific CNA regions. The
1038 sample TCGA breast cancer data set was split into a
balanced training set (70%) and test set (30%). Models were built
solely on TCGA training set and validated on both TCGA test set
as well as on a large independent breast tumor data set from the
Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC, n= 1689)3. Models were trained to classify samples
into those with high signature scores (top third) versus low sig-
nature scores (bottom two-thirds). The area under receiving
operating characteristics curve (AUC) values were used to eval-
uate model performance (Fig. 2a).

AUC distributions for all gene signatures demonstrated high
predictability for some, but not all of the signatures (Fig. 2b). 142
out of the 543 signatures had AUC values above 0.75 in both test
sets, which we henceforth call as “highly predictable”. Permuta-
tion tests showed that a test set AUC of 0.75 indicates significant
predictive power (Supplementary Fig. 4), noting that in permuted
data the highest AUC attained was 0.63 and that the large
majority were close to 0.5 as might be expected. Of these
142 signatures, only 33 were DNA-based amplicon signatures
that essentially measure specific CNA events and were therefore
expected to produce high AUC values. For example, signature
16q23-amplicon23 had the highest AUC value in METABRIC
validation set (AUC= 0.96). Notably, the three signatures that we
highlighted for the association landscapes, namely RB-LOH
signature, basal signaling signature, and estrogen signaling
signature, were all highly predictable (AUC > 0.85) as shown by
corresponding receiving operating characteristics (ROC) curves
(Fig. 2c–e). Among the most predictable signatures were multiple
proliferation signatures and a few oncogenic pathways, whereas
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Fig. 1 Identification of gene expression signature-specific copy number alterations in breast cancer. a Schematic overview of the strategy used to
identify CNAs associated with gene signatures. Gain/loss indicates DNA copy number gains or losses; Pos/Neg indicates positive or negative association.
b–d Spearman rank correlation was used to identify genes positively (red) or negatively (dark blue) associated with gene signatures, and Fisher’s exact test
was used to compare the frequency of copy number gains (orange) or losses (light blue) for RB-LOH (b), Basal signaling (c), and Estrogen signaling (d)
Gene Program signatures. Dashed lines indicate the significance threshold (q= 0.01). Only q-values for genes significant in both analyses were plotted.
Black arrowheads indicate known pathway drivers. In each figure, chromosomal boundaries are indicated by vertical black lines.
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Fig. 2 CNA-based Elastic Net prediction models for gene signatures in breast cancer. a Schematic overview of the strategy used to build Elastic Net
models for predicting gene expression signature levels. b Area under curve (AUC) values for 543 signatures displayed using box and whisker plots
indicating the median score (horizontal line), the interquartile range (IQR, box boundaries) and 1.5 times the IQR (whiskers); the red horizontal line
indicates AUC= 0.75, which we consider to be “highly predicable”. Three signatures are highlighted with colored dots, and their feature landscapes also
shown in f–h. c–e Receiving operating characteristics (ROC) curves and corresponding AUC values of TCGA test set and METABRIC validation set for
predicting RB-LOH (c), basal signaling (d), and estrogen signaling (e) signatures. f–h Elastic net selected CNA segments and/or whole chromosomal arms
and their coefficients for prediction models for RB-LOH (f), basal signaling (g) and estrogen signaling (h) signatures.
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the least predictable signatures were mostly those representing
immune infiltrates and other features of the tumor microenvir-
onment. In particular, a HER1-C2 signature previously developed
by Hoadley et al.24 indicating EGFR pathway activity, had AUC
values of 0.90 in both test sets (Supplementary Fig. 5a). On the
contrary, models for a CD8 T cell signature25 and a stroma
signature26, selected no CNA features and had AUC value of 0.5.

We investigated the CNA regions selected by the Elastic Net
models as a means of identifying the genetic drivers of these
phenotypes (Supplementary Data 3). To directly compare versus
the association landscapes, we show model feature landscapes for
the three signatures. Remarkably, for RB-LOH signature and
basal signaling signature, which had many associations with
CNAs, there was a significant amount of overlap between the
association landscape and the Elastic Net model feature landscape
(Fig. 2f, g). For example, RB-E2F components as well as cell cycle
components, were significantly associated with the RB-LOH
signature and were selected by Elastic Net for the prediction of
RB-LOH signature score. On the contrary, the estrogen signaling
signature had a simple association landscape, yet the Elastic Net
model selected many more features besides those in the
association analysis-based regions (Fig. 2h). This suggests that
Elastic Net provides additional information on the relationship
between CNAs and gene signatures by taking the whole genome
of data together, rather than the association analysis that
evaluates genes one by one. In addition, for the highly predictable
HER1-C2 signature, many EGFR pathway associated genes were
selected by its Elastic Net model including EGFR itself, KRAS,
SOS1 and NRAS (Supplementary Fig. 5b). Taken together, our
results show the ability to predict many gene expression
signatures using only DNA CNAs, with high accuracy and with
biological plausible and informative feature sets.

