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ARSA variants in a-synucleinopathies
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3 Fundació Docència i Recerca MútuaTerrassa and Movement Disorders Unit, Department of Neurology, University Hospital
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Sir,

We read with great interest the recently published article

by Lee and colleagues reporting variants in ARSA and their

association with Parkinson’s disease (Lee et al., 2019).

Deficiency of arylsulfatase A is a known cause of metachrom-

atic leukodystrophy (MLD), an autosomal recessive lyso-

somal storage disease. The study describes a patient with

MLD and a family history of Parkinson’s disease. The patient

was a compound heterozygous carrier of two rare missense

ARSA mutations, p.L300S (c.899T4C, rs199476389) and

p.C174Y (c.521G4A, rs199476381). Screening of ARSA

in two family members with Parkinson’s disease and two

unaffected members found that the p.L300S mutation segre-

gated with Parkinson’s disease, but not the p.C174Y muta-

tion. Next, a candidate gene analysis of ARSA was

conducted in 92 familial and 92 sporadic Parkinson’s disease

patients, and the results were compared to the allele frequen-

cies within the Integrative Japanese Genome Variation

Database. This screening identified a common missense

variant, p.N352S (c.1055A4G, rs2071421), that was more

frequent in healthy Japanese individuals than in familial and

sporadic Parkinson’s disease cases (P = 0.026 and P =

0.0349, respectively). The authors concluded that the

p.N352S variant may be protective against the development

of Parkinson’s disease. They also found that ARSA deficiency

increases �-synuclein aggregation and secretion, suggesting a

potential link between ARSA mutations and �-synuclein

pathology.

�-Synucleinopathies are a heterogeneous group of neuro-

degenerative disorders characterized by fibrillar aggregates

of insoluble �-synuclein protein in the cytoplasm of specific

neurons and glial cells. These disorders include Parkinson’s

disease, Lewy body dementia (LBD), multiple system atro-

phy (MSA), and REM-sleep behaviour disorder (RBD), a

prodromal �-synucleinopathy (Goedert et al., 2017;

Postuma et al., 2019). Advances in genetics have implicated

lysosomal dysfunction in the pathogenesis of several

�-synucleinopathies. For example, variants within the

doi:10.1093/brain/awz340 BRAIN 2019: 142; 1–4 | e70

Advance Access publication October 31, 2019

� The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.

For permissions, please email: journals.permissions@oup.com

http://orcid.org/0000-0001-6554-1666
http://orcid.org/0000-0001-9358-8111
http://orcid.org/0000-0002-2866-7777
http://orcid.org/0000-0003-0332-234X


lysosomal genes GBA (Sidransky et al., 2009) and SMPD1

(Alcalay et al., 2019) have been associated with an

increased risk of Parkinson’s disease. Accumulation of �-

synuclein has been observed in some lysosomal storage dis-

orders suggesting a pathobiological link between these two

disease groups (Shachar et al., 2011). Similarly, GBA vari-

ants have been associated with LBD (Nalls et al., 2013;

Geiger et al., 2016), MSA (Mitsui et al., 2015; Sklerov et

al., 2017) and RBD (Gan-Or et al., 2015). These intriguing

observations prompted us to investigate ARSA variants in

cohorts of �-synucleinopathies.

First, we sought to examine the association between the

ARSA p.N325S variant and �-synucleinopathies by analys-

ing genome-wide association study (GWAS) data from co-

horts of Parkinson’s disease cases and proxy cases (n =

56 306 cases, n = 1 417 791 controls), LBD (n = 556

cases, n = 1418 controls), MSA (n = 896 cases, n =

3881 controls) and RBD (n = 1046 cases, recruited as

isolated, polysomnography-confirmed RBD before conver-

sion to �-synucleinopathy, n = 11 961 controls). All par-

ticipants were of European ancestry and underwent similar

genotyping, and standardized quality control procedures

are described in detail elsewhere (Sailer et al., 2016; Nalls

et al., 2019). The common p.N352S variant was reliably

imputed in all cohorts (R2 4 0.9; allele frequency distribu-

tions are shown in Table 1). In the Parkinson’s disease

cohort, the allele frequencies of the p.N325S variant were

very similar in patients (0.1334) and controls (0.1354). In

other �-synucleinopathy cohorts, the direction of effect was

not consistent (Table 1). After correction for multiple test-

ing, our analyses found no significant association of the

p.N352S ARSA variant with �-synucleinopathies.

