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Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides
(OATPs) are classified within two SLC superfamilies, namely, the SLC22A
superfamily and the SLCO superfamily (formerly the SLC21A family),
respectively. They are expressed in many tissues, such as the liver and kidney,
and mediate the absorption and excretion of many endogenous and exogenous
substances, including various drugs. Most are composed of 12 transmembrane
polypeptide chains with the C-terminus and the N-terminus located in the cell
cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they
mainly promote the uptake of various endogenous substrates such as bile acids
and various exogenous drugs such as antifibrotic and anticancer drugs. However,
differences in the locations of glycosylation sites, phosphorylation sites, and
amino acids in the OAT and OATP structures lead to different substrates being
transported to the liver, which ultimately results in their different roles in the
liver. To date, few articles have addressed these aspects of OAT and OATP
structures, and we study further the similarities and differences in their
structures, tissue distribution, substrates, and roles in liver diseases.

Key words: Organic anion; Substrate transport; Liver fibrosis; Liver cirrhosis; Liver
cancer; Targeted therapy
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Core tip: As important anion transporters, organic anion transporters (OATs) and organic
anion transporter polypeptides (OATPs) have similar structures and transport substrates.
So far, the role of some members of OATs and OATPs in the liver has been reported, but
studies on both families are still rare. In this paper, we study their structure, distribution,
substrate of action, and regulatory mechanisms in various diseases of the liver. With the
further study of the relationship between OATs/OATPs and various liver diseases,
targeted therapy with OATs/OATPs is expected to improve the adverse reactions of
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drugs in the liver and improve the survival rate of patients with liver diseases.
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INTRODUCTION
Organic anions are a general term for a class of materials containing a carbon skeleton
with a net negative charge under physiological pH conditions. Both organic anion
transporters (OATs) and organic anion transporter polypeptides (OATPs) belong to
the SLC family. OATs are classified in the SLC22A superfamily. SLC22 transporters
have at least six subfamilies: OAT, OAT-like, OAT-related, organic cation transporter
(OCT),  organic  cation/carnitine  transporter  (OCTN),  and OCT/OCTN-related[1].
OATPs  are  encoded  by  genes  in  the  SLCO  superfamily.  This  superfamily  was
originally named SLC21A. In 2004, it was updated and standardized according to
phylogenetic relationships. This superfamily was renamed SLCO, the solute carrier
family of OATPs[2]. OATs and OATPs are important transmembrane transporters that
are usually composed of 12 transmembrane polypeptide chains with extracellular
glycosylation regions (Figure 1). OATs and OATPs are abundantly expressed in the
liver and are mainly distributed on the basolateral  membrane. They mediate the
transport of a variety of endogenous and exogenous substrates through the cellular
membrane[3]. The substrates for OATs are small and hydrophilic organic anions such
as dicarboxylates and cyclic nucleotides[4], while OATPs transport large hydrophobic
organic anions such as bile acids, thyroid hormones, prostaglandins, testosterone, and
steroid hormone conjugates. However, they are all involved in the intestinal-hepatic
circulation of bile. To maintain this important physiological process, hepatocytes
recover bile acids from portal vein blood through some members of the OATP family,
such as OATP1B1, OATP1B3, and OATP2B1[5]. OAT3, a member of the OAT family,
plays a central role in the movement of bile acids through the “gut-liver-kidney” axis
and participates in the absorption, metabolism, and excretion of bile acids[6] (Figure 2).
OATs and OATPs, together with other SLC transporters, play a key role in inter- and
intra-tissue molecule communication, in neuroendocrine, growth factor-cytokine, and
other homeostatic systems and in the regulation of local and systemic homeostasis[1].
In liver disease, such as liver fibrosis, cirrhosis, and liver cancer, the expression of
these uptake transporters changes, eventually affecting the rate of endogenous and
exogenous drug transport, causing intracellular and extracellular signal transduction
dysfunction and increasing the accumulation of metabolites in the plasma. This brief
review will summarize our current understanding of the similarities and differences
between  these  two  transporter  family  members,  with  an  emphasis  on  tissue
composition and substrates, regulation of their expression, and their roles in liver
diseases.

STRUCTURE AND TISSUE DISTRIBUTION OF OATS AND
OATPS

Structure and tissue distribution characteristics of OATs
The OAT family members have similar membrane topologies[7] and consist of 12 α-
helical transmembrane domains (TMD) with three highly conserved regions in their
structure that are important for their function: A large extracellular loop with many
glycosylation sites between TMD1 and TMD2; a large intracellular loop in the central
region between TMD6 and TMD7 with conserved residue phosphorylation; and some
motifs in TMD9 and TMD10 with amino acids critical for protein transport activity[8].
No specific  residues  or  domains  were  found to  determine  the  specificity  of  the
substrates, indicating that the three domains are compatible[9]. OATs contain 526 to
568 amino acid residues, and the C-terminus and N-terminus of OATs are located in
the cell  cytoplasm[10,11]  (Figure 1).  There are more than 20 identified human OAT
subtypes, which can be divided into three subclades: (1) OAT: OAT1 (SLC22A6),
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Figure 1

Figure 1  Structures of organic anion transporters and organic anion transporter polypeptides. The structures
of the family members of organic anion transporter (OAT) are similar. They each consist of 12 transmembrane
domains (TMD) with three highly conserved regions: (1) The large extracellular loop between TMD1 and TMD2 has
many glycosylation sites; and (2) the large intracellular loop between TMD6 and TMD7 has residues that are
phosphorylated; and (3) TMD9 and TMD10 contain important amino acids. The C-terminus and N-terminus of OATs
are located in the cytoplasm. The organic anion transporter polypeptide (OATP) family members have 12
transmembrane segments, which can form six extracellular loops and five intracellular loops. The C-terminus and N-
terminus are located in the cytoplasm. One of the OATP members, OATP1B1, is glycosylated in the 2nd and 5th
extracellular loops, and it is predicted that other OATPs may also be glycosylated in these two extracellular loops.