To validate some of the key Elastic Net models with high
prediction accuracy, we examined if the models correlated with
patient survival in breast cancer using the large METABRIC
cohort. Three research-based implementations of commercially
available signatures that are commonly used in the breast cancer
clinic, namely OncotypeDX recurrence score27, Prosigna risk of
recurrence score11 and MAMMAPRINT 70-GENE recurrence
score28, were all highly predictable using CNAs with correspond-
ing METABRIC test set AUC values of 0.79, 0.81, and 0.87
(Fig. 3a, d, g); as expected, these three signatures showed strong
prognostic effects as implemented by gene expression scores or
DNA CNA-model based scores (Fig. 3a–i). Remarkably, models
predicting OncotypeDX recurrence score and Prosigna risk of
recurrence score shared many CNA regions with RB-LOH
signature, indicating these two clinical assays contain features
of tumor proliferation rates, which is known11,27 (Fig. 3j, k).
Whereas the feature landscape of MAMMAPRINT 70-GENE
recurrence score was similar to estrogen-signaling signature,
suggesting it is more representative of estrogen signaling pathway
activity (Fig. 3l). Furthermore, models for four key expression
signatures that we described above (RB-LOH, basal-signaling,
estrogen-signaling, and HER1-C2) all showed strong survival
correlations as well (Supplementary Fig. 5c–f). These results
demonstrated that successful DNA-based prediction models still
retain the prognostic value of their cognate expression signatures.

CNA-based predictions for intrinsic molecular subtypes. We
next applied the Elastic Net DNA feature modeling strategy to the
prediction of other complex tumor phenotypes including pre-
diction of “intrinsic” and histological subtypes of breast cancer11.
Prediction models for all intrinsic subtypes demonstrated high
AUC values (i.e., >0.75) indicating that these RNA-based phe-
notypes can be well explained by DNA-based information

(Supplementary Fig. 6a–d, Supplementary Data 4). The Basal-like
subtype had the highest test set AUC values (>0.9), consistent
with the previous findings that Basal-like breast cancers constitute
a unique disease entity17. Regions that are frequently altered in
Basal-like samples such as 1p gain and 5q loss were selected by
the predictive Elastic Net model20,21 (Supplementary Fig. 6f).
HER2-Enriched subtype also had high AUC values (>0.82), and
not surprisingly, regions selected by its model included the
ERBB2 region, which is the dominant driver for this subtype
(Supplementary Fig. 6g). Luminal A and Luminal B subtypes
were harder to predict, yet were still highly predictable (AUC for
Luminal A= 0.82, and for Luminal B= 0.76 on the METABRIC
validation set). A distinct difference between these two subtypes is
proliferation rate where Luminal B tumors generally have higher
proliferation rate than Luminal A tumors; as might be expected,
regions related to proliferation including 8q(MYC) amplification
and RB1 deletion were only present in the Luminal B prediction
model (Supplementary Fig. 6h, i). Since the histological subtype
also dictates clinical treatment decision making, we evaluated
how DNA CNA-based Elastic Net model predicts two major
breast cancer histology, namely invasive ductal carcinoma (IDC)
and invasive lobular carcinoma (ILC) using samples that assigned
to only these two histologies. ROC curves showed high AUC
values in both TCGA training set (0.87) and test set (0.8) (Sup-
plementary Fig. 6e). A hallmark of ILC, loss of CDH1 located at
chromosome 16q22.1, was reflected in the model feature land-
scape (Supplementary Fig. 6j).

CNA-based predictions for individual protein expression. We
further applied the Elastic Net DNA-based modeling strategy to
build prediction models for individual proteins. We utilized the
reverse phase protein array (RPPA) data measuring 216 proteins
and phospho-proteins coming from TCGA breast cancer samples
(n= 870)2. Many studies have addressed the relationship between
protein levels and mRNA abundance and concluded that mRNA
transcript levels predict protein levels about 50% of the time29. A
few studies have also investigated the influence of DNA copy
number on protein expression and find some proteins with sig-
nificant correlations, typically those that are the target of ampli-
fication or deletion30,31. However, these studies assessed
correlations on individual genes. Here, we used Elastic Net model
building to take into account the whole genome to predict protein
expression. Using the aforementioned definition of “highly pre-
dictable”, we were able to accurately predict 16 out of the 216
protein expression levels present in the RPPA arrays including a
phosphoprotein HER2-pY1248 (test set AUC > 0.75) (Fig. 4a,
Supplementary Data 5). Clinically, in breast cancer protein
expression of the estrogen receptor (ER), progesterone receptor
(PR) and human epidermal growth factor receptor (HER2) direct
breast cancer treatments and are routinely assessed by immu-
nohistochemical (IHC) staining. These three proteins expression
assessed by either RPPA and/or IHC were all highly predictable
by our models (AUC > 0.75) (Fig. 4a–d). Among the other 13
highly predictable proteins, many of them were related to cell
cycle including CCNB1, CCNE1, and FOXM1. Another inter-
esting predictable protein was ASNS (test set AUC= 0.82); ASNS
has recently been shown to play an important role in breast
cancer metastasis, where its high expression was linked to an
increased metastatic potential for lung metastases, and which
represents a possible therapeutic target32,33.

