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Abstract

Summary: Computational prediction of protein structure from sequence is broadly viewed as a

foundational problem of biochemistry and one of the most difficult challenges in bioinformatics.

Once every two years the Critical Assessment of protein Structure Prediction (CASP) experiments

are held to assess the state of the art in the field in a blind fashion, by presenting predictor groups

with protein sequences whose structures have been solved but have not yet been made publicly

available. The first CASP was organized in 1994, and the latest, CASP13, took place last December,

when for the first time the industrial laboratory DeepMind entered the competition. DeepMind’s

entry, AlphaFold, placed first in the Free Modeling (FM) category, which assesses methods on their

ability to predict novel protein folds (the Zhang group placed first in the Template-Based Modeling

(TBM) category, which assess methods on predicting proteins whose folds are related to ones al-

ready in the Protein Data Bank.) DeepMind’s success generated significant public interest. Their ap-

proach builds on two ideas developed in the academic community during the preceding decade: (i)

the use of co-evolutionary analysis to map residue co-variation in protein sequence to physical

contact in protein structure, and (ii) the application of deep neural networks to robustly identify pat-

terns in protein sequence and co-evolutionary couplings and convert them into contact maps. In

this Letter, we contextualize the significance of DeepMind’s entry within the broader history of

CASP, relate AlphaFold’s methodological advances to prior work, and speculate on the future of

this important problem.

1 Significance

Progress in Free Modeling (FM) prediction in Critical Assessment of

protein Structure Prediction (CASP) has historically ebbed and

flowed, with a 10-year period of relative stagnation finally broken

by the advances seen at CASP11 and 12, which were driven by the

advent of co-evolution methods (Moult et al., 2016, 2018;

Ovchinnikov et al., 2016; Schaarschmidt et al., 2018; Zhang et al.,

2018) and the application of deep convolutional neural networks

(Wang et al., 2017). The progress at CASP13 corresponds to roughly

twice the recent rate of advance [measured in mean DGDT_TS from

CASP10 to CASP12—GDT_TS is a measure of prediction accuracy

ranging from 0 to 100, with 100 being perfect (Zemla et al., 1999)].

This can be observed not only in the CASP-over-CASP

improvement, but also in the size of the gap between AlphaFold and

the second best performer at CAPS13, which is unusually large by

CASP standards (Fig. 1). Even when excluding AlphaFold, CASP13

shows further progress due to the widespread adoption of deep

learning and the continued exploitation of co-evolutionary informa-

tion in protein structure prediction (de Oliveira and Deane, 2017).

Taken together these observations indicate substantial progress both

by the whole field and by AlphaFold in particular.

Nonetheless, the problem remains far from solved, particularly

for practical applications. GDT_TS measures gross topology, which

is of inherent biological interest, but does not necessarily result in

structures useful in drug discovery or molecular biology applica-

tions. An alternate metric, GDT_HA, provides a more stringent
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assessment of structural accuracy (Read and Chavali, 2007).

Figure 2 plots the GDT_HA scores of the top two performers for the

last four CASPs. While substantial progress can be discerned, the

distance to perfect predictions remains sizeable. In addition, both

metrics measure global goodness of fit, which can mask significant

local deviations. Local accuracy corresponding to, for example, the

coordination of atoms in an active site or the localized change of

conformation due to a mutation, can be the most important aspect

of a predicted structure when answering broader biological

questions.

It remains the case however that AlphaFold represents an anom-

alous leap in protein structure prediction and portends favorably for

the future. In particular, if the AlphaFold-adjusted trend in Figure 1

were to continue, then it is conceivable that in �5 years’ time we

will begin to expect predicted structures with a mean GDT_TS of

�85%, which would arguably correspond to a solution of the gross

topology problem. Whether the trend will continue remains to be

seen. The exponential increase in the number of sequenced proteins

virtually ensures that improvements will be had even without new

methodological developments. However, for the more general prob-

lem of predicting arbitrary protein structures from an individual

amino acid sequence, including designed ones, new conceptual

breakthroughs will almost certainly be required to obtain further

progress.