OAT2 (SLC22A7, originally known as novel liver-specific transporters [NLTs])[12],
OAT3 (SLC22A8), OAT7 (SLC22A9), OAT5 (SLC22A10), OAT4 (SLC22A11), urate
transporter  1  (URAT1;  SLC22A12),  OAT6 (SLC22A20),  SLC22A orphan (S22AO),
SLC22A24,  OAT8  (SLC22A25,  also  known  as  unknown  substrate  transporter  6
[UST6]), SLC22A26, OAT9 (SLC22A27), SLC22A28, SLC22A29, and SLC22A30, which
is  formed  by  the  best  functionally  characterized  OATs;  (2)  OAT-like:  OAT10
(SLC22A1) and organic cation transporter-like 2 (OCTL2; SLC22A14); and (3) OAT-
related: BOIT (SLC22A17), ORCTL2 (SLC22A18), Boct2 (SLC22A23), and SLC22A31,
the members of which seem to be able to transport organic cations[8,13]. Most OATs are
highly expressed in the human kidneys and/or liver and are expressed at lower levels
in the brain, placenta, prostate, and testis[11]. OAT1, OAT2, and OAT3 are located on
the basolateral membrane of renal proximal tubule cells, where they are involved in
the secretion of drugs and toxins that are subsequently eliminated in urine[14].  In
contrast,  OAT4,  OAT10,  and  URAT1  are  expressed  on  the  apical  membrane  of
proximal tubular cells and participate in the reabsorption of substances from tubular
fluids[14]. OAT2, OAT5, and OAT7 are located on the sinus membrane of hepatocytes
and  participate  in  the  liver  detoxification  process[15].  Recently,  there  has  been
controversy over the main distribution of OAT2. Ohtsuki et al[16] compared the protein
expression levels with corresponding mRNA expression levels and activities in 17
human liver samples and found that OAT2 protein expression did not correlate with
the corresponding mRNA expression. The difference between the mRNA and protein
expression  levels  may  be  due  to  posttranscriptional  modification,  intracellular
trafficking,  and/or  membrane  sorting.  Thus,  mRNA  expression  may  not  be  a
surrogate  marker  of  transporter  function,  and  as  such,  the  use  of  it  can  cause
misleading  results  because  some of  the  transmembrane  proteins  localize  to  the
membranes of intracellular organelles.  Vildhede et al[17]  found that OAT2 protein
expression  was  30-100-fold  lower  than  that  of  other  liver  uptake  transporters,
including OATP1B1 and OATP1B3.  Low OAT2 expression may result  in  its  low
activity in the human liver. However, recently, Nakamura et al[18] adopted a larger-
scale  proteomics  approach and determined that  the  liver  expression of  OAT2 is
comparable to that of OATP. Surprisingly, although it is hypothesized that human
OAT2 is located in the sinus membrane of hepatocytes, the immunohistochemical
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Figure 2

Figure 2  Role of organic anion transporters/organic anion transporter polypeptides in the transport of bile
acids through the “intestinal-liver-kidney” axis. In order to maintain the important physiological process of
enterohepatic circulation of bile, hepatocytes recover bile acids from portal vein blood through certain members of the
organic anion transporter polypeptide family (e.g., OATP1B1, OATP1B3, and OATP2B1). OAT3 plays a central role in
the movement of bile acid through the “intestinal-liver-kidney” axis and is involved in the absorption, metabolism, and
excretion of bile acids. OAT: Organic anion transporters.

staining for OAT2 protein has not been confirmed in human liver, which is the main
organ where it is expressed. In addition, studies have shown that OAT2 is expressed
in the embryonic liver, kidney, and other tissues, suggesting a role in the formation
and maintenance of these tissues. OAT2 can play an important developmental role
independent of its transport function[19]. OAT8 (UST6) is a slc22 transporter homolog
in flies, worms, and humans, which contributes to the definition of a subfamily within
the OATs, the USTs. The expression of UST6 is restricted to the liver in adults and
fetuses and may play a role in the development and differentiation of the liver[20].
Other  OATs  include  OAT6,  which  has  less  pharmacological  relevance  and  are
primarily expressed in the olfactory mucosa but not in the kidney or liver, and S22AO
and OCTL2, which are poorly understood[21] (Table 1).

Structure and tissue distribution characteristics of OATPs
OATPs consist of 643-722 amino acids and have 12 transmembrane segments, which
can form six extracellular loops and five intracellular loops, and both the C-terminus
and N-terminus are located in the cytoplasm[13].  OATP1B1 has been shown to be
glycosylated in  the second and fifth  extracellular  loops,  and the unglycosylated
protein remains in the endoplasmic reticulum (Figure 1). Therefore, all mammalian
OATPs may be glycosylated in these two extracellular loops. Disulfide bonds can also
have an effect on the proper folding and function of these proteins[22]. Based on site-
directed mutagenesis of ten conserved cysteine residues in the large extracellular loop
5 of OATP2B1, all ten cysteine residues were determined to be usually disulfide-
linked, and these disulfide bonds are the targets important for transporting OATP2B1
to the plasma membrane[23]. The OATP family contains 11 members, which share 40%
of their amino acid sequence identity. These members show similar structures in their
12 putative transmembrane regions[24]. In the human genome, OATPs encoded by the
solute  carrier  OAT  (former  SLC21)  genes  constitute  an  important  transporter
subfamily that consists of 11 members: OATP1A2 (SLCO1A2), OATP1B1 (SLCO1B1,
formerly  known  as  LST-1),  OATP1B3  (SLCO1B3,  formerly  known  as  LST-2),
OATP1C1  (SLCO1C1),  OATP2A1  (SLCO2A1,  also  known  as  prostaglandin
transporter  PGT),  OATP2B1  (SLCO2B1),  OATP3A1  (SLCO3A1),  OATP4A1
(SLCO4A1),  OATP4C1  (SLCO4C1),  OATP5A1  (SLCO5A1),  and  OATP6A1
(SLCO6A1) [ 2 5 ].  OATPs  are  expressed  in  many  human  organs  such  as  the
gastrointestinal tract, liver, kidney, heart, lung, and brain[25] and commonly expressed
in various tumors. The OATP1A2 protein is expressed in the cells of the brush border
membrane of the duodenal midgut[26], the biliary cells of the liver, the distal nephron
of the kidney, and the luminal membrane of the capillary endothelial cells of the
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Table 1  Organizational characteristics and substrates of human organic anion transporters[4,14,21,45,63,151,152,153]

Protein name Alias Chromosome localization Distribution location Substrates (Km value)

OAT1 SLC22A6 11q13.1 Kidney, brain, liver, stomach,
pancreas

P-aminohippurate (PAH; 5
μmol), prostaglandin E2
(PGE2; 0.97 μmol), α-
ketoglutaric acid, captopril,
methotrexate

OAT2 SLC22A7 6p21.1 Liver, kidney, embryonic
liver and kidney

PAH, PGE2 (0.71 μmol),
estrone-3-sulfate (E3S), α-
ketoglutaric acid (17.8 μmol),
cGMP, succinic acid,
paclitaxel (0.14 μmol),
dehydroepiandrosterone
(DHEA) sulfate,
methotrexate, diclofenac,
acyclovir, penciclovir,
theophylline (12.6 μmol),
erythromycin (18.5 μmol),
salicylate (88.8 μmol)