In breast cancer, the most critical therapeutic biomarkers are
ER, PR, and HER2 scored for by immunohistochemistry. For
HER2 prediction, ERBB2 and 17q were selected with the largest
coefficients, by both the model for HER2 RPPA protein
expression, and by the model guided by HER2 clinical IHC
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Fig. 3 CNA-based Elastic Net prediction models for three clinically used breast cancer assays. a–i ROC curves and Kaplan–Meier curves of 10-year
breast cancer-specific survival for Oncotype DX recurrence score (a–c), Prosigna risk of recurrence score (d–f) and MAMMAPRINT 70-GENE recurrence
score (g–i) Kaplan–Meier curves were stratified by gene signature score (Gene Expression) and corresponding Elastic Net copy number prediction model
(DNA CNA). Event statistics were indicated as number of events/total patients in both High and Low groups. j–l Elastic Net selected CNA segments and/
or whole chromosomal arms and their coefficients for prediction models for Oncotype DX recurrence score (j), Prosigna risk of recurrence score (k) and
MAMMAPRINT 70-GENE recurrence score (l).
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status (Supplementary Fig. 7e, f). In contrast, protein expression
of ER cannot be explained by ESR1 copy number changes since
ESR1 copy number gain/loss is rare34. Yet our Elastic Net models
were able to accurately predict ER RPPA protein expression

(AUC 0.82) and ER clinical IHC status (AUC 0.89 on
METABRIC validation set) when making use of DNA copy
number information only. The feature landscapes of these two
models were complex with many positive and negative predictors.
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Notably, luminal features 16p gain and 16q loss were included in
the model, consistent with the fact that ER positivity is prevalent
in luminal tumors (Fig. 4e). PR positivity is highly concordant
with ER positivity, where we note many regions predicting
ER expression also predicted PR expression (Supplementary
Fig. 7a–d).

Finally, an increasingly common clinical assay used for cancer
patients is a DNA-based gene panel assay where typically tens to
hundreds of genes are DNA sequenced using massively parallel
sequencing, thus giving somatic mutation status and DNA copy
number values for each gene35. One of the most widely utilized
gene panels is Foundation One, which at the time of the writing
of this manuscript contained 313 genes. Using only the DNA
copy number information for these 313 genes, we repeated all
Elastic Net prediction models, and achieved essentially identical
results and AUC values (Supplementary Fig. 8, Supplementary
Data 6); thus, these complex expression and protein phenotypes
can be accurately predicted when using only a small subset of the
human genome.

CNA-based predictions for somatic mutations. We next
examined the ability to predict individual somatic mutations. We
utilized mutation data from TCGA breast tumors that have highly
confident mutation calls36, and we limited the analyses to the
significantly mutated gene list identified by previous work as well
as frequently mutated genes (frequency >5%) excluding HLA and
IGH genes. Only a few mutations passed the test set AUC
threshold of 0.75, namely TP53, CDH1, MAP3K1 (Fig. 4f, g,
Supplementary Data 7); GATA3 and PIK3CA also had relatively
high AUC values though slightly below 0.75. Both TP53 and
CDH1 models selected CNA segments encompassing these two
genes as negative predictors, consistent with their known tumor
suppressor phenotypes. Luminal subtype-specific mutation
models, namely GATA3 and MAP3K1, selected luminal copy
number changes including 16p gain. Interestingly, tumor muta-
tion burden, defined here as the total number of mutations per
sample that has been shown to be related to immune therapy
response37,38, was highly predictable from DNA CNAs (Fig. 4h).
Multiple genes involved in DNA damage repair including MGMT
and RAD51 were selected by the model, indicating their loss
correlated with increased tumor mutation burden (Fig. 4i)

