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SUMMARY

Several pharmacological, dietary and genetic interventions that increase mammalian lifespan are 

known, but general principles of lifespan extension remain unclear. Here, we performed RNAseq 
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analyses of mice subjected to 8 longevity interventions. We discovered a feminizing effect 

associated with growth hormone regulation and diminution of sex-related differences. Expanding 

this analysis to 17 interventions with public data, we observed that many interventions induced 

similar gene expression changes. We identified hepatic gene signatures associated with lifespan 

extension across interventions, including upregulation of oxidative phosphorylation and drug 

metabolism, and showed that perturbed pathways may be shared across tissues. We further applied 

the discovered longevity signatures to identify new lifespan-extending candidates, such as chronic 

hypoxia, KU-0063794 and ascorbyl-palmitate. Finally, we developed GENtervention, an app that 

visualizes associations between gene expression changes and longevity. Overall, this study 

describes general and specific transcriptomic programs of lifespan extension in mice and provides 

tools to discover new interventions.

Graphical Abstract

eTOC blurb (In Brief)

Tyshkovskiy et al. performed a comprehensive analysis of 17 known lifespan-extending 

interventions in mice at the level of gene expression to better understand general principles of 

lifespan control and generate gene expression signatures associated with longevity. They applied 

these signatures to predict new candidate compounds for lifespan extension.
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INTRODUCTION

Dozens of pharmacological, genetic and dietary interventions that lead to lifespan extension 

are known today for organisms ranging from yeast to mammals (Fontana et al., 2010). They 

include certain mutations such as eat-2 (Lakowski and Hekimi, 1998) and growth hormone 

receptor knockout (GHRKO) (Zhou et al., 1997), drugs such as rapamycin (Harrison et al., 

2009) and 17-α-estradiol (Harrison et al., 2014) and diets such as caloric restriction (CR) 

(David et al., 1971; Houthoofd and Vanfleteren, 2006; Lin et al., 2000; Weindruch et al., 

1986) and methionine restriction (MR) (Richie et al., 1994). Every year, 3-5 

pharmacological interventions are tested for the longevity effects in a multi-institutional 

study, the interventions testing program (ITP) (Miller et al., 2007). The ITP examines the 

effects of compounds on mouse lifespan using large sample size and genetically 

heterogenous UM-HET3 animals. This experimental design makes ITP one of most reliable 

sources of data on longevity interventions in mice. To date, this program has shown a 

significant lifespan-extending effect of acarbose (Harrison et al., 2014; Strong et al., 2016), 

17-α-estradiol (Harrison et al., 2014; Strong et al., 2016), Protandim™ (Strong et al., 2016), 

rapamycin (Harrison et al., 2009; Miller et al., 2011, 2014) and nordihydroguaiaretic acid 

(NDGA) (Harrison et al., 2014; Strong et al., 2016), whereas other treatments such as 

oxaloacetic acid, green tea extract, fish oil, resveratrol and metformin did not significantly 

increase lifespan at the doses used in these studies (Miller et al., 2011; Strong et al., 2013, 

2016).

Interestingly, longevity interventions unequally affect different sexes. Thus, GHRKO leads 

to an average lifespan increase of 55% in males, but only 38% in females (Coschigano et al., 

2000), whereas NDGA increases male median lifespan (by 9-12% depending on dose and 

age of mice), but does not affect female lifespan (Harrison et al., 2014; Strong et al., 2008). 

The male-only effects were also observed for 17-α-estradiol (Harrison et al., 2014; Strong et 

al., 2016) and Protandim (Strong et al., 2016), while S6K1 deletion extended only female 

lifespan (Selman et al., 2009). Despite some differences, several key underlying molecular 

players and processes have been implicated, such as growth hormone (GH) receptor (Brown-

borg, 2007; Coschigano et al., 2003), insulin-like growth factor 1 (IGF-1) (Brown-borg, 

2007; Lopez-Otin et al., 2013), mammalian target of rapamycin (mTOR) (Kapahi et al., 

2004; Vellai et al., 2003) and sirtuins (Lin et al., 2000; Lopez-Otin et al., 2013; Tissenbaum 

and Guarente, 2001). On the other hand, manipulation of these hubs does not necessarily 

lead to longevity. Thus, resveratrol, a sirtuin activator (Gertz et al., 2012), increases lifespan 

only in mice subjected to a high calorie diet by reducing liver pathology and providing other 

health benefits such as improved insulin sensitivity and motor function (Baur et al., 2006; 

Pearson et al., 2008). However, on a regular diet, resveratrol has no effect on lifespan despite 

improvement in cardiovascular function, bone density, and motor coordination (Miller et al., 
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2011; Pearson et al., 2008; Strong et al., 2013). On the other hand, several lifespan-

extending interventions, such as Myc haploinsufficiency (Myc +/−) (Hofmann et al., 2015), 

seem to bypass known hub regulators of longevity. Therefore, it remains unclear, which 

effects of the drug, diet, or mutant are necessary and/or sufficient for lifespan extension.

High-throughput analyses that employ transcriptomics, metabolomics or epigenomics, have 

been widely used to evaluate systemic effects that define the aging process. For example, 

they were used to examine unique features of long-lived species, such as naked mole rats 

(Zhao et al., 2018), association with lifespan across mammals (Fushan et al., 2015; Ma et al., 

2015, 2016) and changes occurring in organisms during the aging process (Sziráki et al., 

2018). Certain healthspan- and lifespan-extending interventions have also been analyzed at 

systemic level. For example, metformin (Martin-Montalvo et al., 2013), rapamycin (Fok et 

al., 2014a), CR (Rusli et al., 2015), GHRKO (Rowland et al., 2005), Snell dwarf, Ames 

dwarf (Boylston et al., 2006), S6K1 deletion (Selman et al., 2009), Myc +/− (Hofmann et al., 

2015) and Fgf21 overexpression (Zhang et al., 2012) have all been investigated at the level 

of gene expression. This revealed differentially expressed genes and molecular pathways 

perturbed in response to a particular intervention. Some of these interventions, such as 

rapamycin and CR (Fok et al., 2014b), Little and Ames dwarf mice (Amador-Noguez et al., 

2004), and CR and Ames dwarf mice (Tsuchiya et al., 2004), have also been analyzed 

together at proteomic and transcriptomic levels. These studies revealed individual genes and 

molecular pathways shared by certain pairs of interventions. For example, CR and Ames 

dwarf mice were both shown to upregulate the expression of genes encoding xenobiotic-

metabolizing and lipid beta-oxidation enzymes (Tsuchiya et al., 2004). However, focusing 

on narrow subsets of interventions did not allow to arrive at general patterns of lifespan-

extending conditions.

Extensive transcriptome data corresponding to different longevity interventions are available 

in public databases. Using this resource, several studies conducted meta-analyses of CR at 

the level of gene expression (Plank et al., 2012; Swindell, 2008), identifying persistent and 

reliable patterns altered across different experimental settings in response to a single 

longevity intervention. Nonetheless, thorough analyses examining a wide range of lifespan-

extending interventions have essentially been lacking. Here, we fill this gap by performing 

systemic gene expression analysis of mouse liver subjected to more than a dozen of 

longevity interventions across different experimental settings. First, we obtained RNAseq 

data for 8 different lifespan-extending interventions, including well-studied ones, such as 

CR, rapamycin and GHRKO, as well as those that have never been analyzed at the 

transcriptomic level, across different sexes, doses and age groups. We then aggregated our 

dataset with publicly available data, which resulted in the coverage of 17 interventions by 77 

datasets across 22 different sources, and performed an analysis of gene expression changes 

associated with lifespan extension.