OAT3 SLC22A8 11q11.7 Kidney, brain, liver, skeletal
muscle, adrenal gland

PAH (87 μmol), PGE2 (0.34
μmol), E3S (3 μmol),
zidovudine, cimetidine,
bumetanide, ciprofloxacin,
benzylpenicillin, pravastatin,
methotrexate, bile acids,
amino acids, MTX (11 μmol)

OAT4 SLC22A11 11q12.3 Kidney, placenta, adrenal
gland

Urate, PGE2 (0.15 μmol), E3S
(1 μmol), PAH, olmesartan,
methotrexate, bumetanide

OAT5 SLC22A10 11q12.3 Liver Unknown

OAT6 SLC22A20 11q13.1 Olfactory mucosa E3S, PAH, PGE2, ibuprofen,
ochratoxin A (OTA)

OAT7 SLC22A9 11q12.3 Liver E3S, DHEA, sulfate, butyrate

OAT8 UST6 11q12.3 Liver Unknown

OAT9 SLC22A27 Unknown

OAT10 SLC22A13 3p22.2 Kidney, brain, heart, colon Lactate, nicotinate, succinate,
glutathione urate

URAT1 SLC22A12 11q13.1 Kidney, vascular smooth
muscle cells, liver, lung

Urea, chloride

S22AO SLC22A24 11q12.3 Kidney Unknown

OCTL2 SLC22A14 3p22.2 Testis, kidney Unknown

brain[27]. OATP1C1 is present in the brain and testis[28]. OATP2A1 is expressed in a
variety of tissues[4]. Its mRNA is found in several tissues, including the brain, colon,
heart,  kidney,  liver,  lung,  and  small  intestine[29].  Recently,  OATP2A1  protein
expression has been shown in the gastrointestinal tract, localized to the gastric antrum
and the parietal cells of the stomach wall[30]. OATP3A1 mRNA expression is high in
the brain, heart, and testis, followed by the lung, spleen, peripheral blood leukocytes,
and  thyroid[31].  OATP4A1  mRNA  expression  is  high  in  the  heart  and  placenta,
followed by the lung, liver, skeletal muscle, kidney, and pancreas[32].  OATP4C1 is
expressed in the kidney, liver, and human colon[33]. OATP5A1 is expressed in the fetal
brain, prostate, skeletal muscle, and thymus. OATP6A1 is highly expressed in the
testis,  followed  by  the  spleen,  brain,  fetal  brain,  and  placenta[34,35].  OATP1B1,
OATP1B3, and OATP2B1 are mainly expressed in the liver[15]. OATP1B1 is expressed
in hepatocytes throughout the lobules, and OATP1B3 is mainly expressed around the
central  vein[36].  The mRNA expression level  of  OATP1B1 in the liver is  generally
higher than that of OATP1B3[10]. The level of OATP2B1 mRNA is highest in the liver,
where the protein is located on the basolateral membrane of hepatocytes[37] (Table 2).

OATs and OATPs belong to the SLC superfamily and are anion transporters with
12 transmembrane structures (Figure 1). However, differences in glycosylation sites,
amino acid sites, and phosphorylation sites in the transmembrane structure of the
OATs and OATPs and the tissue distribution of them lead to differences in substrate
apparent affinity (Km) (Tables 1 and 2) and functions.
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Table 2  Organizational characteristics and substrates of human organic anion transporter polypeptides[4,25,69,73,153,154,155,156]

Protein name Coding gene Chromosome localization Distribution location Substrates (Km value)

OATP1A2 SLCO1A2 12p12.1 Brain, liver, kidney Bile salts, bilirubin,
ciprofloxacin, estrone-3-
sulfate (59 μmol),
methotrexate, N-
methylquinidine (26 μmol),
norfloxacin, PGE2,
taurochenodeoxycholate (19
μmol)

OATP1B1 SLCO1B1 12p12.1 Liver Benzylpenicillin, bile acid,
bilirubin (8 μmol), estradiol-
17b-glucuronide (8 μmol),
estrone-3-sulfate (0.2 μmol),
methotrexate, olmesartan,
pravastatin (35 μmol),
taurocholate (10-34 μmol),
steroid hormone

OATP1B3 SLCO1B3 12p12.2 Liver Benzylpenicillin (penicillin
G), bilirubin (39 μmol), bile
acid, cholecystokinin
octapeptide (CCK-8; 11
μmol), docetaxel, eicosanoid,
estradiol-17β-glucuronide
(5.4 μmol), methotrexate (25
μmol), paclitaxel (7 μmol),
rosuvastatin, saquinavir,
steroid hormone,
taurocholate (6 μmol)

OATP1C1 SLCO1C1 12p12.2 Brain, testis Bromosulfophthalein,
estrone-3-sulphate, thyroid
hormones (0.1 μmol)

OATP2A1 SLCO2A1 3q22.1-q22.2 Brain, colon, heart, kidney,
liver, small intestine, stomach

PGH2, PGE1 (82 μmol), PGE2
(100 μmol), PGF2a (92 μmol),
thromboxane B2 (182 μmol)

OATP2B1 SLCO2B1 11q13.4 Liver, intestinal epithelium,
placenta, epidermal keratin,
breast, heart, skeletal muscle,
brain

Benzylpenicillin, bilirubin,
dehydroepiandrosterone-3-
sulphate, estrone-3-sulphate
(5 μmol), fexofenadine,
montelukast, pravastatin,
pitavastatin, PGE2, talinolol,
statins, steroids, taurocholate

OATP3A1 SLCO3A1 15q26.1 Testis, brain, heart, lung,
spleen

Benzylpenicillin, estrone-3-
sulphate, PGE1, PGE2,
PGF2a, steroid hormone

OATP4A1 SLCO4A1 20q13.33 Heart, placenta, lung, liver,
skeletal muscle, kidney,
pancreas

Bile salts, estrone-3-sulphate,
PGE2, taurocholate (15 μmol),
steroid hormone

OATP4C1 SLCO4C1 5q21.1 Liver Bile salts, cAMP, digoxin (8
μmol), estrone-3-sulphate,
methotrexate, steroid
hormone