Subtype-specific predictions for gene signatures. To investigate
if molecular subtype affects the predictability of gene signatures,
we performed identical Elastic Net analyses as described above,
but only applied to Basal-like subtype tumors, Luminal A sub-
type tumors, or Luminal tumors (HER2-Enriched, Luminal A,
and Luminal B combined). Prediction accuracies differed by
subtype in many cases (Supplementary Data 8). One striking
example was that some immune cell signatures were uniquely
predictable within Basal-like tumors only (Fig. 5a). Specifically, a
CD8 T-cell signature39 had AUC values of 0.74 and 0.88 when
using all samples versus Basal-like samples (Fig. 5b). The seg-
ments selected to predict this signature encompassed genes
encoding CD8 T-cell chemokines CXCL9, CXCL10, CXCL11 and
a gene that relates to chemokine secretion SEC31A, both of
which affect T-cell trafficking40. Interestingly, EGFR was selected
as a negative predictor, providing evidence that tumor intrinsic
mechanisms shape tumor immune microenvironment41

(Fig. 5c). This finding demonstrates the heterogeneity underlying
different subtypes and provides insights on prioritizing Basal-like
tumors for immunotherapy.

Predictions for gene signatures in lung cancer. To evaluate the
generalizability of our Elastic Net modeling strategy, we evaluated

prediction models using TCGA lung cancer data including both
lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC)42,43, again using gene expression signatures. We first
applied the DNA-based prediction models derived from breast
cancers onto lung cancers. Results identified 37 signatures that
passed the AUC threshold of 0.75 across the lung training set,
lung test set and breast cancer test set (Supplementary Fig. 9a,
Supplementary Data 9). Not surprisingly, most of these signatures
were amplicon signatures, however, two were related to TP53
mutation status and PTEN/PI3K pathway activity. CNA segments
and/or whole chromosomal arms selected by models built on
breast cancer or lung cancer for a TP53 status signature were
similar (Supplementary Fig. 9d, e), indicating that the Elastic Net
approach was able to consistently select the most relevant fea-
tures. Lastly, a larger number of signatures were found to be
predictable if trained on lung cancer data, suggesting some
models may be tumor type dependent, while others may be tumor
type independent (i.e., TP53). We also evaluated if DNA CNA-
based Elastic Net model can successfully classify the two
lung cancer histologies. Results showed that we can classify
LUAD vs. LUSC with very high accuracy (AUC= 0.98 and 0.97
for training and test set), consistent with previous finding that
LUAD and LUSC have distinct somatic drivers44 (Supplementary
Fig. 9c, f).

Pan-Cancer predictions for gene signatures. Further extending
the approach to a total of 25 tumor types from TCGA that have
multi-platform data and at least 100 samples4 identified suc-
cessful models with high accuracy (AUC > 0.75) for multiple
tumor types. Not surprisingly, there were more gene signatures
that were highly predictable in tumor types that have more CNA
events (Fig. 6a, b). Hierarchical clustering of tumor types based
on the predictability of gene signatures revealed informative
tumor subgroupings consistent with previous Pan-Cancer find-
ings4 (Fig. 6c) including a Pan-Squamous group. Basal-like breast
cancer clustered with squamous cancers including LUSC and
Head and Neck squamous cell carcinoma (HNSC). Many
immune-related signatures were uniquely predictable in these
tumor types including the aforementioned CD8 T-cell signature
as well as PD1 and CTLA4 signaling pathways. On the other
hand, Luminal breast cancer clustered with LUAD and Bladder
Urothelial Carcinoma (BLCA), where multiple signatures mea-
suring proliferation rate including the RB-LOH signature were
highly predictable. Lastly, amplicon signatures were universally
predictable across tumor types that have high percentage of copy
number altered genes.