RESULTS AND DISCUSSION

RNAseq of hepatic responses to longevity intervention

We subjected 78 young adult mice to 8 interventions previously established to extend 

lifespan, including acarbose, 17-α-estradiol, rapamycin, Protandim, CR (40%), MR (0.12% 
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methionine w/w), GHRKO and Pit1 knockout (Snell dwarf mice) (Fig. 1A, Table S1A). This 

set included three interventions that have never been analyzed at the level of gene expression 

(acarbose, 17-α-estradiol and Protandim). All compounds and diets were applied to 

genetically heterogeneous UM-HET3 mice and started at 4 months of age, as in ITP studies 

(Harrison et al., 2014; Miller et al., 2011, 2014; Strong et al., 2016), except for MR, which 

was applied to 2-month-old C57BL6/J mice, as in (Ables et al., 2012, 2015). We then 

performed RNAseq on liver samples of these mice, together with sex- and age-matched 

littermate controls, analyzing both males and females in most cases. Since some of these 

interventions are known to be effective when used at different concentrations and different 

ages (Harrison et al., 2009, 2014; Mercken et al., 2014a; Miller et al., 2014; Mitchell et al., 

2016; Strong et al., 2016), we also used 2 different age groups for CR, rapamycin and 

acarbose, and 2 different effective concentrations of rapamycin (Fig. 1A). As age- and 

lifespan-associated patterns may or may not correlate with each other, and we aimed to 

identify signatures of lifespan extension apart from the changes related to the consequences 

of slowed down aging, all mice utilized in these experiments were young and middle-aged. 

This allowed us to attribute the observed gene expression changes to the direct effect of 

lifespan-extending interventions and to analyze longevity patterns independent of the aging 

process.

Differentially expressed genes associated with each intervention were initially examined 

separately for males and females. Many of them were found to be shared by different 

interventions. Thus, almost half of MR genes (44.3% up- and 41.8% downregulated genes) 

were altered significantly and in the same direction in Snell dwarf males and mice subjected 

to CR (Fig. 1B). This observation is consistent with findings that the lifespan extension 

effect of CR in flies is dependent on methionine in the diet and can be abrogated by the 

addition of amino acids including methionine (Grandison et al., 2009).

Functional enrichment analysis also revealed many similarities among the interventions (Fig. 

1D, Table S2). For example, many ribosomal protein genes were upregulated in response to 

all interventions except MR (q-value < 0.001). Other commonly upregulated functions 

included drug metabolism by cytochrome P450, glutathione metabolism, oxidative 

phosphorylation and TCA cycle. In addition to common mechanisms, we also detected some 

distinct patterns. For example, 17-α-estradiol in females and MR induced downregulation of 

oxidative phosphorylation, and fatty acid oxidation, which was known to be positively 

associated with the lifespan extension effect of several interventions in males (Amador-

Noguez et al., 2004; Plank et al., 2012; Tsuchiya et al., 2004), was significantly 

downregulated in females subjected to 17-α-estradiol, acarbose and CR (Fig. 1D). At the 

same time, this pattern was not observed in males and even demonstrated an opposite effect 

in case of acarbose and CR.

Interestingly, although MR mice shared many differentially expressed genes with CR and 

interventions associated with GH deficiency (i.e., GHRKO and Snell dwarf mice), they 

displayed a distinct pattern at the level of functional enrichment compared to other 

interventions (Fig. 1C, S1A). MR shared some common signatures with CR and GH-

deficient mutants, including upregulation of glutathione metabolism and drug metabolism by 
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cytochrome P450, but also exhibited upregulation of mTOR pathway and downregulation of 

oxidative phosphorylation, which was distinct from most other interventions (Fig. 1D).

Feminizing effect of lifespan-extending interventions

The finding of sex-specific gene expression patterns for certain interventions allowed us to 

examine this question in more detail. Several previous studies noted a feminizing effect of 

CR and GH deficiency on gene expression in males (Buckley and Klaassen, 2009; Estep et 

al., 2009; Fu and Klaassen, 2014; Li et al., 2013). To test if this effect is reproduced across 

different interventions, we first identified genes whose expression significantly differed 

between control males and females in both 6- and 12-month-old age groups (Table S3A). We 

then examined how lifespan-extending interventions affect these sex-associated differences.

In males, we detected statistically significant feminizing patterns for genetic (GHRKO and 

Snell dwarf mice) and dietary (CR and MR) interventions at the level of gene expression 

(Fig. 2B, Table S3C). In other words, each of these interventions upregulated female-specific 

and downregulated male-specific genes. For example, female- and male-associated 

expression patterns shared more than 66% of up- and 72% of downregulated genes, 

respectively, that were perturbed by GHRKO and 6-month-old CR in males and showed a 

statistically significant overlap with both (Fisher exact test adjust p-value < 2.98·10−18) (Fig. 

2A). The feminizing effect was especially strong for genetic mutants, reaching 80% 

correlation for GHRKO (Spearman correlation test adjusted p-value = 6.1·10−56; Fig. S1B). 

Besides mutants and diets, acarbose and rapamycin also produced the feminizing effect in 

males for one of age groups (adjusted p-value < 4.1·10−3). However, other drugs did not 

induce a significant feminizing effect in males or even resulted in a slight negative effect, 

e.g. Protandim in 6-month-old mice (Spearman correlation = −0.11; BH adjusted p-value = 

0.088; Fig. 2B).

In females, the effect of interventions on sex-specific genes was mostly similar to that in 

males. Thus, CR and 12-month-old acarbose also exhibited a significant feminizing pattern 

(adjusted p-value < 0.07). (Fig. 2B). On the other hand, rapamycin produced a significant 

anti-feminizing (“masculinizing”) pattern in females in both age groups (Spearman 

correlation < −0.14, adjusted p-value < 0.04), upregulating male-specific and 

downregulating female-specific genes. Interestingly, one of the strongest masculinizing 

patterns in females was produced by 17-α-estradiol, which had no significant effect on sex-

associated genes in males, hinting that its selective effect on male lifespan is not due to 

simple recapitulation of the female hormonal profile. Our data suggest that feminization 

does not explain the effect of interventions on lifespan extension. Indeed, 17-α-estradiol 

didn’t lead to feminizing changes in males but increased their median (by 19%) and 

maximum (by 12%) lifespan (Strong et al., 2016). At the same time, Protandim produced a 

significant feminizing effect in females, but didn’t extend lifespan in ITP studies (Strong et 

al., 2016). Besides, in females rapamycin and 17-α-estradiol showed a similar and 

significant masculinizing effect, although only the former extended lifespan in females, and 

its effect was even greater than that in males (Miller et al., 2014). Therefore, it seems that 

feminization (or masculinization) are neither necessary nor sufficient for lifespan extension, 
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although many interventions, including GH mutants and diets, influence some of the genes 

associated with gender-specific differences.

Although various interventions had a different effect on sex-specific genes, we observed a 

consistently stronger feminizing effect in males compared to females for every individual 

intervention and age group (Spearman correlation test adjusted p-value < 2.6·10−6), except 

for Protandim (Fig. 2B). In other words, regardless of the direction and size of the effect of 

particular interventions on sex-associated genes in males, most of them led to relatively 

more masculinizing changes in females. To test if such pattern results in the convergence of 

gender-associated gene expression profiles to some neutral state, we calculated pairwise 

distances between expression of these genes in male and female samples for all experimental 

groups (Fig. 2C). We found that sex-associated differences were indeed significantly 

reduced by all interventions, except for 6-month Protandim and 12-month rapamycin 

(Mann-Whitney test adjusted p-value < 0.024). This finding suggests that the state induced 

by lifespan-extending interventions is broadly shared across sexes, with differences between 

males and females becoming less prominent.

To better understand the nature of the feminizing pattern, we identified sex-associated genes, 

which change in response to interventions is, at the same time, associated with the 

feminizing effect. With the FDR threshold of 0.05 and FC threshold of 1.5, we detected 355 

sex-associated genes differentially expressed at a higher level in females and 282 genes 

expressed at a lower level (Fig. 2F). Among them, 153 (out of 355) and 164 (out of 282) 

genes were positively and negatively associated with the feminizing effect, respectively. 

Functional enrichment of these genes revealed upregulation of drug metabolism (Fisher 

exact test adjusted p-value = 1.5·10−9) and fatty acid metabolism (Fisher exact test adjusted 

p-value = 0.026) (Fig. 2G). Cytochrome P450 genes, involved in drug metabolism, are well 

known to be differentially expressed between sexes in mice and regulated by GH and its sex-

specific daily pulse frequency and amplitude (Waxman and Holloway, 2009). However, it 

was previously unclear whether the same xenobiotic metabolizing enzyme (XME) genes are 

altered in response to different lifespan-extending interventions. Here, we show that this is 

indeed the case. Interestingly, male rodents also demonstrate a female-like alteration of some 

other sex-specific cytochrome P450s with age, both at the level of gene expression and 

enzymatic activity (Imaoka et al., 1991; Kamataki et al., 1985). This appears to be, at least 

partly, due to the change of their GH secretion profile (Imaoka et al., 1991; Wauthier et al., 

2007). Therefore, feminization of the drug metabolism system in males seems to be an 

example of the pattern positively associated with both aging and response to several 

lifespan-extending interventions.