2 Prior work

AlphaFold is a co-evolution-dependent method building on the

groundwork laid by several research groups over the preceding dec-

ade. Co-evolution methods work by first constructing a multiple se-

quence alignment (MSA) of proteins homologous to the protein of

interest. Such MSAs must be large, often comprising 105–106

sequences, and evolutionarily diverse (Tetchner et al., 2014). The

so-called evolutionary couplings are then extracted from the MSA

by detecting residues that co-evolve, i.e. that have mutated over evo-

lutionary timeframes in response to other mutations, thereby sug-

gesting physical proximity in space. The foundational methodology

behind this approach was developed two decades ago (Lapedes

et al., 1999), but was originally only validated in simulation as large

protein sequence families were not yet available. The first set of such

approaches to be applied effectively to real proteins came after the

exponential increase in availability of protein sequences (Jones

et al., 2012; Kamisetty et al., 2013; Marks et al., 2011; Weigt et al.,

2009). These approaches predicted binary contact matrices from

MSAs, i.e. whether two residues are ‘in contact’ or not (typically

defined as having Cb atoms within <8 Å), and fed that information

to geometric constraint satisfaction methods such as CNS (Brünger

et al., 1998) to fold the protein and obtain its 3D coordinates. This

first generation of methods was a significant breakthrough, and ush-

ered in the new era of protein structure prediction.

An important if expected development was the coupling of bin-

ary contacts with more advanced folding pipelines, such as Rosetta

(Leaver-Fay et al., 2011) and I-Tasser (Yang et al., 2015), which

resulted in better accuracy and constituted the state of the art in the

FM category until the beginning of CASP12. The next major ad-

vance came from applying convolutional networks (LeCun et al.,

2015) and deep residual networks (He et al., 2015; Srivastava et al.,

2015) to integrate information globally across the entire matrix of

raw evolutionary couplings to obtain more accurate contacts (Liu

et al., 2018; Wang et al., 2017). This led to some of the advances

seen at CASP12, although ultimately the best performing group at

CASP12 did not make extensive use of deep learning [convolutional

neural networks made a significant impact on contact prediction at

CASP12, but the leading method was not yet fully implemented to

have an impact on structure prediction (Wang et al., 2017)].

During the lead up to CASP13, one group published a modifica-

tion to their method, RaptorX (Xu, 2018), that proved highly conse-

quential. As before, RaptorX takes MSAs as inputs, but instead of

predicting binary contacts, it predicts discrete distances. Specifically,

RaptorX predicts probabilities over discretized spatial ranges (e.g.

10% probability for 4–4.5 Å), then uses the mean and variance of

the predicted distribution to calculate lower and upper bounds for

atom–atom distances. These bounds are then fed to CNS to fold the

protein. RaptorX showed promise on a subset of CASP13 targets,

with its seemingly simple change having a surprisingly large impact

on prediction quality. Its innovation also forms one of the key ingre-

dients of AlphaFold’s approach.

3 AlphaFold

Similar to RaptorX, AlphaFold predicts a distribution over discretized

spatial ranges as its output (the details of the convolutional network

architecture are different). Unlike RaptorX, which only exploits the

mean and variance of the predicted distribution, AlphaFold uses the

entire distribution as a (protein-specific) statistical potential function

(Sippl, 1990; Thomas and Dill, 1996) that is directly minimized to

fold the protein. The key idea of AlphaFold’s approach is that a

Fig. 1. Historical CASP performance in prediction of gross protein topology.

Curves show the best and second best predictors at each CASP, while the

dashed line shows the expected improvement at CASP13 given the average

rate of improvement from CASP10 to 12. Ranking is based on CASP asses-

sor’s formula, and does not always coincide with highest mean GDT_TS (e.g.