Mesenchymal features in epithelial cancers are typically
associated with poor outcomes and therapy resistance, and have
been shown to be associated with a breast cancer subtype called
Claudin-low45. A Claudin-low/mesenchymal signature46, was
highly predictable within 9/25 tumor types, therefore we
investigated CNA regions that are universally important in
predicting this signature by building a model using the combined
data from these 9 tumor types (Supplementary Data 10). The
resulting model had a training set AUC of 0.8 and test set AUC of
0.74. CNA regions selected by this model highlighted many RAS/
MAPK pathway components including a less-known gene ERAS
(Fig. 6d), consistent with the finding that its forced expression
induced EMT in human mammary gland cells47. Similarly, an
immune signature17 was predictable across 8 tumor types with a
number of T cell chemokine gene chromosomal regions selected
(Fig. 6e). These results demonstrated that our Elastic Net
approach was able to robustly build predictive models for key
gene signatures when using multiple genomically related
tumor types.
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Discussion
The ability to predict key tumor phenotypes, like mutation status
or biomarker levels or complex expression phenotypes, is critical
to understanding the biological complexity of solid epithelial
cancers. Nowadays for breast cancer, protein expression analysis
is required for ER, PR, and HER2, and small panel (i.e., 21–70
genes) gene expression tests are common. For lung cancer, DNA-
based gene panel testing is included within the standard of care,
and expression analyses for proteins (i.e., PDL1) are growing in
prominence, in large part due to immunotherapy. Many solid
epithelial cancers, particularly breast and lung, are thought to be
at least partially DNA copy number driven because a large
number of copy number events occur, and many are known
genetic drivers48,49. We, therefore, reasoned that many key tumor
phenotypes might be predictable when using the diversity of
DNA copy number changes when examining a proposed copy
number driven tumor type. To address this hypothesis, we used
an extensive archive of manually curated gene expression sig-
natures taken from multiple publications, to study tumor phe-
notypes and estimate their predictability. We investigated the
relationship between DNA copy number alterations and each
gene expression signature through two means; first was a
genome-wide association method, while the second was to build
Elastic Net prediction models and assess their accuracy. The
association study allowed us to find genes positively or negatively
correlated DNA features to expression signatures by evaluating
genes one by one. These two methods cooperatively produced a
big picture of linkages between CNAs and gene signatures. We
consistently found known associations between CNAs and gene
signatures, including gene signatures of DNA amplifications and
losses, and for gene signatures of more complex phenotypes

including signaling pathway activities (i.e. TP53 and EGFR), and
gene signatures of cellular proliferation status; in fact, we were
able to predict many of these signatures with very high accuracy
(AUC > 0.9) on a true test set that even used different gene
expression and DNA copy number technologies (i.e., METAB-
RIC). Taken together each gene signature’s association landscape
and Elastic Net feature landscape provides CNA regions for
further investigation for potential genetic drivers. In addition,
further application of our Elastic Net modeling strategy to a
variety of other molecular phenotypes including molecular
intrinsic subtypes, protein expression levels and somatic mutation
status (including tumor mutation burden) revealed the ability to
accurately predict many key phenotypes in breast cancer. These
models may be clinically useful and could provide an orthogonal
approach for calling key features like ER, PR, and HER2 status in
breast cancer, especially in equivocal cases, given the growing use
of DNA exomes and somatic mutation gene panels in the cancer
clinic.

For the analyses presented here, we chose to dichotomize the
expression signatures into the highest tertile versus the bottom
two tertiles; however, we also evaluated Elastic Net models where
the expression signatures were treated as continuous variables,
and these were also successful for those models that showed high
AUCs when tested as dichotomous variables (Supplementary Fig.
10), albeit with lower but still acceptable accuracies. Thus, it may
even be feasible to predict quantitative traits, in addition to the
simple high versus low as was done for the majority of our
predictors.

Many commercial gene panel tests have been developed with
the goal of improving precision medicine. Using DNA CNA
information of only 313 genes that can be derived from
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Foundation One testing, gene expression signature prediction and
protein expression prediction accuracies remained the same when
compared to that using whole exome of CNA values. The 313
genes have been selected as highly cancer relevant and reported to
be important in tumorigenesis. This result suggests a small part of
the genome accounts for a large part of the predictive power of
cancer phenotypes seen in some solid epithelial cancer types. This
also sheds light on the application of Elastic Net models in the

clinic. For example, various proliferation signatures, including the
RB-LOH signature evaluated here, might serve as a potential
biomarker for CDK4/6 inhibitors which target the RB/E2F
pathway50. Our Elastic Net model for RB-LOH signature could be
used to stratify patients into those with high proliferation rates,
which typically identifies those with RB loss, and for whom then a
CDK4/6 inhibitor would not be recommended. Further validation
is needed to confirm this specific hypothetical application,

100

P
er

ce
nt

 g
en

es
 a

lte
re

d 
(%

)