Among downregulated sex-associated genes, we detected enrichment of complement and 

coagulation cascades (Fisher exact test adjusted p-value = 9.8·10−3) and major urinary 

proteins (MUP) genes (Fisher exact test adjusted p-value = 0.021) (Fig. 2G). MUP 

expression is highly sex-specific, and the high concentration of total and specific MUP 

proteins in male mouse urine appears to influence male attractiveness to females (Garratt et 

al., 2011; Roberts et al., 2010), suggesting a possible link between lifespan extension and 

reproductive fitness. Interestingly, sexually dimorphic expression of most MUP isoforms is 

also known to be regulated by GH. Indeed, Mup genes are significantly downregulated in 
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GH-deficient mutants, but their level can be restored by GH injection (Knopf et al., 1983). 

Moreover, injection of GH could masculinizes MUP mRNA levels in female mice (al-Shawi 

et al., 1992). Therefore, gene expression changes associated with the feminizing effect 

across interventions are generally linked to GH as a key upstream regulator.

To validate our findings, we performed metabolite profiling of 39 12-month-old male and 

female mice subjected to control diet, acarbose or rapamycin (Data S1, Table S1B). We 

further aggregated this data with our previous dataset, which included animals of the same 

age subjected to control diet, CR, acarbose and rapamycin along with male GHRKO and 

Snell dwarf mice (Ma et al., 2015). Using a similar procedure, we identified metabolites that 

significantly differ between control males and females in each of the datasets and then used 

them to calculate the feminizing effect at the metabolome level (Table S3B). In agreement 

with the gene expression data, a significant feminizing effect of genetic interventions 

(GHRKO and Snell dwarf mice), CR, and acarbose was observed in males (Fig. 2D, Table 

S3C), whereas rapamycin produced a significant feminizing effect only in one of the 

datasets. Applied to females, the same interventions also resulted in a significantly more 

masculinizing effect compared to males, except for rapamycin from the previously obtained 

dataset (adjusted p-value < 0.098). Finally, in agreement with the gene expression findings, 

all interventions, except for rapamycin from the new dataset, showed a reduction of sex-

related differences at the metabolome levels following introduction of lifespan-extending 

interventions (Mann-Whitney test adjusted p-value < 0.011) (Fig. 2E).

Signatures of CR, rapamycin and growth hormone deficiency

To obtain a comprehensive picture of gene expression responses to interventions, we 

collected all publicly available microarray datasets for mouse liver and conducted a meta-

analysis across aggregated data (Table S1C). We first focused on 3 interventions: CR, 

rapamycin and interventions related to GH deficiency (GHRKO, Little mice, Snell and 

Ames dwarf mice). The latter group was combined, because these interventions, although 

targeting different genes involved in GH production and sensing, resulted in a similar effect 

on the liver being unable to activate GHR. In addition, similarity among these interventions 

could be seen at the level of hepatic gene expression (Amador-Noguez et al., 2004) (Fig. 3F, 

4C). As these intervention groups appeared to be best-studied, we were interested in the 

identification of consistent gene expression signatures associated with them. For this reason, 

we combined all data across sexes, strains, ages, durations of interventions and doses. In 

total, we aggregated data from 29 CR datasets (across 13 studies), 9 rapamycin datasets 

(across 3 studies) and 20 GH deficiency datasets (across 7 studies) (Table S1).

To overcome issues associated with differences in platforms across studies and batch effects, 

we developed an integrative method based on independent preprocessing of individual 

datasets and subsequent aggregation of mean logFC and their standard deviations for all 

genes detected in our RNAseq data. Importantly, to account for possible differences in the 

general effect of interventions on mouse transcriptome, we did not normalize distributions of 

logFC across datasets. To include information about standard deviations of logFC and 

account for possible batch effects due to the use of several datasets sharing the same control, 

we applied a mixed-effect model. We used this approach to identify genes up- or 
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downregulated across datasets associated with the same type of intervention. Instead of the 

comparison of lists of differentially expressed genes (Plank et al., 2012; Swindell, 2008), our 

method accounts for the degree of the effect and variance of gene expression changes within 

each dataset. Besides standard p-value obtained from the mixed-effect model test, we also 

calculated “leave-one-out” (LOO) p-value, being the highest p-value after removal of every 

study one by one.

In this procedure, genes were designated statistically significant if their adjusted p-value was 

< 0.01 and LOO p-value was < 0.01. With these thresholds, we identified 419 up- and 370 

downregulated genes for CR, 894 up- and 879 downregulated genes for GH deficiency, and 

127 up- and 100 downregulated genes for rapamycin (Fig. 3A). Interestingly, CR and GH-

deficient interventions significantly overlapped (37% of up- and 26.3% of downregulated 

genes in response to CR were shared with GH mutants; Fisher exact test p-value < 10−28 for 

both up- and downregulated genes), whereas rapamycin did not show a statistically 

significant overlap with either of them. Upregulated genes shared by CR and GH deficiency 

were enriched for oxidative phosphorylation (Fisher exact test adjusted p-value = 1.52·10−9), 

and downregulated genes were enriched for complement and coagulation cascades (Fisher 

exact test adjusted p-value = 5.21·10−6). The difference in the gene expression response 

between CR and rapamycin was previously noted (Fok et al., 2014b; Miller et al., 2014), but 

was not well understood. Our data provide a case for largely distinct mechanisms by which 

these interventions act in the liver.

Not surprisingly, all GH-deficient mutants showed downregulation of Igf1 (Fig. S2A) and its 

stabilizer Igfals along with upregulation of 2 genes encoding its inhibitors, IGF-binding 

proteins Igfbp1 and Igfbp2 (Fig. S2B). Interestingly, Igf1 expression showed no consistent 

significant changes in response to CR and rapamycin (Fig. S2A). Moreover, we did not 

detect a dependence of Igf1 fold change in response to CR with any other feature, including 

age of mice, duration of treatment, restriction level and even the effect on lifespan. On the 

other hand, IGF1 plasma levels are known to be decreased by CR in various mouse models 

(Mitchell et al., 2016). However, the same models integrated in our meta-analysis didn’t 

show consistent downregulation of hepatic Igf1. On the other hand, we detected upregulation 

of two IGF1 binding partners (Igfbp1 and Igfbp2) in response to CR (Fig. S2B). Therefore, 

inhibition of the IGF1 pathway by CR doesn’t appear to be mediated by the direct regulation 

of hepatic Igf1 expression but may be associated with elevated levels of its inhibitors.

By applying gene set enrichment analysis (GSEA), we further identified molecular pathways 

shared by 2 or all 3 analyzed interventions (Fig. 3B; Table S4A). Interestingly, rapamycin 

was found to share some perturbed functions with other interventions, in agreement with the 

RNAseq data. Thus, oxidative phosphorylation was commonly upregulated across all three 

interventions (q-value < 0.008). Other shared upregulated functions included TCA cycle, 

ribosome and genes associated with age-related diseases (Parkinson’s and Huntington’s).

To identify upstream regulators of observed gene expression changes, we performed 

enrichment analysis of transcription factors using TRANSFAC (Matys, 2006). First, for each 

individual dataset we identified transcription factor binding to sequences enriched in 

promoters of genes differentially expressed in the corresponding dataset. We then applied a 
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binomial test to identify factors whose enrichment was overrepresented across datasets 

within the same type of intervention. A permutation FDR threshold of 0.01 allowed us to 

identify 161 transcription factor IDs enriched for CR, 213 IDs enriched for GH-deficient 

interventions and 17 IDs enriched for rapamycin (Fig. 3C, Table S5). Consistent with 

previous results, CR and GH mutants shared more than 50% of enriched transcription factors 

(Fisher exact test p-value < 10−26). However, here rapamycin also showed significant 

overlap with the other interventions (58.8% and 47.1% of transcriptional factors were shared 

with CR and GH deficiency, respectively; Fisher exact test p-value < 0.002 in both cases). 