OATP5A1 SLCO5A1 8q13.3 Fetal brain, prostate, skeletal
muscle

Satraplatin

OATP6A1 SLCO6A1 5q21.1 Testis, spleen, brain, fetal
brain, placenta

Unknown

SUBSTRATE SPECIFICITIES OF OATS AND OATPS

Substrate specificity of OATs
OATs can transport  a  variety of  anionic  endogenous metabolites  and xenobiotic
molecules, including many drugs[21]. In 1999, OAT1 was used for the initial functional
characterization of a multispecific organic anion-dicarboxylic acid exchanger[38,39].
OAT1 plays an important role in the elimination of various toxins in the kidney. In
addition  to  transporting  p-aminohippurate  (PAH)[40],  OAT1  has  been  shown  to
transport prostaglandins, a-ketoglutaric acid, NSAIDs, antiviral drugs, and anticancer
drugs[39,40]. OAT2 was the first mammalian OAT to be cloned. OAT2 was renamed
OAT2 due to its close homology to OAT1 and its interaction with organic anions[41].
OAT2 has three variants, OAT2-546aa, OAT2-548aa, and OAT2-539aa[42,43]. The OAT2-
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546aa protein is localized on the plasma membrane, and the OAT2-548aa protein is
localized to the intracellular compartment.  The OAT2-539aa differs greatly from
OAT2-546aa  and  OAT2-548aa  because  the  C-termini  are  significantly  different
between species[44].  Different variants have different substrate specificities.  Many
previously identified OAT2-548aa substrates, such as PAH, estrone-3-sulfate (E3S),
alpha-ketoglutarate, succinic acid, paclitaxel, and dehydroepiandrosterone (DHEA)
sulfate, are not transported by OAT2-546aa[45]. OAT2-546aa was found to be capable of
transporting guanine nucleotide-related compounds and cGMP[44], as well as other
endogenous  substrates,  suggesting  that  OAT2  may  play  a  regulatory  role  in
intracellular signaling[45]. OAT2 is an important determinant of drug elimination due
to the expression of OAT2 in the liver and its ability to transport and hence affect the
deposition of multiple pharmacologically active agents[21]. Therefore, some antitumor
drugs interfere with OAT2-mediated transport, while others, such as methotrexate[46]

or irinotecan[47], are substrates for this transporter. In addition, the drug substrates of
OAT2  also  include  many  antibiotics [48 ,49],  antimetabolites [46 ,50],  H-2  receptor
antagonists[51],  diuretic  agents[49],  nonsteroidal  anti-inflammatory  drugs[52],  and
antiviral drugs[53]. Many of the substrates of OAT2 are also substrates of OAT1 and/or
OAT3. Notably, the three OAT2 splice variants OAT2-546aa, OAT-548aa, and OAT2-
539aa with different transport specificities have been used in different laboratories
and have resulted in conflicting findings[45]. OAT1 and OAT3 have similar specific
drug  substrates.  However,  it  is  not  clear  whether  they  have  similar  specific
endogenous substrates[6].  Typically, the substrates of OAT3 are bulkier and more
lipophilic than those of OAT1. OAT3 can transport E3S[54], zidovudine[55], cimetidine[51],
diuretics[56], antibiotics[57], and statins such as methotrexate[58]. In addition, Bush et al[6]

demonstrated that OAT3 is involved in the bile acid (Figure 2) and lipid metabolism
pathways. OAT4 is unique in that it can absorb and transport certain substrates, such
as urate and steroid sulfates (such as E3S)[59,60], but is an efflux transporter for other
substances,  such as PAH and olmesartan[61].  Little is  known about human OAT5,
although Northern blot analysis has shown mRNA expression in the liver[46]. Mouse
and rat oat5 (Slc22a19) proteins have been shown to be expressed only in the kidney[62]

and are improbable homologs of the human OAT5 protein[7].  OAT6 is capable of
interacting with a variety of small organic anions of physiological, pharmacological,
and toxicological significance, such as estrone sulfate, PAH, and prostaglandin E2
(PG-E2). The preferred ligand for this transporter is an odor molecule[63].  OAT7 is
highly expressed in the liver. It transports butyric acid and other short-chain fatty
acids into hepatocytes and affects the pathway of short-chain fatty acid metabolism
but does not promote hepatocyte uptake of bile acids[11,64]. In addition, OAT7 may be
critical  for  the  release  of  steroid  hormones  such  as  estrogen-3-sulfate  into  the
bloodstream. Impaired function of OAT7 may result in slower metabolism of short-
chain fatty acids and impaired steroid responses[11]. OAT10 acts as an antiporter and
exchanges extracellular nicotinate with intracellular lactate, nicotinate, succinate, or
glutathione[65]. URAT1 was originally cloned as a “renal specific transporter (Rst)”,
and the human homolog transported urate; therefore, it was named “urate transporter
1 (URAT1)”[66]. URAT1 is similar to other family members and operates as an anion
exchanger. URAT1 can transport urea and chloride[66,67] (Table 1).

Substrate specificity of OATPs
Most OATPs transport a wide range of compounds. Although most substrates are
anionic, some OATPs can also transport neutral and ionic compounds[68]. Typically,
the substrate is an amphiphilic molecule with a molecular weight greater than 350
Daltons, including bile acids, conjugated steroids, thyroid hormones, linear and cyclic
peptides  and  mushroom  toxins,  and  many  drugs,  including  statins,  sartans,
antibiotics, and antitumor drugs[4].  Many of these compounds are substrates for a
variety of OATPs. For example, both OATP1B1 and OATP1B3 regulate the transport
of bile acids, eicosanoids, peptides, and some drugs, including the antitumor drug
methotrexate[69]. It has been reported that OATP-mediated transport may be affected
by pH. Some studies have shown that OATP2B1 transport activity increases in acidic
pH conditions[70-72]. Under normal physiological pH, OATP2B1 transports estrone and
DHEA though the membranes, while under acidic conditions, it can transport many
other compounds such as taurocholate, bilirubin, fexofenadine, statins, and it is also a
transporter of steroids that increases the amount of estradiol in tumor cells[73,74] (Table
2).

Although the substrates of OATs are mainly small hydrophilic organic anions,
OATPs mainly transport large hydrophobic organic anions. However, many members
of  OAT  and  OATP  families  are  capable  of  transporting  the  same  endogenous
substrates such as PG-E2 (transported by OAT1, OAT6, and OATP1A2) and E3S
(transported by OAT2, OAT3, OAT4, OAT6, OAT7, OATP1A2, OATP1B1, OATP1C1,
OATP2B1,  OATP3A1,  OATP4A1,  and OATP4C1),  and exogenous  drugs  such as
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benzylpenicillin (transported by OAT3,  OATP1B1,  and OATP2B1),  ciprofloxacin
(transported  by  OAT3  and  OATP1A2),  diclofenac  (transported  by  OAT2  and
OATP1B3),  methotrexate (transported by OAT1, OAT2, OAT3, OAT4, OATP1A2,
OATP1B1, OATP1B3, and OATP4C1), olmesartan (transported by OAT1, OAT4, and
OATP1B1),  paclitaxel  (transported  by  OAT2  and  OATP1B3),  and  pravastatin
(transported by OAT3, OATP1B1, OATP1B1, and OATP2B1)[4,14,21,45,63,69,73].