75

50

Tumor type

Not predictable

Claudin-Iow signature46

Predictable Amplicon signature

Immune signature

Proliferation signature

SMAD4
SMAD7

MAPK12
ERASMAPK11NRAS

CXCL14
CDKN2A/B

CD44

CXCL17

SLAMF7

CXCL9,10,11

25

0

TGCT

LU
SC

PA
AD

LU
AD

HNSC

BRCA-L
um

ina
l

ESCA
BLC

A
LI

HC

SARC

SKCM

BRCA-B
as

al
LG

G OV
KIR

P
STA

D

PRAD

PCPG
CESC

COAD

THYM
GBM

KIR
C

READ

UCEC
LA

M
L

THCA

TGCT

LU
SC

PA
AD

LU
AD

HNSC

BRCA-L
um

ina
l

ESCA
BLC

A
LI

HC

SARC

SKCM

BRCA-B
as

al
LG

G OV
KIR

P
STA

D

PRAD

PCPG
CESC

COAD

THYM
GBM

KIR
C

READ

UCEC
LA

M
L

THCA

TGCT

LU
SC

PA
AD

LU
AD

HNSC

BRCA-L
um

ina
l

ESCA
BLC

A
LI

HC

SARC

SKCM

BRCA-B
as

al
LG

G OV
KIR

P
STA

D

PRAD

PCPG
CESC

COAD

THYM
GBM

KIR
C

READ

UCEC
LA

M
L

THCA

100

N
um

be
r 

of
pr

ed
ic

ta
bl

e 
si

gn
at

ur
es

50

All signatures

Non amplicons
150

200

a

0

Chromosome
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 x21

GSEA_Median_GP2_Immune_Tcell_Bcell17

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 22 x21

Positive segment
Negative segment

Positive whole arm
Negative whole arm

W
ei

gh
t

0.2

0.0

–0.2

W
ei

gh
t

0.4

0.0

0.2

–0.4

c

b

d

e

Fig. 6 Pan-cancer DNA copy number alteration-based Elastic Net models for gene signatures. a Line plots indicate the number of highly predictable
signatures (i.e., AUC > 0.75) (red) and highly predictable non-amplicon signatures (green) in each tumor type. b Box and whisker plots indicating the
median score (horizontal line), the interquartile range (IQR, box boundaries) and 1.5 times the IQR (whiskers) of the percentage of copy number altered
genes in each tumor type. c Heatmap shows the predictability of each gene signature in each tumor type. Red indicates predictable and black indicates
not predictable. Tumors and gene signatures are clustered by hierarchical clustering using Euclidean distance and complete linkage. d, e Selected
CNA segments and/or whole chromosomal arms and their coefficients of the multi-tumor prediction model for Claudin-low signature (d) and immune
signature (e).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13588-2

10 NATURE COMMUNICATIONS |         (2019) 10:5666 | https://doi.org/10.1038/s41467-019-13588-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


however, if validated, then a whole new set of prognostic and
predictive biomarkers could be read out from existing DNA-
based gene panels, thus providing more guidance for precision
medicine at no additional cost.

Lastly, we showed the generalizability of our approach through
a Pan-Cancer analysis of 23 different tumor types. Consistent
with our hypothesis, a variety of gene signatures besides amplicon
signatures were predictable in tumor types that have many copy
number changes. Tumor types that have been shown to share
similar features had similar patterns of signature predictability.
More importantly, those shared key features were often highly
predictable such as immune features in squamous/basal-like
tumors and proliferation rate in adenocarcinomas (i.e., lung and
breast luminal).

Collectively our results demonstrate the ability to build CNA-
based predictors for multiple key cancer phenotypes for breast
and non-small cell lung cancer patients. While most research
focuses on finding genetic drivers of tumorigenesis, our work
carries important implications that critical complex tumor phe-
notypes can be predicted using DNA information, which could be
potentially used in the clinic.

Methods
Gene expression data. Illumina HiSeq 2000 RNA sequencing data for human
breast cancer and lung cancer (both Lung Adenocarcinoma and Lung Squamous
Cell Carcinoma) were acquired from The Broad Institute TCGA GDAC Firehose4.
Illumina HT-29 v3 expression data for the METABRIC project (n= 1992 samples)
were acquired from the European Genome-phenome Archive at the European
Bioinformatics Institute3. For TCGA breast cancer and lung cancer gene expression
data, gene-level RNA-Seq reads were upper-quartile normalized and log2 trans-
formed, filtered to genes that were expressed in over 70% of samples, median
centered and sample-wise standardized within each data set. For METABRIC
microarray gene expression data, acquired data were filtered to genes that were
expressed in over 70% of samples and were median centered for each gene and
standardized for each sample. Gene expression data for all other tumor types were
downloaded from GDC PanCanAtlas publication site (https://gdc.cancer.gov/
about-data/publications/pancanatlas). For each tumor type, gene expression data
were filtered to genes that were expressed in over 70% of samples, median centered
and sample-wise standardized within each tumor type.

To determine breast cancer intrinsic PAM50 subtypes for TCGA breast cancer
data, the TCGA RNA-seq data were first subsampled to match the ER distribution
of the training set used for PAM50. Then the entire data set were adjusted to the
median gene expression calculated for the PAM50 genes determined from the ER
balanced subset. Intrinsic subtyping was then done as previously described36. For
METABRIC, median-centered and standardized gene expression were used to
calculate correlation to each subtype centroid11 (Supplementary Data 11).