Interestingly, 8 factors found to be enriched by all 3 interventions included receptors related 

to glucose sensitivity and sterol metabolism, such as glucocorticoid receptor NR3C1 and 

sterol regulatory element binding transcription factor SREBP-1. Factors shared by CR and 

GH deficiency included NRF2, PPARα, PPARγ along with a number of interferon 

regulatory factors, in accordance with the results of functional enrichment (Fig. 3C). 

Therefore, it appears that even though rapamycin exhibits a distinct pattern at the level of 

individual genes, its effect partly converges with other interventions at the level of molecular 

pathways and transcriptional regulation. A non-significant overlap of the perturbed genes 

observed for rapamycin may be also explained by high variability of gene expression 

response to this drug across different experimental settings (Fig. 4C) that is later reduced at 

the level of functional and transcriptional enrichment.

Mutual organization of lifespan-extending interventions

We next expanded our data by aggregating public microarray data on longevity 

interventions. We also included resveratrol and metformin that did not increase lifespan in 

the ITP mouse cohort at the concentrations used (Miller et al., 2011; Strong et al., 2013, 

2016), but were found to share some molecular mechanisms with lifespan-extending CR 

(Barger et al., 2008; Dhahbi et al., 2005; Martin-Montalvo et al., 2013; Pearson et al., 2008), 

increase healthspan of mammals (Baur and Sinclair, 2006; Martin-Montalvo et al., 2013; 

Pearson et al., 2008) and increase lifespan of the nematode Caenorhabditis elegans (De Haes 

et al., 2014; Viswanathan et al., 2005; Wood et al., 2004), short-lived fish Nothobranchius 
furzeri (in case of resveratrol) (Valenzano et al., 2006), and mice under certain conditions 

(Baur et al., 2006; Martin-Montalvo et al., 2013; Pearson et al., 2008). After integration of 

available data, our dataset included 17 interventions and 77 control-intervention 

comparisons across 22 different sources (Fig. 3D). Importantly, our list of analyzed 

interventions covered different types of interventions, i.e. dietary, genetic (mutations, 

overexpression) and pharmacological (Table S1).

Data aggregation was performed using the approach discussed above. Interestingly, 

comparison of standard deviations of gene fold changes showed that genetic manipulations 

had the largest effects on gene expression (Mann-Whitney test p-value = 0.003 between 

dietary and genetic groups), whereas pharmacological interventions had the smallest effect 

(Mann-Whitney test p-value = 1.71·10−6 between pharmacological and dietary groups), and 

diets were in the middle (Fig. S3A). To confirm that this effect wasn’t due to technical bias, 

we examined possible differences between medians of gene fold changes and did not 

observe significant differences between any pair of intervention groups (Fig. S3B). The 

observed difference in the degree of the effect emphasized the importance of avoiding 
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normalization of mean fold changes across different datasets during data aggregation, since 

in that case this scale difference would be lost.

To explore how gene signatures identified for CR, GH deficiency and rapamycin are affected 

by other interventions, we calculated aggregated gene expression responses to each of them 

(Fig. 3E). In general, interventions exhibited similar transcriptomic profiles. Indeed, we 

observed positive Spearman correlation between aggregated gene expression changes for 

most interventions (Fig. 3F). Not surprisingly, GH-deficient mutants formed a tight cluster, 

indicating convergence of their hepatic molecular mechanisms. To examine if different 

interventions recapitulate the gene expression responses induced by CR, rapamycin and GH 

deficiency, we performed GSEA, using gene signatures of the specified interventions as 

input subsets (Fig. 4A). Interestingly, most interventions, including all GH-deficient 

mutants, diets (CR, every-other-day feeding (EOD) and MR), acarbose, FGF21 

overexpression, 17-α-estradiol and resveratrol, shared the changes induced by CR and GH 

deficiency. On the other hand, rapamycin showed a distinct pattern, which was, however, 

partially shared by some interventions (acarbose, GHRKO, Snell dwarf mice, 17-α-estradiol 

and Protandim). This approach, however, may introduce batch effects resulting from 

comparison of datasets, which are obtained from the same source and share the same control 

samples.

To overcome the batch effect and investigate mutual organization of gene expression profiles 

of longevity interventions at the level of whole transcriptomes, we compared interventions in 

a pairwise manner, considering only pairs of datasets from different sources. For each of 

them, we calculated the Spearman correlation coefficient using 250 most significant 

differentially expressed genes. We then examined the distribution of these correlation 

coefficients among all pairs of single datasets. We also used the same unbiased procedure to 

obtain the distribution of correlation coefficients between different datasets related to the 

same intervention. This let us investigate how persistent gene expression response to certain 

intervention is across different studies and experimental design settings.

For CR, this method resulted in statistically significant positive correlations with the 

majority of interventions, including all GH deficient mutants (adjusted Mann-Whitney p-

value < 6.1·10−10), diets, including CR itself (adjusted p-value = 1.2·10−95), MR and EOD 

(adjusted p-values < 1.95·10−5), as well as FGF21 overexpression, acarbose, 17-α-estradiol, 

metformin and resveratrol (adjusted p-values < 3.2·10−3) (Fig. 4B). Interestingly, although 

rapamycin was originally thought to be a CR mimetic, it didn’t demonstrate a significant 

positive correlation with the diet, in accordance with our previous findings (Fig. 3F, 4A) and 

results of other groups (Fok et al., 2014b; Miller et al., 2014). Instead, the gene expression 

profile of this drug exhibited a slight but significant negative correlation with CR (median 

Spearman correlation coefficient = −0.049, adjusted p-value = 8.9·10−5). The same analysis 

applied to rapamycin revealed its significant positive correlation only with itself, although 

even this effect was quite low (median correlation coefficient = 0.088; adjusted p-value = 

2.8·10−3) (Fig. S4). This may point to high variability of gene expression responses to 

rapamycin across experimental settings. It may also be a consequence of higher technical 

noise due to the generally lower size of the effect for drugs compared to diets and genetic 

manipulations (Fig. S3A).
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Following the same algorithm, we calculated median Spearman correlation coefficients for 

every pair of interventions calculated across all single datasets (Fig. 4C). We observed a 

tight cluster formed by GH deficiency and Fgf21 overexpression. Dietary interventions, 

including CR, MR and EOD, also showed positive correlation with the mutants and each 

other. Other interventions exhibited either weak positive correlation with the main cluster 

(resveratrol, 17-α-estradiol, acarbose, metformin and S6K1 −/−) or distinct gene expression 

patterns with no significant positive correlations (Dgat1 −/−, Myc +/−, Protandim and 

rapamycin). To visualize the mutual organization of interventions as a network, we utilized 

Cytoscape and connected each pair of interventions with significant positive correlation 

(adjusted p-value < 0.1) (Fig. 4D). In agreement with previous findings (Fig. 4A), most 

interventions exhibited similarity with CR and GH-deficient mutants. The lack of edges 

between some of the interventions may be related to insufficient statistics due to low number 

of independent datasets. The relatively high values of median Spearman correlation for the 

corresponding interventions (Fig. 4C) suggest that the increase in the number of datasets 

may fill many edges missing in the network.

Common gene signatures of longevity interventions

We further aimed to discover genes commonly up- or downregulated by longevity 

interventions that could serve as an approximation of ‘necessary’ features and qualitative 

predictors of lifespan extension. First, by aggregating profiles across datasets, we identified 

statistically significant genes related to each intervention. To account for possible differences 

of the intervention effect on lifespan across doses, ages, strains and sexes introduced by 

heterogeneity of our data, we only considered datasets, whose experimental conditions were 

shown to produce statistically significant extension of lifespan.

For every gene, we could then calculate the number of interventions, where it was up- or 

downregulated (Fig. S5A). One gene (Gsta4) was found to be significantly upregulated in 9 

different interventions (out of 15) (Fig. S5B) and 7 genes (Gstt3, Abcb1a, Slc22a29, 
Slc15a4, Ak4, Serpina6 and Cers6) were upregulated in 8 interventions (adjusted p-value < 

0.1). These genes were involved in xenobiotic (Gsta4, Gstt3, Abcb1a and Slc22a29), 

glucocorticoid (Serpina6) and sphingolipid (Cers6) metabolism. In addition, 2 genes (C9 and 

C8a, complement components) were significantly downregulated in 9 and 8 interventions, 

respectively. However, this approach does not account for difference in the number of 

datasets associated with every intervention along with difference in quality of the datasets 

(e.g., number of samples). It also does not consider a level of similarity between 

interventions at the level of whole transcriptomes, which would make all responses of 

individual genes similar, regardless of the effect on lifespan.