OATS AND OATPS IN LIVER DISEASE

OATs in liver disease
In liver fibrosis and cirrhosis, scar tissue spreads throughout the liver, which may
result in a decrease in membrane protein. Changes in the liver uptake transporter
OAT2  can  have  a  profound  impact  on  the  pharmacokinetics  (PKs)  of  drugs
administered to patients with liver cirrhosis, which may result in unexpected adverse
effects and/or potential changes in drug efficacy[75,76]. For example, downregulation of
OAT2 may affect liver uptake of entecavir. Entecavir, a guanosine cyclopentanoate
analog, is a first-line drug used for hepatitis B and has a significant effect against
hepatitis  B  virus  (HBV) by inhibiting HBV polymerase[77].  Entecavir  needs to  be
organized in the liver to act as an anti-HBV agent. Previous studies have shown that
entecavir is a substrate for OAT 1/3[78].  Xu et al[78]  first reported that liver fibrosis
causes changes in the distribution of entecavir in the liver, and after liver fibrosis, the
ability of the intestine to transport entecavir to the liver is significantly reduced due to
the downregulation of OAT2[79], ultimately reducing the distribution of entecavir in
the liver. In addition, studies have found that there are increased plasma hepatocyte
growth factor (HGF) levels in patients with hepatic failure or liver cirrhosis[80]. HGF is
a ligand of the c-Met membrane receptor tyrosine kinase and a potent stimulator of
DNA synthesis in hepatocytes, contributing to liver regeneration[81,82]. Le et al[83] found
that HGF (20 ng/mL) treatment for 48 h downregulated OAT2 mRNA levels. OAT2
downregulation may affect the liver’s transport of endogenous substances or drugs,
thereby further promoting the development of cirrhosis.  Besides, a non-alcoholic
steatohepatitis (NASH) rat model induced by methionine-choline deficiency showed
that two different stages of non-alcoholic fatty liver disease (NAFLD; simple fatty
liver and more serious NASH) would lead to decreased liver uptake of transporter,
such as OAT2, OAT3, OATP1a1, and OATP1b2. Furthermore, NAFLD may alter the
plasma  retention  time  of  clinically  relevant  drugs  that  are  dependent  on  these
transporters and may increase potential  drug toxicity.  The impact of  NAFLD on
human hepatic uptake transporters is the focus of ongoing research[84].

The  hepatitis-fibrosis-cirrhosis  progression  eventually  leads  to  liver  cancer.
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and HCC
patients have a poor prognosis. Enhanced surveillance of hepatitis/fibrosis/cirrhosis
patients and additional risk analysis are important to prevent the development of
HCC. OAT2 is not only an important independent risk factor for HCC but also the
best  predictor  in  the  HCC  recurrence  index  MO.  Yasui  et  al[85]  examined  the
association between de novo HCC development and OAT2 expression at baseline in 38
patients with hepatitis C without HCC who subsequently developed HCC, whose
age, gender, and fibrosis stage data were matched with those of 76 hepatitis C patients
who did not develop HCC. It was found that a decrease in the expression of OAT2 in
the liver indicates a high risk of HCC for patients with chronic hepatitis C regardless
of other risk factors[85]. Based on current data, assessment of the transporter function
from liver biopsy samples provides additional valuable predictors. In addition, serum
albumin levels differ in patients with and without HCC, with serum albumin level of
4.0 g/dL being a critical predictor of HCC development. Low serum albumin levels
constituted an independent risk factor for HCC development in patients matched by
age, gender, and liver fibrosis stage[84]. Nonetheless, in patients with higher serum
albumin levels (≥4.0 g/dL), decreased expression of OAT2 remained an important
independent  risk  factor  for  HCC development[85].  A study showed that  OAT2 is
responsible  for  the  uptake  of  orotic  acid[86],  which  is  reported  to  promote  liver
carcinogenesis[87,88].  In a clinical setting, orotic aciduria was also detected in HCC
patients without cirrhosis[89]. Furthermore, gene set enrichment analysis showed that
OAT2 expression was significantly associated with mitochondrial oxidoreductase
activity and fatty acid metabolism. Mitochondrial dysfunction and oxidative stress are
considered to be key mechanisms for the development of HCC[85]. Taken together, the
results from these studies suggest that reduced OAT2 expression may contribute to
liver  cancer  by  increasing  the  concentration  of  orotate  around hepatocytes  and
promoting oxidative stress and mitochondrial dysfunction. It has been hypothesized
that these microenvironmental changes may occur in patients with early chronic HCV
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infection[85].  In  fact,  the  precise  mechanism  of  the  association  between  OAT2
expression and HCC development requires further investigation. Clinically, OAT2
may be a predictive tool for HCC, and patients with reduced expression of OAT2 and
reduced serum albumin levels are candidates for enhanced HCC surveillance, even if
they do not exhibit risk factors for HCC. In addition, OAT2 and UST6 expressed in the
embryonic liver may indicate involvement in liver differentiation and development.
They may play a distinct  role  in the formation and maintenance of  liver  tissues.
Although their most likely role seems to be in the transport of organic molecules, it is
also conceivable that they have a role in an independent transport function[20]. These
speculations lead to the prediction that the high expression of embryonic OAT2 and
UST6 is likely to be interesting in the context of cancer occurrence and regeneration.
However, these effects have not been analyzed in detail, and their roles as embryonic
transporters require further study.