DNA copy number data. GISTIC2 gene-level copy number data for human breast
cancer and lung cancer were acquired from The Broad Institute TCGA GDAC
Firehose with no further processing (all_data_by_genes.txt). For the METABRIC
project, copy number segmentation data using circular binary segmentation (CBS)
algorithm were acquired from the European Genome-phenome Archive3. Using
Ensembl 54 (hg18) genome build, gene-level copy number score were derived
through the extreme method as used in GISTIC2 (ref. 51): Genes that fell com-
pletely within a CBS-identified copy number segment were assigned corresponding
segment value. Genes that overlapped with multiple segments were assigned the
greatest amplification or the least deletion value among the overlapped segments.
Genes with no overlapping segments were excluded from further analyses. GIS-
TIC2 gene-level copy number data for all other tumor types were downloaded from
GDC PanCanAtlas publication site with no further processing (https://gdc.cancer.
gov/about-data/publications/pancanatlas).

Protein expression data. Normalized protein expression data for human breast
cancer were acquired from The Broad Institute TCGA GDAC Firehose with no
further processing.

Mutation data. Mutation Annotation Format (MAF) data from 2015 TCGA
Lobular Breast Cancer dataset were used36. MAF file was first filtered to only
include the following variant classifications: Frame_Shift_Del, Frame_Shift_Ins,
In_Frame_Del, In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, Non-
stop_Mutation, RNA,Splice_Site, Translation_Start_Site. A binary gene by sample
matrix of 1 indicating any mutation and 0 indicating no mutation was then con-
structed based on the filtered MAF. Mutation load for each sample was then
determined by the total number of mutated genes in that sample.

Gene expression signatures. A panel of 543 previously published gene expression
signatures were used to fully characterize cancer phenotypes. These 543 signatures
were obtained from multiple publications or GSEA52 and were partially sum-
marized by Tanioka et al.13. The complete list of genes in each signature and their
references is shown in Supplementary Data 1. Signature scores were calculated in a
manner consistent with their derivation. For 504 signatures with homogeneous
expression across the genes, median expression value was used as signature score.
The rest of the signatures were based on correlation to predetermined gene cen-
troids or based on published algorithms. For correlation-based signatures, all
predetermined training sets are available to download through our GitHub repo-
sitory (See code availability). For each such signature, DWD53 was used to first
merge gene expression matrix with corresponding training set and then Pearson/
Spearman correlation/Euclidean distance was computed for each sample in the
merged data. For several algorithm-based signatures, corresponding R code is
provided to calculate each signature (See code availability). All 543 signatures were
applied to TCGA breast cancer and lung cancer data as well as METABRIC data.
504 median-expression based signatures were applied to Pan Cancer data.

Identification of gene signature-specific CNAs. To identify associations between
CNAs and gene expression signatures, two independent statistical tests were used8

on TCGA breast cancer cohort with matched gene expression and copy number
data excluding all Normal-like samples (n= 1038). For each signature, a spearman
rank correlation, both positive and negative, was used to compare gene-level copy
number score with signature score. A one-sided Fisher’s exact test was used to
compare either frequency of CNA gain or loss in samples with high signature score
(top quartile) and those with low signature score (bottom three quartiles). For each
analysis, Benjamini–Hochberg multiple testing correction was used to adjust p-
values for each signature across all genes. Significant threshold was set to 0.01 to
identify genes that were significant in both analyses.

To identify subtype-adjusted associations between CNAs and each gene
expression signature, a linear model was used instead of the spearman rank
correlation to take into account molecular subtype as confounding variables:
signature ~ CNA+ (1|Basal)+ (1|HER2)+ (1|LumA)+ (1|LumB). Positive/
negative correlation was determined by the coefficient of CNA and p-value in the
model. Fisher’s exact test, Benjamini–Hochberg multiple testing correction and
significant threshold of 0.01 were done the same way as described above.

Building Elastic Net prediction models. We used Elastic Net modeling approach,
which is a regularized regression method that linearly combines the L1 and L2
penalties of the Ridge Regression and Least Absolute Shrinkage and Selection
Operator (LASSO), to build DNA CNA-based predictors of cancer phenotypes9.
Generally, gene-level CNA scores were first collapsed to segment-level CNA scores.
The complete list of genes in each segment is shown in Supplementary Data 218–22.
Each segment score was calculated as the mean CNA score across genes within the
segment. For each cancer phenotype, total sample was split into 70% training set
and 30% testing set (R package sampling) stratified by clinical variables: overall
survival, gender, race, ER status, PR status and HER2 status, histological subtype,
pathologic stages and molecular subtype when available. Models were built on
training set only. Tuning grid were determined with alphas over a range from 0.1 to
1 by 0.1 and a sequence of 100 lambdas. The minimum and maximum of lambda
values were determined by fitting generalized linear models with each alpha value
on training set (R package glmnet). 200 rounds of Monte-Carlo cross validation
with default training percentage of 0.75 (R package caret) were used to select the
tuning parameters. The optimal parameter combination was determined to have
the best classification accuracy. Model with the optimal parameters was then
applied to test set and other validation sets if available. Receiving operating
characteristics (ROC) curves were constructed and area under ROC curve (AUC)
values were used to evaluate model performances (R package ROCR). We consider
phenotypes with AUC values above 0.75 as highly predictable.