To overcome these problems, we searched for common signatures using a single mixed-

effect model. We utilized a type of intervention as an additional random term and included 

correlation matrix for this term calculated previously (Fig. 4C). Using this method, we 

detected only 7 up- and 5 downregulated genes shared by all interventions with adjusted p-

value < 0.05 (Table S6A). To detect genes commonly shared by most interventions, we 

weakened the criteria by letting one intervention to be an outlier. We accomplished this by 

removing each intervention one by one and taking the best remaining p-value (“robust p-
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value” approach). Using the adjusted robust p-value threshold of 0.05, we identified 166 up- 

and 134 downregulated genes (Fig. 5A).

Interestingly, one of most significant commonly upregulated genes was Cth (adjusted robust 

p-value = 0.0033) (Fig. 5B). Cth encodes cystathionine gamma-lyase, which participates in 

glutathione synthesis and H2S production (Kabil et al., 2011). H2S by itself was 

demonstrated to extend lifespan in worms (Miller and Roth, 2007), and its production 

increased in response to CR in both sexes in different mouse strains (Mitchell et al., 2016). 

Cth was also shown to be upregulated in response to short-term 50% CR and to mediate 

oxidative stress resistance under conditions of sulfur amino acid restriction (Hine et al., 

2015). Unexpectedly, its expression was increased in response to high-protein diet, which 

seems to be negatively associated with lifespan (Gokarn et al., 2018). Except for this case, 

our data suggest that the hepatic expression of Cth is increased by most lifespan-extending 

interventions and could be used as a simple molecular biomarker associated with longevity.

Another interesting example of a commonly upregulated gene is Brca1 (adjusted p-value = 

0.04) (Fig. S6A, Table S6A). This well-known tumor suppressor (Narod and Foulkes, 2004) 

has also been linked with mouse longevity. In particular, its haploinsufficiency (Brca1 +/−) 

led to shortened lifespan (by 8% in mean lifespan) with 70% tumor incidence vs. about 10% 

in wild-type animals (Cao et al., 2003). Interestingly, besides being related to DNA repair, 

BRCA1 was shown to physically interact with NRF2 and increase its stability and activation 

(Gorrini et al., 2013). Consequently, it may act by activating the NRF2-dependent 

antioxidant response, which is one of shared signatures of longevity interventions (Fig. 3C 

and 5D).

Several glutathione S-transferase (GST) genes were also significantly upregulated across 

interventions, including Gstt2, Gsto1 and Gsta4 (adjusted robust p-value < 0.037) (Fig. 

S5B). All of them are involved in glutathione metabolism, known to be activated at the gene 

expression level in response to CR (Fu and Klaassen, 2014) and several GH deficiency states 

(Sun et al., 2013; Tsuchiya et al., 2004). Administration of GH was shown to decrease GST 

activity in several tissues including liver (Brown-Borg et al., 2005). Overall, upregulation of 

Gst genes is a common signature of longevity interventions, and they are significantly 

changed not only by GH deficiency and CR, but also by FGF21 overexpression, acarbose, 

MR, MYC deficiency and others (Fig. S5B).

To identify pathways associated with common up- and downregulated gene signatures, we 

performed functional GSEA (Fig. 5C; Table S4B). In accordance with the RNAseq findings, 

the most significant upregulated functions included drug metabolism by cytochrome P450 

and glutathione metabolism activated by the NRF2 pathway along with ribosome, oxidative 

phosphorylation, TCA cycle and amino acid metabolism (q-value < 0.075 for all specified 

functions). Downregulated functions included primary immunodeficiency, RNA polymerase 

and tRNA metabolic process (q-value < 0.061). Interestingly, several age-related diseases 

associated at the molecular level with age-dependent changes, such as Alzheimer’s, 

Parkinson’s and Huntington’s diseases, were enriched for common signatures (q-value < 

0.036), pointing to the connection between the changes induced by aging and longevity 

interventions.
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To generalize our findings across tissues, we integrated public data on transcriptomic 

responses to lifespan-extending interventions for two additional tissues: skeletal muscle and 

white adipose tissue (WAT) (Table S1D). Using the same method and thresholds, we 

identified 160 and 390 up- along with 123 and 325 downregulated genes for the muscle and 

WAT, respectively. Interestingly, there was almost no overlap between discovered genes 

across different tissues (Fig. 5D). On the other hand, GSEA resulted in the number of shared 

molecular functions enriched by these signatures (Fig. 5E, Table S4B). Thus, oxidative 

phosphorylation (q-value < 0.024), amino acid metabolism (q-value < 10−3 for liver and 

WAT), and ribosome structural genes (q-value < 0.061) along with age-related diseases such 

as Parkinson’s and Alzheimer’s (q-value < 0.083) were commonly upregulated across 

tissues, while immune response genes were downregulated (Fig. 5E). Therefore, although 

longevity interventions seem to affect different individual genes across tissues, these 

signatures may converge to the same molecular pathways. We also observed some functions 

being perturbed in a tissue-specific manner, such as drug metabolism by cytochrome P450 

activated only in liver.

Signatures associated with the effect on lifespan

To identify genes positively and negatively associated with the degree of lifespan extension, 

we integrated a previously described mixed-effect regression model with 3 commonly used 

metrics of lifespan extension obtained from published survival data on corresponding 

interventions: median lifespan ratio, maximum lifespan ratio and median hazard ratio (the 

ratio of slopes of survival curves at the timepoint when 50% of cohort is alive). We used 

these metrics as the most consistent and robust to the effects of sampling size (Moorad et al., 

2012). To account for data heterogeneity, we integrated gene expression and longevity data 

only if they were associated with the same experimental design in terms of sex, strain, dose 

and the age at which the intervention started.

We designated genes as statistically significant if their adjusted p-value and LOO p-value, 

obtained after removal of every intervention one by one, were both < 0.05. With these 

thresholds, we detected 351, 258 and 183 genes with positive and 264, 191 and 108 genes 

with negative association with maximum lifespan ratio, median lifespan ratio and median 

hazard ratio, respectively (Fig. 6A and 7D). These gene sets showed a significant overlap 

(Fisher exact test p-value < 10−18 for all pairwise comparisons), which was especially large 

between median and maximum lifespan. Indeed, 65.1% and 47.9% of genes positively and 

52.9% and 38.3% of genes negatively associated with median and maximum lifespan, 

respectively, were shared across them. One of the strongest positive associations with 

lifespan was found for Hint3 (adjusted p-value < 2.5·10−4) encoding nucleotide hydrolase 

(Fig. 6C). On the other hand, Irf2 encoding interferon regulatory transcription factor showed 

a significant negative association with these metrics (adjusted p-value < 1.2·10−5) (Fig. 6D). 

Other genes positively associated with changes in both maximum and median lifespan 

included members of fatty acid metabolism (Acadm, Eci1) (Fig. 6E), and oxidative 

phosphorylation pathway (Atp5f1, Cox17, Ndufb3 and Ndufab1) (Fig. 6F).

Interestingly, the fat synthesis enzyme Dgat1, whose knockout is associated with extension 

of mean and maximum lifespan in female mice by 23% and 8%, respectively (Streeper et al., 
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2012), was found to have a weak positive association with the effect on lifespan across 

interventions (slope coefficient = 0.38 and 0.29, adjusted p-value = 0.007 and 0.04 for 

maximum and median lifespan, respectively) (Fig. 6B). However, the change of Dgat1 
expression appears to be relatively small in response to all interventions, except for Dgat1 
deletion. A similar pattern was observed for Fgf21, whose expression was increased only in 

response to Fgf21 overexpression. These examples demonstrate that longevity can be 

achieved through alteration of different master regulators, but these perturbations may result 

in the same downstream systemic responses, which are related to the lifespan extension 

effect.