Next, we aimed to examine whether rare, potentially

pathogenic variants in ARSA are associated with �-synuclei-

nopathies. For this purpose, we performed burden analysis

of these ARSA variants (annotated as stop-gain, frameshift,

or marked as ‘pathogenic’ by ClinVar) in European-ancestry

exome datasets from 1311 Parkinson’s disease patients and

571 matched control subjects, demonstrating lack of associ-

ation, with higher frequency of potentially pathogenic vari-

ants in controls (frequency in patients/controls = 0.0015/

0.004, P = 0.226). We further performed burden analysis

in 264 definite MSA patients and 462 neuropathologically

healthy control subjects (Pihlstrom et al., 2018) (including

non-synonymous variants only, no frameshift, stop-gain or

ClinVar ‘pathogenic’ variants were identified in this cohort),

and here too, no association was found (frequency in pa-

tients/controls = 0.0076/0.0043, P = 0.517). The p.L300S

variant was not observed in any of these datasets.

We are concerned about several conclusions regarding

the p.N352S variant and the role of pathogenic ARSA vari-

ants that have been drawn in the Lee et al. (2019) article.

First, as p.N352S is a common polymorphism (Table 1), a

GWAS would be able to determine with certainty if this

locus is significant on a genome-wide level, and this is not

seen in well-powered cohorts, including a Japanese

Parkinson’s disease GWAS of 2011 patients and 18 381

controls, which did not identify an association in this

locus (Satake et al., 2009). Second, the hypothesis arguing

that p.N352S is protective in autosomal dominant

Parkinson’s disease would ideally be investigated by assess-

ing penetrance or age at onset in carriers of known auto-

somal dominant variants. Third, regarding p.N352S being

a coding and reportedly functional variant, population-spe-

cific effects are unlikely. The variant shows particularly

variable frequencies across populations in gnomAD, with

frequencies between 0.06 and 0.33 in different populations

(0.1243 and 0.1733 in European and East Asian popula-

tions, respectively, https://gnomad.broadinstitute.org/).

Given the high frequency of the variant, it is unlikely that

it has a large effect size. The authors nominated their pro-

tective variant based on a comparison between a small

cohort of sporadic Parkinson’s disease patients (n = 92)

and a Japanese database, seemingly without adjustment

for covariates, such as age, sex, or ancestry. In addition,

the same healthy individuals were used for comparing both

the familial and sporadic Parkinson’s disease cohorts.

Consequently, bias within this small control cohort may

have affected the results. Lastly, our burden analyses, as

well as a previous burden analysis (Robak et al., 2017),

did not identify an association between rare, potentially

pathogenic ARSA variants and �-synucleinopathies.

In conclusion, our analyses do not support a significant

association between common and rare ARSA variants and

Table 1 Analysis of the p.N352S ARSA variant in a-synucleinopathies

Cohort Cases, n Controls, n Frequency (affected) Frequency (unaffected) P-valuea OR (CI)

LBD GWASb 556 1418 0.1061 0.1326 0.024 0.77 (0.623–0.967)

MSA GWASb 896 3881 0.1384 0.1336 0.592 1.042 (0.897–1.209)

RBD GWASb 1046 11 961 0.1456 0.1292 0.030 1.16 (1.015–1.335)

PD GWASb 56 306c 1 417 791 0.1334d 0.1354d 0.022 0.969 (0.943–0.996)

CI = confidence interval; GWAS = genome-wide association study; LBD = Lewy body dementia; MSA = multiple system atrophy; OR = odds ratio; PD = Parkinson’s disease; RBD

= REM sleep behaviour disorder.
aUncorrected P-value, all results were not significant after correction for multiple comparisons.
bp.N352S was found in imputed genotyping files with an R2 value of 0.975 for dementia with Lewy bodies GWAS, 0.953 for multiple system atrophy GWAS, 0.997 for RBD GWAS,

and 40.96 for Parkinson’s disease GWAS.
cIncluding proxy cases.
dFrequency estimates were based on a subset of the data including 21 478 cases and 24 388 controls.
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�-synucleinopathies despite adequate power. Our cohorts

were of European ancestry and it is possible that with a

larger Asian cohort, the reported association of the ARSA

p.N352S variant with Parkinson’s disease would be lost

and mimic our findings. However, our results do not com-

pletely rule out a potential role for ARSA in Parkinson’s

disease, and additional large-scale familial and case-control

studies are necessary to determine whether ARSA is asso-

ciated with �-synucleinopathies.

Data availability

The data that support the findings of this study are avail-

able from the corresponding author, upon reasonable

request.
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