CASP10). Error bars correspond to 95% confidence intervals

Fig. 2. Historical CASP performance in prediction of fine-grained protein top-

ology. Curves show the best and second best predictors at each CASP, while

the dashed line shows the expected improvement at CASP13 given the aver-

age rate of improvement from CASP10 to 12. Ranking is based on CASP

assessor’s formula, and does not always coincide with highest mean

GDT_HA (e.g. CASP10). Error bars correspond to 95% confidence intervals
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distribution over pairwise distances between residues corresponds to

a potential that can be minimized after being turned into a continuous

function. DeepMind’s team initially experimented with more complex

approaches (personal communication), including fragment assembly

(Rohl et al., 2004) using a generative variational autoencoder

(Kingma and Welling, 2013). Halfway through CASP13 however, the

team discovered that simple and direct minimization of the predicted

energy function, using gradient descent (L-BFGS) (Goodfellow et al.,

2016; Nocedal, 1980), is sufficient to yield accurate structures.

There are important technical details. The potential is not used as

is, but is normalized using a learned ‘reference state’. Human-derived

reference states are a key component of knowledge-based potentials

such as DFIRE (Zhang et al., 2005), but the use of a learned reference

state is an innovation. This potential is coupled with traditional

physics-based energy terms from Rosetta and the combined function is

what is actually minimized. The idea of predicting a protein-specific

energy potential is also not new (Zhao and Xu, 2012; Zhu et al.,

2018), but AlphaFold’s implementation made it highly performant in

the structure prediction context. This is important as protein-specific

potentials are not widely used. Popular knowledge- and physics-based

potentials are universal, in that they aspire to be applicable to all pro-

teins, and in principle should yield a protein’s lowest energy conform-

ation with sufficient sampling. AlphaFold’s protein-specific potentials

on the other hand are entirely a consequence of a given protein’s

MSA. AlphaFold effectively constructs a potential surface that is very

smooth for a given protein family, and whose minimum closely

matches that of the family’s average native fold.

Beyond the above conceptual innovations, AlphaFold uses more

sophisticated neural networks than what has been applied in protein

structure prediction. First, they are hundreds of layers deep, resulting

in a much higher number of parameters than existing approaches (Liu

et al., 2018; Wang et al., 2017). Second, through the use of so-called

dilated convolutions, which use non-contiguous receptive fields that

span a larger spatial extent than traditional convolutions, AlphaFold’s

neural networks can model long-range interactions covering the entir-

ety of the protein sequence. Third, AlphaFold uses sophisticated com-

putational tricks to reduce the memory and compute requirements for

processing long protein sequences, enabling the resulting networks to

be trained for longer. While these ideas are not new in the deep learn-

ing field, they had not yet been applied to protein structure prediction.

Combined with DeepMind’s expertise in searching a large hyperpara-

meter space of neural network configurations, they likely contributed

substantially to AlphaFold’s strong performance.

4 Future prospects

Much of the recent progress in protein structure prediction, includ-

ing AlphaFold, has come from the incorporation of co-evolutionary

data, which are by construction defined on the protein family level.

For predicting the gross topology of a protein family, co-evolution-

dependent approaches will likely show continued progress for the

foreseeable future. However, such approaches are limited when it

comes to predicting structures for individual protein sequences, such

as a mutated or de novo designed protein, as they are dependent on

large MSAs to identify co-variation in residues. Lacking a large con-

stellation of homologous sequences, co-evolution-dependent meth-

ods perform poorly, and this was observed at CASP13 for some of

the targets on which AlphaFold was tested (e.g. T0998). Physics-

based approaches, such as Rosetta and I-Tasser, are currently the

primary paradigm for tackling this broader class of problems.

The advent of deep learning suggests a broader rethinking of how

the protein structure problem could be tackled, however, with a

broad range of possible new approaches, including end-to-end dif-

ferentiable models (AlQuraishi, 2019; Ingraham et al., 2018), semi-

supervised approaches (Alley et al., 2019; Bepler and Berger, 2018;

Yang et al., 2018) and generative approaches (Anand et al., 2018).

While not yet broadly competitive with the best co-evolution-

dependent methods, such approaches can eschew co-evolutionary

data to directly learn a mapping function from sequence to struc-

ture. As these approaches continue to mature, and as physico-

chemical priors get more directly integrated into the deep learning

machinery, we expect that they will provide a complementary path

forward for tackling protein structure prediction.
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