To check if such pattern is universal for different genes, we compared the identified genes 

shared across signatures and associated with the degree of lifespan effect with the genes 

whose perturbation was demonstrated to extend mouse lifespan, obtained from GenAge (18 

pro- and 38 anti-longevity genes) (De Magalhães and Toussaint, 2004). Indeed, we observed 

almost no overlap between these gene sets (Fisher exact test p-value > 0.33 for all pairwise 

comparisons) (Fig. S6B). Therefore, the identified gene signatures appear to reflect the 

response of the whole molecular system and are associated with longevity when altered 

together as a group, whereas lifespan-increasing genes represent upstream regulators, whose 

perturbations, in the end, lead to these systemic changes, similarly to dietary and 

pharmacological interventions.

To identify pathways enriched by genes positively and negatively associated with the effect 

on lifespan, we ran GSEA for all 3 metrics of lifespan extension and observed general 

consistency among them in terms of functional enrichment (Fig. 7C, Table S4C). Thus, 

genes related to TCA cycle, oxidative phosphorylation, amino acid catabolism and 

Huntington’s and Parkinson’s diseases were significantly positively associated among all 

three metrics used in the analysis (q-value < 0.02 for all specified functions and metrics). On 

the other hand, regulation of interleukin 1 beta production showed significant negative 

association with the lifespan metrics (q-value < 0.096 for median lifespan and median 

hazard ratio) (Fig. 7C). However, some functions, such as peroxisome (q-value = 0.03 for 

maximum lifespan) and DNA replication (q-value = 0.026 for median hazard ratio), were 

specific to single lifespan extension metrics.

Some of the hepatic genes and pathways turned out to be both common signatures and 

signatures associated with the effect on lifespan. In other words, they could be used for 

prediction of both lifespan extension per se (qualitative estimate) and the size of this effect 

(quantitative estimate). In particular, we identified 26 genes being both commonly changed 

across interventions and associated with either median or maximum lifespan in the same 

direction (Table S6B). 17 of them were upregulated and positively associated with effect on 

lifespan, whereas 9 were downregulated and negatively associated. The identified genes are 

involved in regulation of apoptosis (Aatk, Net1, Rb1, Sgms1), immune response (C4bp, 
P2ry14, Slc15a4, Tap2, Rb1), transcription (Pir, Sall1), stress response (Net1, Nqo1, Pck2, 
Rb1), glucose metabolism (Pck2, Pgm1) and cellular transport (Ldlrad3, Slc15a4, Slc25a30 
and Tap2).
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For example, Nqo1, encoding NAD(P)H-dependent quinone oxidoreductase involved in 

oxidative stress response, showed a significant positive association with maximum and 

median lifespan (adjusted p-value = 0.002 and 7.74·10−5, respectively) and was also 

commonly upregulated across longevity interventions (adjusted robust p-value = 0.011) (Fig. 

7A). Interestingly, this gene is a well-known target of NRF2, an upstream regulator of gene 

expression changes induced by various lifespan-extending interventions (Leiser and Miller, 

2010; Mutter et al., 2015) (Fig. 3C).

Another such gene is Slc15a4, which codes for lysosome-based proton-coupled amino acid 

transporter of histidine and oligopeptides from lysosome to cytosol. In dendritic cells, this 

protein regulates the immune response by transporting bacterial muramyl dipeptide (MDP) 

to cytosol and, therefore, activating the NOD2-dependent innate immune response 

(Nakamura et al., 2014). In addition, its activity affects endolysosomal pH regulation and 

probably v-ATPase integrity, required for mTOR activation (Kobayashi et al., 2014). Our 

data show that Slc15a4 is a common signature of lifespan-extending interventions (adjusted 

robust p-value = 0.008) along with some other transporters (Fig. 5C) and is positively 

associated with maximum lifespan (adjusted p-value = 0.02) (Fig. 7B), pointing to the 

possible importance of lysosomal integrity and amino acid transport for longevity.

At the level of pathways, oxidative phosphorylation showed positive association with both 

common and lifespan-associated signatures, and some functions involved in liver regulation 

of the immune response showed negative association (Fig. 5C,E and 7C). Interestingly, 

downregulation of the electron transport chain was also found by other groups to be the only 

common signature of aging at the level of gene expression across different species including 

humans, mice and flies (Zahn et al., 2006). Therefore, contrary to the feminizing effect, this 

pattern seems to demonstrate the opposite behavior during aging and in response to 

longevity interventions.

To make our data and tools available to the research community, we developed a web 

application, GENtervention, based on the R package shiny (Chang et al., 2016). It allows 

interrogation of gene expression data and, for every gene, it offers (i) expression change 

across different datasets related to every individual intervention (e.g. Fig. 5B (upper), 7A 

(upper), 7B (upper), S2, S6B), (ii) expression change in all available datasets across 

lifespan-extending interventions (common signatures) (Fig. 5B (lower) and S6A), and (iii) 

the association of expression change with metrics of the longevity effect (signatures 

associated with the lifespan extension effect) (Fig. 6B-F, 7A (lower) and 7B (lower)). 

GENtervention may be accessed through the following link: http://gladyshevlab.org/

GENtervention/.

Application of longevity signatures for identification of candidate lifespan-extending 
interventions

In this work, we obtained gene expression signatures associated with the response to well-

studied interventions (CR, rapamycin and GH deficiency interventions), as well as gene sets 

commonly perturbed across different interventions and associated with the effect on 

lifespan. We considered a possibility that these ‘longevity signatures’ could be used as 

predictors of new longevity interventions at the gene expression level. We examined this 
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possibility with two approaches. First, we checked if the signatures could be used to 

discover association of interventions of interest with the longevity gene expression patterns 

using publicly available datasets. We also tested their capability to predict new lifespan-

extending candidates using Connectivity Map (CMap) (Lamb et al., 2006; Subramanian et 

al., 2017).

For the first study, we preprocessed 6 publicly available datasets on hepatic gene expression 

in response to certain in vivo interventions in mice, including injection of interleukin 6 

(IL-6) (Ramadoss et al., 2010), knockout of methionine adenosyltransferase (Mat1a) 

(Alonso et al., 2017), chronic hypoxia (Baze et al., 2010a), knockout of Keap1, an inhibitor 

of acute stress regulator NRF2 (Osburn et al., 2008), supplementation of SIRT1 activator 

SRT2104 (Mercken et al., 2014b) and overexpression of the sirtuin Sirt6 (Kanfi et al., 2012). 

We then ran a GSEA-based association test using longevity signatures as input subsets (Fig. 

7E).

Interleukin-6 (IL-6) is a pro-inflammatory cytokine secreted by T cells and macrophages to 

support the immune response. It was shown to stimulate the inflammatory and auto-immune 

response during progression of diabetes (Kristiansen and Mandrup-Poulsen, 2005), 

Alzheimer’s disease (Swardfager et al., 2010), multiple myeloma (Gadó et al., 2000) and 

others. Moreover, IL-6 was shown to induce insulin resistance directly by inhibiting insulin 

receptor signal transduction (Senn et al., 2002). We tested if the intraperitoneal injection of 

IL-6 leads to hepatic gene expression changes associated with longevity signatures. We 

detected a significant negative association of this intervention with all longevity signatures 

(adjusted p-value < 0.025) (Fig. 7E), pointing to a potential negative effect of IL-6 on mouse 

lifespan.

Methionine adenosyltransferase 1A (MAT1A) catalyzes conversion of methionine to S-

adenosylmethionine. This enzyme plays a crucial role in methionine and glutathione 

metabolism. Its activity in liver is increased 205% in Ames dwarf mice compared to wild-

type animals (Uthus and Brown-Borg, 2003), and the introduction of GH to these mice led 

to ~40% decrease in MAT activity in liver (Brown-Borg et al., 2005). Moreover, due to the 

role of MAT in methionine metabolism, MAT deficiency in liver leads to persistent 

hypermethioninemia (Ubagai et al., 1995), which may be considered of as the opposite of 

MR. Therefore, we expected that knockout of Mat1a could be negatively associated with 

longevity signatures. Indeed, our test revealed such a pattern with statistical significance for 

4 out of 6 signatures (adjusted p-value < 0.02) (Fig. 7E). Therefore, Mat1a knockout seems 

to induce transcriptomic changes opposite to those caused by longevity interventions and is 

expected to diminish mouse longevity.