HCC is an aggressive malignancy primarily due to tumor metastasis or recurrence,
even after potentially curative treatment. Intrahepatic recurrence after hepatectomy
for HCC includes intrahepatic metastasis (IM) and multicenter occurrence (MO)[89].
The following MO criteria are defined as HCC characteristics: (1) Recurrent tumors
consist of well-differentiated HCC cells that are found in different liver segments and
were moderately or poorly differentiated in the previous HCC case; (2) Primary and
recurrent tumors have well differentiated HCC cells; (3) Recurrent tumors include
areas of dysplastic nodules in the peripheral zone; and (4) Multiple HCCs have a
nodule of  well-differentiated HCC cells  and contain some nodules  consisting of
moderately or poorly differentiated HCC cells. MO is a type of intrahepatic HCC
recurrence, in which the new HCC lesions are formed due to chronic liver disease,
and the extant noncancerous liver tissue with oncogenic potential may explain the
risk of MO after hepatectomy[90]. It is unclear how liver dysfunction involving OAT
failure leads to the development of HCC. Studies have focused on elucidating the
relationship between liver dysfunction and MO after radical hepatectomy. According
to  the  Gene  Ontology  database  (GO:  0015711)  of  the  OAT  genes  for  hepatocyte
function, the best predictor of HCC MO is OAT2[91]. Kudo et al[91] first elucidated the
relationship between HCC and OAT2 expression in noncancerous liver tissues. They
examined 49 noncancerous liver tissues from Milanese patients with standard HCC
and found that high OAT2 expression prevented HCC after hepatectomy [odds ratio
(OR) = 0.2; P = 0.004]. In contrast, a new HCC may occur 1 year after hepatectomy in
patients with low OAT2 expression[91].

OATPs in liver disease
There are many types of cirrhosis, including primary biliary cirrhosis (PBC), alcoholic
cirrhosis, and hepatitis C virus (HCV)-related cirrhosis. The expression of OATP in
different types of cirrhosis differs. In alcoholic cirrhosis, although the expression of
OATP1B1 and OATP1B3 is decreased, the expression of OATP2B1 is increased[92]. In
PBC,  uptake  transporter  expression  is  similar  to  that  observed  in  the  alcoholic
cirrhotic liver[93,94]. Ogasawara et al[95] found a significant decrease in mRNA expression
of OATP1B1, OATP1B3, and OATP2B1 in HCV-associated cirrhosis. However, Wang
et al[92] found that the expression of OATP1B1 and 2B1 increased in HCV-associated
cirrhotic liver. The reasons for these differences are not clear, but they may reflect
ethnic differences (liver tissues from Japanese patients compared with those from
Caucasian patients), endpoints (expression of mRNA and protein), disease severity, or
sample size. This difference could also be due to different mechanisms of alcohol
transporter regulation in the livers affected by the HCV vs that from livers affected by
PBC. In addition, studies have shown that OATP1B1-mediated transport determines
the rate of repaglinide uptake in the liver[96]. Hatorp et al[97] found that repaglinide
plasma absorption increased four-fold in patients with cirrhosis, as determined by the
area under the curve. This increase may be due to a decrease in the expression of
OATP1B1[98]. The PKs of drugs for hepatobiliary transporter clearance vary between
patients with different types of cirrhosis and liver fibrosis, and patients should be
differentiated in clinical PK studies.

OATPs, especially OATP1B3, play an increasingly important role in detecting liver
diseases. Gd-EOB-DTPA-enhanced MRI (EOB-MRI) is increasingly used to detect and
assess liver lesions[99]. It was found that OATP1B3 expression was associated with an
increase in EOB-MRI, indicating that it transports Gd-EOB-DTPA into HCC cells. It is
generally believed that 85% of HCCs emit a low signal in the hepatobiliary phase of
Gd-EOB-MRI compared to the noncancerous liver background, and the expression of
OATP1B3  is  reduced  in  tumors[100,101].  Gd-EOB-DTPA  can  be  used  to  assess  the
vascular distribution of liver lesions and the activity of the OAT OATP1B3 to further
understand the prognosis of the disease.  Yamashita et  al[102]  found that EOB-MRI
combined with serum alpha-fetoprotein (AFP) status reflects the stem/maturation
status  of  HCC determined with different  biological  and prognostic  information.
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Moreover, upregulation of OATP1B3 increased the uptake of Gd-EOB DTPA in the
hepatobiliary phase and downregulated the low levels of serum AFP, an outcome that
was associated with the maintenance of hepatocyte function and good prognosis. In
contrast, HCC cells showed reduced Gd-EOB-DTPA uptake that was associated with
high serum AFP levels, poor prognosis, and activation of the oncogene FOXM1[102]. In
addition, the identification of specific subclasses to which the tumor belonged prior to
treatment informs the molecular targeted drug therapy. Activation of the Wnt/β-
catenin signaling pathway has been identified as an important molecular marker in
HCC and has been used to define specific HCC subclasses[103]. Studies have found that
HCC with OATP1B3 upregulation is a good candidate for inclusion into a specific
subclass of Wnt/β-catenin-activated HCC. Defining an OATP1B3-upregulated HCC
subclass would be useful in the current era in which molecular targeted therapies are
rapidly developed, particularly with the advantage of being able to classify tumors
noninvasively  using EOB-MRI[103].  In  addition to  being the  most  useful  imaging
modality for diagnosing HCC, Gd-EOB DTPA may be a very useful tool for detecting
and describing pathological sinus syndrome, also known as hepatic venous occlusive
disease, at a relatively early stage[104]. It has been reported that Gd-EOB-DTPA can also
be used to distinguish some liver diseases that are otherwise difficult to distinguish,
such as focal nodular hyperplasia of alcoholic cirrhosis and HCC[105]. Recently, studies
have classified OATP1B3 into two types: (Lt)-OATP1B3 (hepatic type specifically
expressed in the human liver) and (Ct) OATP1B3 (cancer type identified in colon
cancer, lung cancer, and pancreatic cancer tissues and cell lines). Lt-OATP1B3 and Ct-
OATP1B3  have  different  transport  functions  and  membrane  localization
characteristics. Lt-OATP1B3 is mainly expressed on the plasma membrane, while Ct-
OATP1B3 is mainly retained in the cytosol[106]. Lt-OATP1B3 has significantly higher
transport activity than Ct-OATP1B3 does. The expression and role of Lt-OATP1B3 in
drug treatments are beneficial for drug deposition in the liver[107]. The characterization
of extrahepatic expression of Lt-OATP1B3 in cancer expands our understanding of the
potential role of OATP1B3 in the influx of OATP1B3 substrates serving as anticancer
drugs in cancer cells. Lt-OATP1B3 mediates the uptake of many clinically important
anticancer drugs[108-111]. Therefore, understanding the specific Lt-OATP1B3 expression
in cancer has potential clinical relevance for cancer treatment. Future studies will need
to compare the relationship between the appropriate levels of Lt-OATP1B3 and Ct-
OATP1B3 expression in liver tissue.