For predicting gene expression signatures, protein expression, and mutation
load that had continuous scores, models were built to classify samples with high
scores (top third) versus low scores (bottom two-thirds). For molecular subtype,
clinical receptor status, cancer histology, and mutations that had binary outcomes,
models were built to classify each outcome. For breast cancer gene expression
signatures, Normal-like samples were excluded (n= 1038) as in association tests
described above. For somatic mutations, all IGH and HLA genes were removed and
only genes that have mutation frequency greater than 5% and/or significantly
mutated genes identified in 2015 TCGA Lobular Breast Cancer analysis36 were
included.

For subtype-specific gene signature predictions, the same Elastic Net model
approach was repeated within samples of a particular subtype, split into 70%
training and 30% testing, and models were applied to METABRIC samples with the
same subtype.

For gene signature and histology prediction using the non-small cell lung cancer
data, the whole TCGA lung data set was used that combined both LUAD (n= 498)
and LUSC (n= 512), which were split into training and testing sets balanced for
clinical variables: overall survival, gender, pathological stages and histology (LUAD
or LUSC). Models were built on training set and applied to testing set. Models built
on TCGA breast cancer training set were also applied to the whole lung data set.
Models were also built within LUAD and LUSC separately.
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For Pan Cancer gene expression signature predictions, we limited tumor types
with at least 100 samples that had RNA, DNA, and clinical data. 504 median
expression-based gene signatures were applied to each tumor type. For each
signature prediction in each tumor type, total sample was split into 70% training set
and 30% testing set, balanced for gender, race and overall survival. Models were
then built on training set and applied to testing set to get training and testing AUC
values. For the multi-tumor prediction of Claudin-low and immune signature,
DNA data and binarized signature level data were first combined across tumor
types that each signature was highly predictable and then split into 70% training
and 30% testing balanced for gender, race, overall survival, and tumor type. Models
were built on training set and applied to test set.

We used permutations to assess the use of 0.75 as the threshold to define ‘highly
predictable’. Tumor labels were permuted 100 times for 16 representative
phenotypes, namely RB-LOH signature, Basal signaling signature, estrogen
signaling signature, HER1-C2 signature, ER/PR/HER2 IHC status, TP53 mutation,
tumor mutation load and intrinsic molecular subtypes. The same Elastic Net
modeling process for each phenotype were conducted as described above. Briefly
for each phenotype, during each permutation, all samples were split into 70%
training and 30% test sets stratified by clinical variables. Models were built using
training set and test set AUCs were used to compare with the threshold of 0.75.

To look at the features selected by each prediction model, coefficients of CNA
segments were re-mapped to genes within each segment and plotted. Summary of
all Elastic Net models including coefficients of CNA segments and AUC values are
reported in Supplementary Data 3–10.

Survival analysis in METABRIC. To investigate the prognostic value of CNA-
based Elastic Net model of some known prognostic signatures, we applied research-
based versions coming from METABRIC microarray data, for three clinically used
assays and four other representative signatures and their prediction models, namely
OncotypeDX recurrence score, MAMMAPRINT 70-GENE recurrence score,
Prosigna risk of recurrence score, RB-LOH signature, basal-signaling signature,
estrogen-signaling signature and HER1-C2 signature to 1689 METABRIC samples
excluding all Normal-like samples. 10-year breast cancer-specific survival data were
derived by censoring patients that had death unrelated to breast cancer or that had
survival time over 10 years. For each signature, patients were divided into high/low
groups according to observed signature score (top third vs. bottom two-thirds) as
well as predicted probability by Elastic Net prediction model (top third vs. bottom
two-thirds). Kaplan–Meier curves were drawn (R package survival) and log rank
p-values were calculated.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The TCGA data referenced during the study are available from the TCGA website (the
Broad Institute TCGA GDAC Firehose: https://gdac.broadinstitute.org/). The
METABRIC data is available from the European Genome-phenome Archive at the
European Bioinformatics Institute (https://www.ebi.ac.uk/ega/). All the other data sets
supporting the findings of this study are available within the article, the Supplementary
information tables and our GitHub repository and from the corresponding author upon
reasonable request.

Code availability
All code supporting the current study is deposited in GitHub (https://github.com/xyouli/
DNA-based-predictors-of-non-genetic-cancer-phenotypes). All computational analyses
are done using public R packages.
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