Hypoxia, a reduction in oxygen levels, has suggestive associations with longevity that are 

not yet well understood. First, aging is associated with hypoxia, e.g. showing 38% reduction 

in oxygen levels in adipose tissue (Zhang et al., 2011). Second, studies investigating the 

effect of hypoxia on longevity revealed contrasting results. One group showed that, in C. 
elegans, growth in low oxygen and mutation of VHL-1, a negative regulator of the main 

modulator of hypoxia HIF-1, extended worm lifespan up to 40% (Mehta et al., 2009). 

However, another group reported an increased lifespan of C. elegans following the deletion 
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of HIF-1 gene under slightly different conditions (Chen et al., 2009). Also, by generating 

reactive oxygen species (ROS), hypoxia leads to activation of NRF2, one of the upstream 

regulators associated with the response to lifespan-extending interventions (Fig. 3C). Finally, 

hypoxia was found to be among the most effective protectors against mitochondrial 

disfunction associated with virtually all age-related degenerative diseases (Balaban et al., 

2005; Jain et al., 2016). In mammals, chronic hypoxia leads not only to a compensatory 

increase in oxygen delivery due to increased production and affinity to hemoglobin, 

decreased weight, higher ventilation rate and capillary density and larger mass of lung, liver 

and left ventricle (Aaron and Powell, 1993; Baze et al., 2010a), but also to a decrease in 

demand for oxygen through alteration of metabolism (Gautier, 1996; Steiner and Branco, 

2002). To investigate whether chronic hypoxia may induce longevity-associated gene 

expression patterns, we examined transcriptomes of mice subjected to 11.5 kPa Po2 hypoxia 

(11.8% oxygen in the air) for 32 days. We detected a significant positive association of the 

response to hypoxia with all longevity signatures, except for rapamycin (adjusted p-value < 

0.034) (Fig. 7E), suggesting a potential positive effect of this intervention on mouse 

healthspan and/or lifespan.

NRF2 is one of the key acute stress regulators, which, among others, activates XMEs (Baird 

and Dinkova-Kostova, 2011) commonly upregulated at the level of hepatic gene expression 

across longevity interventions (Fig. 5C). Overexpression of the NRF2 ortholog SKN-1 in C. 
elegans leads to a 5-20% increase in average lifespan (Tullet et al., 2008), whereas mutation 

of its inhibitor, Keap1, was shown to increase median lifespan by 8-10% in Drosophila 
melanogaster males (Sykiotis and Bohmann, 2008). Moreover, Protandim, a mixture of 5 

botanical extracts known to stimulate NRF2 activation, was proved to increase median 

lifespan in male mice by 7% (Strong et al., 2016). However, how NRF2 affects longevity of 

mammals remain unclear. We examined how hepatic gene expression was changed by 

hepatocyte-specific conditional knockout of Keap1 in mice and identified statistically 

significant positive association with almost all longevity signatures, except for rapamycin 

(adjusted p-value < 0.0015) (Fig. 7E).

We also analyzed the association of sirtuin activation with longevity signatures using two 

mouse models, SIRT1 activator SRT2104 in males (Mercken et al., 2014b) and Sirt6 
overexpression in both sexes (Kanfi et al., 2012). Both models were shown to extend 

lifespan of males, but the effect was modest (~10% increase in median and maximum 

lifespan). Accordingly, we detected significant positive associations for these models in 

males with CR and common gene patterns. However, there was no consistent positive 

association with longevity signatures associated with the quantitative effect on lifespan, and 

we even observed a weak negative association in one of the cases (Fig. 7E). Interestingly, 

Sirt6 overexpression in females, which did not affect lifespan during survival studies (Kanfi 

et al., 2012), also demonstrated no significant associations with longevity signatures (Fig. 

7E).

To test if gene expression signatures associated with lifespan extension may be translated 

across species, we analyzed their association with the hepatic response to CR in rhesus 

monkeys (Macaca mulatta) (Rhoads et al., 2018). We observed a strong significant 

association with the CR signature, pointing to the existence of shared gene expression 
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response to this intervention in mammals (Fig. 7E). However, we did not detect an 

association of CR in monkeys with either common signatures or signatures associated with 

the effect on lifespan. This may point to a weaker longevity effect of CR in primates or to 

the different patterns of lifespan extension across species. This may also be due to statistical 

issues related to a limited sampling size.

Finally, we tested if longevity signatures could be used to predict the difference in lifespan 

between mouse strains, which may also be considered as genetic intervention. The 

GSE10421 dataset includes gene expression of male livers from 2 mouse strains tested at the 

same chronological age (7 weeks old): C57BL/6 and DBA/2 (Kautz et al., 2008). We 

identified genes with significantly different expression between these strains and subjected 

them to the association test. All longevity signatures except for rapamycin demonstrated a 

significant positive association with C57BL/6 gene expression profile compared to that of 

DBA/2 (adjusted p-value < 5.3·10−4) (Fig. 7E). Lifespan of C57BL/6 mice (median lifespan 

= 901 days) is significantly higher than that of DBA/2 (median lifespan = 701 days) (Yuan et 

al., 2009). This difference was, therefore, captured by the longevity signatures, which were 

able to identify the strain with greater lifespan. These findings further support the notion that 

the longevity signatures can be used for the assessment of differences in expected lifespan.

For the second study, to identify candidate lifespan-extending drugs, we utilized the CMap 

platform (Lamb et al., 2006; Subramanian et al., 2017). It contains gene expression profiles 

of different human cell lines subjected to > 1,500 compounds and allows searching for 

perturbagens producing gene expression changes similar to the pattern of interest. To 

identify drugs with significant longevity effects, we ranked them based on their association 

with gene signature related to maximum lifespan. We then chose four compounds from the 

top of the ranking and applied them to UM-HET3 male mice for 1 month (Table S1E). 

These drugs included two mTOR inhibitors KU-0063794 (García-Martínez et al., 2009) and 

AZD8055 (Chresta et al., 2010), antioxidant ascorbyl-palmitate (Cort, 1974) and 

antihypertensive agent rilmenidine (Mpoy et al., 1988).

We performed RNAseq of the liver samples from mice subjected to the drugs, together with 

the corresponding controls. To check if the hits predicted with human cell lines are 

reproduced in mouse tissues, we calculated gene expression responses to each of these drugs 

and passed them to the association test (Fig. 7E). In agreement with the predictions, all 

compounds demonstrated positive associations with the common gene signature across 

lifespan-extending interventions (adjusted p-value < 0.077). Moreover, KU-0063794 and 

ascorbyl-palmitate showed a consistent positive association with all longevity signatures, 

except for rapamycin (adjusted p-value < 0.055). AZD8055 and rilmenidine also showed a 

positive association with some of the signatures, including CR and GH deficiency, but not 

with the gene sets associated with the effect on lifespan. This inconsistency may be due to 

imperfect translation of gene expression responses from human cell lines to mouse in vivo 
models or insufficient sampling size. Yet, in general, this pilot study demonstrates 

applicability of this approach for the identification of new interventions with a desirable 

effect on gene expression and offers appealing candidates for further studies.
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CONCLUSIONS

We collected and characterized RNAseq data on several lifespan-extending interventions, 

including three that had never been analyzed at the level of gene expression, across sexes, 

doses and age groups. We observed a significant feminizing pattern of gene expression 

changes in males in response to genetic and dietary interventions at both transcriptomic and 

metabolomic levels. This effect was associated with perturbations of common genes and 

molecular pathways including those regulated by GH. The feminizing effect couldn’t 

explain lifespan extension but was associated with the diminution of sex-associated 

differences pointing to the converging effect of lifespan-extending interventions on hepatic 

transcriptome and metabolome across sexes.

Expanding this analysis with available microarray data allowed us to define gene expression 

signatures associated with individual interventions (rapamycin, CR and GH deficiency) as 

well as shared across longevity interventions. We observed that, despite some differences, 

most of them perturb similar genes and pathways, including upregulation of XMEs regulated 

by NRF2, TCA cycle, oxidative phosphorylation, and ribosome protein genes, and 

downregulation of complement and coagulation cascades. Many of these functions turned 

out to be affected across tissues. Moreover, some genes involved in stress response, 

apoptosis, glucose metabolism, and immune response, as well as certain pathways, such as 

oxidative phosphorylation, were found to be commonly perturbed across interventions and, 

at the same time, associated with the effect on lifespan, serving as both qualitative and 

quantitative predictors of lifespan extension. These genes and processes seem to be the most 

persistent and reliable determinants of longevity in mice and deserve further exploration. We 

further developed a publicly available web application GENtervention that can be used to 

interrogate this dataset.