In addition, studies have shown that decreased expression of OATP is significantly
associated  with  HCC-related  death  after  relapse.  Vasuri  et  al[112]  correlated  the
expression of OATP1B1 and OATP1B3 with HCC morphological features and the
expression  of  bile  keratin  K7  and  K19  [associated  with  a  poor  prognosis  after
orthotopic liver transplantation (OLT)] by observing the liver of 69 patients with HCC
liver transplantation (OLT). OATP1B1 and OATP1B3 were hepatocyte-specific, while
bile  cells  and  biliary  malignancies  were  always  negative[113].  The  phenotypic
expression  of  K19  implied  a  major  risk  of  repaid  recurrence  and  poor  overall
prognosis[114]. They found a significant negative correlation between OATP and K7
and  K19  expression  (P  <  0.001).  In  HCC  patients  with  K7  and/or  K19  positive
expression,  the  OATP detection  was  always  negative.  Thus,  there  is  an  inverse
correlation between OATP expression on the basolateral hepatocyte membrane and a
biliary “phenotype” determined for the same hepatocytes. Although the meaning of
this correlation is unclear, since OATP and keratin are molecules that have different
functions and intracellular localizations, these findings seem to support the existence
of morphological profiles for hepatic malignancies[112].

OATs and OATPs play important roles in a series of diseases, such as hepatitis,
liver fibrosis, cirrhosis, and liver cancer. When liver diseases occur, changes in the
expression of OATs and OATPs reduce the uptake of many drugs in the liver, such as
entecavir and repaglinide, which ultimately has a profound impact on the PKs of
drugs, including an increase in side effects. OATs and OATPs are closely related to
the occurrence, recurrence, and prognosis of HCC. They can be used as important
indicators to predict, detect, and distinguish different liver diseases.

REGULATION OF OAT AND OATP EXPRESSION IN THE
LIVER

Regulation of OAT expression in the liver
The expression of OATs is regulated by a variety of transcription factors. Hepatocyte
nuclear factors (HNFs) constitute a class of transcription factors that regulate gene-
specific expression in the liver.  These transcription factors and their interactions
constitute a complex regulatory network that precisely controls liver development
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and hepatocyte function. HNF-1a plays an important role in regulating a variety of
hepatocyte-specific genes, although it is also expressed in other tissues[115]. HNF-1α
and/or  HNF-1β  were  previously  reported  to  increase  the  promoter  activity  of
OAT3[116] and affect the expression of URAT1 in the kidney[117]. Klein et al[115] showed
that  HNF-1a  is  able  to  increase  human  hepatocyte  OAT5  and  OAT7  promoter
activities,  and HNF-1a binds to two functional binding elements in the proximal
OAT5  promoter and binds to one element in the OAT7  promoter;  this binding is
critical for the HNF-1α-mediated increase in promoter activities in liver-derived cells.
They found a decrease in OAT5  and OAT7  mRNA expression when endogenous
HNF-1a  was  knocked  down[115].  In  contrast,  human  OAT1  and  OAT2  mRNA
expression was not affected by the regulation of HNF-1a expression levels in hepatic
cell lines. Human OAT1[118] and OAT2[119] promoter activities are increased by another
liver-enriched transcription factor: HNF-4a, which is in the nuclear receptor family
and is known to have an indispensable role in hepatocyte differentiation and the
maintenance of liver gene expression. Target genes encode proteins involved in a
variety  of  physiological  processes,  particularly  cholesterol  and  glucose
metabolism[120-122]. HNF-4a is also a gene encoding a transcriptional regulator of HNF-
1a[123].  Through a computer analysis  of  the 5’  flanking regions of  the OAT2  gene,
Popowski et al[119] identified a common binding site for the liver-enriched HNF-4a
between 329 and 317 nt upstream of the transcription initiation site. It was found that
HNF-4α  is  involved  in  the  transactivation  of  the  OAT2  promoter,  whereas
chenodeoxycholic acid (CDCA) reduces the transactivation potential of HNF-4a and
thereby inhibits the expression of endogenous OAT2 mRNA in Huh7 cells[119]. It is
well known that HNF plays an important role in bile acid metabolism and transport
through the transcriptional control of specific genes[124]. A primary bile acid, CDCA,
and secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), have
been identified as endogenous ligands and effective activators of farnesoid X receptor
(FXR)[125].  FXR is  considered  to  play  a  key  role  in  bile  acid  feedback  regulation
systems[126]. Bile acids enhance the transactivation ability of FXR, which results in the
induction of FXR target genes, such as the transcriptional repressor SHP[127]. SHP is an
orphaned member of the nuclear receptor family that inhibits other DNA-binding
transcription factors,  such as HNF-4a[128],  through protein-protein interactions[129].
Overexpression of the FXR-induced transcriptional repressor SHP can counteract
HNF-4α-mediated  endogenous  activity.  In  addition  to  acting  through  a  SHP-
dependent mechanism, FXR may directly bind to a negative response element located
in  the  HNF-4a  promoter[130,131],  thereby  counteracting  HNF-4α-mediated  OAT2
promoter activation (Figure 3).

Regulation of OATP expression in the liver
In addition to certain members of the OAT family, promoter regions of other OATP
genes, such as OATP1B1  and OATP1B3,  have also been shown to be regulated by
HNF[132].  Studies  have  shown  that  the  OATP1B1  proximal  promoter  contains  a
functional HNF1a response element that is responsible for the expression of liver
OATP1B1[132,133]. In human hepatoma cell lines, HepG2 and Huh7, bile acids, including
CDCA, DCA, LCA, cholic acid, and ursodeoxycholic acid (UDCA), were shown to
inhibit HNF1a-mediated OATP1B1 gene activation through a cascade reaction. In this
cascade, the HNF-1a promoter is regulated by HNF-4a, and SHP negatively targets
HNF-4a (HNF-4a is  a common target for SHP),  thereby downregulating HNF-1a
activity  and ultimately  inhibiting  OATP1B3[132].  Studies  have  found that  UDCA
increased the exposure of rosuvastatin and serum bilirubin in 12 healthy volunteers,
probably because UDCA inhibited the transcription factor HNF1a and decreased the
expression of the OATP1B1 transporter, which affected the liver uptake of sulvastatin
and serum bilirubin[133].  Previous studies  have reported that  transcription of  the
OATP1B3 gene is regulated by three transcription factors: FXR, HNF1α, and HNF3β.
Liver-specific  expression  of  OATP1B3  is  highly  dependent  on  the  liver-rich
transcription factors HNF1α and HNF3β, and its expression is upregulated by CDCA
and DCA via FXR[126]. In addition, some studies have reported that HNF4α interacts
with β-catenin to  promote the expression of  hepatocyte  target  genes[134],  such as
OATP1B3[135]. This interaction is attenuated when the activity of HNF4α is inhibited
(Figure 3).

OATS AND OATPS IN THE TREATMENT OF LIVER DISEASE
The clinical relevance of drug transporters depends on their distribution in human
tissues, their vector orientation, and the therapeutic indices and individual differences
in the PK and pharmacodynamic properties of the substrate drugs. It has been shown
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Figure 3

Figure 3  Hepatocyte nuclear factor regulates organic anion transporters and organic anion transporter polypeptides through a mechanism composed of a
series of cascade reactions. In this cascade, various bile acids can enhance the transactivation ability of farnesoid X receptor (FXR). (1) FXR can activate the target
gene SHP. SHP negatively regulates HNF-4a, a common target of SHP; (2) In addition to its activation through the SHP-dependent mechanism, FXR may directly bind
to negative reaction elements (X) located in the promoter of HNF-4a. The binding of HNF-4a and OAT2 is inhibited by the processes of 1 and 2 (the common binding
sites of HNF-4a were identified between 329 and 317 upstream of the transcriptional initiation site of OAT2); (3) HNF-1a is regulated by HNF-4a such that the
downregulation of HNF-4a can downregulate OATP1B1, OAT3, OAT5, and OAT7; and (4) the decreased activity of HNF4-alpha inhibits the interaction between
HNF4α and β-catenin, thus downregulating the expression of OATP1B3. HNF: Hepatocyte nuclear factor; FXR: Farnesoid X receptor; SHP: A transcriptional repressor
belonging to the nuclear receptor family; X: Unknown negative reaction elements in the HNF-4a promoter.

that gene polymorphisms in OATs affect the PKs of substrate drugs. For example,
some single nucleotide polymorphisms of  the gene encoding OATP1B1 on sinus
membranes  are  associated  with  changes  in  the  uptake  and excretion  of  organic
anionic compounds. This discovery indicates that these transporters have important
clinical  significance[136-140].  OATs  play  a  very  important  role  in  drug  absorption,
distribution, metabolism, and excretion, and changes in these transporters in the liver
and/or kidney may affect the rate of drug metabolism, excretion, and drug residence
time and half-life[141]. Studies have shown that pravastatin is a highly effective lipid-
lowering  drug  that  targets  the  liver,  where  it  inhibits  hydroxy  methylglutaryl
coenzyme A and cholesterol  synthesis.  Pravastatin is  weakly soluble and can be
transported into cells by OATP1B1, where it exerts its pharmacological effects before
being discharged into the bile by multidrug resistance-associated protein (MRP2) and
bile salt export pump on the bile duct-side membrane and then to the duodenum.
Then, it is reabsorbed in the intestine where it is integrated into the intestinal-hepatic
circulation,  improving  its  bioavailability  and  pharmacological  effects[142,143].  In
addition, OAT3 is critical to the elimination of liver-derived phase II metabolites,
particularly those that undergo glucuronidation. Bush et al[6] analyzed the pathways of
OAT3-KO using the robust metabolomics data from mice, which indicated that OAT3
plays a central role in the movement of metabolites through the “gut-liver-kidney”
axis,  participating  in  the  absorption,  metabolism,  and  excretion  of  endogenous
metabolites, particularly the gut microbial metabolites, bile acids, and nutrients that
have undergone modification by phase 2 liver drug metabolizing enzymes involved
in sulfation and glucuronidation reactions. A large number of these metabolites may
be involved in “metabolite signaling” and signaling via G protein-coupled receptors
throughout the body[6] (Figure 2).

Liver  cancer  is  one  of  the  most  common  causes  of  cancer  death  worldwide.
Although surgery is a common treatment, the removal of these tumors is not always
feasible and it  is  necessary to use alternative therapies for this disease.  Systemic
chemotherapy is the most common option for the treatment of advanced disease[50].
Unfortunately, pharmacological approaches are very ineffective because of resistance
to antitumor drugs and/or development of chemical resistance during treatment,
despite the number of drugs available to treat these tumors. The reduced therapeutic
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efficacy of anticancer drugs may be caused by changes in the expression and/or
activity of the transporters involved in drug uptake, which have been identified as
mechanisms of chemoresistance 1a (MOC-1a)[144].  OATP1B1 is considered an OAT
belonging to the MOC-1a group that plays an important role in the uptake of anionic
antitumor  drugs  in  the  liver,  such  as  irinotecan[145],  paclitaxel[146],  and cytostatic
cisplatin-conjugated bile acid derivatives[147]. Due to the abundant expression of OATs
in liver cancer and their high activity in transporting many anticancer drugs, they can
be considered important therapeutic targets in the design of anticancer drugs. In the
liver tissues of patients with nonalcoholic fatty liver, HCC, inflammatory cholestasis,
PBC, or chronic hepatitis, the expression of OATP1B is usually reduced[148]. Inhibition
of OATP1B function may also result in elevated levels of bilirubin and affect liver
function. However, the combined use of substrates of OATP1B used as drugs may
result in unexpected toxicity and fatal consequences[149,150]. These findings suggest that
OATPs can be important targets for anticancer therapy in three ways: (1) OATP-
mediated  hormone  expression,  formation  of  hormone  conjugates,  or  uptake  of
growth-promoting  chemicals  can  be  prevented  with  OATP  inhibitors;  (2)  New
anticancer drugs can be designed as substrates of OATP to increase their uptake by
OATP-expressing cancer cells; and (3) Allosteric stimulators can enhance the uptake
of anticancer drugs. Since OATs may determine the extent of distribution of some
drugs to target sites and nontarget sites, the transport capacity of liver transporters
can be used to enhance the distribution of drugs to target sites and facilitate the
intracellular  accumulation  of  various  compounds  in  the  liver.  OATs  might  be
important with respect to the discovery of novel cancer agents.

CONCLUSION
As our understanding of organic anions increases, the mechanisms of OAT and OATP
regulation  in  the  liver  will  be  further  elucidated.  How  to  effectively  target
transporters to improve the distribution of drugs in the liver and reduce the adverse
reactions of the delivered drugs are urgent problems that need to be resolved. It has
been confirmed that many drugs are substrates of OATs and OATPs, and hepatic-
specific expression of these transporters can mediate the uptake of specific substrates.
Then,  these  drugs  are  discharged into  bile  and finally  enter  the  intestinal  tract,
facilitating the targeted therapy with clinical drugs, improving their efficacy, and
reducing their adverse reactions. Although the application of transporters in clinical
practice is not imminent, these studies may help establish the target therapy of cancer
or increase drug bioavailability. It is believed that with further research on these
transporters and liver cancer and other liver diseases, targeted therapy with OATs
and OATPs is expected to be an ideal and effective new way to treat and improve the
survival rate of patients with liver disease.
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