Finally, we employed gene expression signatures to identify new lifespan-extending 

interventions based on gene expression data. Here, our algorithm could distinguish two 

mouse strains of the same age with different expected lifespans. We have also found that 

hypoxia and hepatocyte-specific Keap1 knockout are positively associated with longevity 

signatures at the level of gene expression and, therefore, appear to be strong candidates for 

experimental validation. In addition, we demonstrated applicability of this method to predict 

new candidate lifespan-extending compounds using CMap and validated the detected 

positive association of gene expression profile induced by KU-0063794 and ascorbyl-

palmitate, making them appealing candidates for further investigation and survival studies.

Limitations of study

Compared to previous research that focused on the effects of single or a small number of 

lifespan-extending interventions, the current study aggregated transcriptomic responses 

across a wide range of interventions that were applied to different strains, sexes and age 

groups. Although such heterogeneity of experimental design appears to be a crucial 

advantage supporting robustness of the identified patterns, it is associated with variability of 

gene expression responses. This may, in turn, result in the decreased statistical power and 

complicate direct comparison of interventions. It should also be noted that the compounds 

predicted by CMap are based on the comparison of mouse in vivo longevity patterns and 
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responses in human cell lines, and this may introduce bias related to differences across 

biological models and species. Therefore, gene expression responses to drugs identified with 

such approach should be validated in mouse tissues, as demonstrated in our work. In 

addition, the effect of candidate interventions on lifespan needs to be experimentally 

confirmed in survival studies or tested with biomarkers of aging before they can be 

designated as lifespan-extending interventions. Despite these potential limitations, we 

believe that the approach developed in this work will greatly facilitate a search for new 

interventions and help screen candidate genes and drugs prior to costly lifespan analyses.

STAR METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Vadim N. Gladyshev (vgladyshev@rics.bwh.harvard.edu). 

This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals and Methionine Restriction—Mice were subjected for methionine restriction 

(MR) as described in (Ables et al., 2012, 2015). Seven-weeks old male C57BL/6J mice were 

purchased from The Jackson Laboratory (Stock #000664, Bar Harbor, ME, USA) and 

housed in a conventional animal facility maintained at 20 ± 2°C and 50 ± 10% relative 

humidity with a 12 h light: 12 h dark photoperiod. During a 1-week acclimatization, mice 

were fed Purina Lab Chow #5001 (St. Louis, MO, USA). Mice were then weight matched 

and fed either a control (CF; 0.86% w/w methionine) or MR (0.12% w/w methionine) diet 

consisting of 14% kcal protein, 76% kcal carbohydrate, and 10% kcal fat (Research Diets, 

New Brunswick, NJ, USA) for 52 weeks. Body weight and food consumption were 

monitored twice weekly. Young mice were 8 weeks old (2 months) at the initiation of the 

experiments and 60 weeks old (14 months) upon termination. On the day of sacrifice, 

animals were fasted for 4 hours at the beginning of the light cycle. After mice were 

sacrificed by CO2 asphyxiation, liver samples were collected, flash frozen, and stored at 

−80°C until analyzed. All experiments were approved by the Institutional Animal Care and 

Use Committee of the Orentreich Foundation for the Advancement of Science, Inc. (Permit 

Number: 0511MB).

Animals and Lifespan-Extending Interventions—Other mice used in this study were 

obtained from the colonies at University of Michigan Medical School and subjected to 

interventions as described in (Harrison et al., 2014; Miller et al., 2011, 2014; Strong et al., 

2016). Liver samples corresponding to lifespan-extending interventions for RNA-seq and 

metabolome analysis were taken at 6 and 12 months of age from male and female mice 

treated by drugs or exposed to caloric restriction (CR) diet from 4 months of age along with 

control mice, which were untreated littermate mice matched by age and sex. The design of 

experiment was in accordance with intervention testing program (ITP) studies, which 

confirmed the lifespan-extending effect of these interventions. Interventions analyzed at 6 

months of age included 40% CR, Protandim™ (1,200 ppm, as in (Strong et al., 2016)), 

rapamycin (42 ppm, as in (Miller et al., 2014)), 17-a-estradiol (14.4 ppm, as in (Strong et al., 
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2016)) and acarbose (1000 ppm, as in (Harrison et al., 2014)), while interventions analyzed 

at 12 months of age included 40% CR, acarbose (1000 ppm, as in (Harrison et al., 2014)) 

and rapamycin (14 ppm, as in (Miller et al., 2011, 2014)). All organisms received the same 

diet (Purina 5LG6) made in the same commercial diet kitchen (TestDiet, Richmond, IN, 

USA). All mice, except for those subjected to CR, were fed ad libitum. Genetically 

heterogenous UM-HET3 strain, in which each mouse had unique genetic background but 

shared the same set of inbred grandparents (C57BL/6J, BALB/cByJ, C3H/HeJ, and DBA/

2J), was used in this setting. This cross produces a set of genetically diverse animals, which 

minimizes the possibility that the identified signatures represent gene expression patterns 

specific to inbred lines. Moreover, this strain was used by ITP to test the lifespan extension 

potential of the compounds analyzed in this study. In all cases, interventions continued until 

the animals were sacrificed.

Liver samples from Snell dwarf (Flurkey et al., 2001) and GHRKO (Coschigano et al., 2003) 

males, and their sex- and age-matched littermate controls, were taken from mice at 5 months 

of age belonging to (PW/J × C3H/HeJ)/F2 and (C57BL/6J × BALB/cByJ)/F2 strains, 

respectively.

All mice were kept at a density of 3 males or 4 females per ventilated cage, in a specific-

pathogen free vivarium, with 12:12 light:dark cycle. Animals were moved to fresh cages 

every 14 days. Maintenance of specific-pathogen free status was documented quarterly, 

using sentinel mice exposed to spent bedding sampled from each experimental cage, and 

evaluated by a mixture of fecal RT-PCR tests and serology for anti-viral antibodies. Health 

was evaluated daily for each mouse. Veterinary oversight was provided by faculty and 

residents of the Unit for Laboratory Animal Medicine, and all protocols were approved by 

the University of Michigan's Institutional Animal Care and Use Committee.

Animals and Compounds with Predicted Effect—3-month old UM-HET3 mice were 

obtained from the colonies at University of Michigan Medical School and subjected to diets 

containing compounds predicted with the longevity gene expression signatures via 

Connectivity Map (CMap): KU-0063794 (10 ppm, as in (Yongxi et al., 2015)), AZD8055 

(20 ppm, as in (García-Martínez et al., 2011)), ascorbyl-palmitate (6.3 ppm, as in (Veurink et 

al., 2003)) and rilmenidine (10 ppm, as in (Jackson et al., 2014)) for 1 month. Liver samples 

were taken from treated mice along with their untreated sex- and age-matched littermates, 

which were fed ad libitum. In all cases, interventions continued until the animals were 

sacrificed. All animal protocols were approved by the Institutional Animal Care and Use 

Committee. Housing conditions were identical to those described previously.

METHOD DETAILS

Gene Expression Profiling of Liver Tissues—For RNA-seq analysis corresponding 

to lifespan-extending interventions, 3 biological replicates were used for each experimental 

group, including both treated and control mice, resulting in the total of 78 samples (Table 

S1A). For RNA-seq analysis corresponding to drugs predicted with longevity signatures, we 

used 4 and 8 biological replicates per experimental group for treated and control mice, 
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respectively, resulting in the total of 24 samples (Table S1E). RNA was extracted from liver 

tissues with PureLink RNA Mini Kit as described in the protocol and passed to sequencing.

For samples corresponding to lifespan-extending interventions, paired-end sequencing with 

100 bp read length was performed on Illumina NovaSeq 6000 platform. For samples 

corresponding to predicted compounds, libraries were prepared as described in 

(Hashimshony et al., 2016) and sequenced with 100 bp read length option on the Illumina 

HiSeq 2500.

Metabolite Profiling of Liver Tissues—Metabolite profiling of male and female 

UMHET-3 mice subjected to control diet, acarbose and rapamycin (Data S1A) was 

performed using four complimentary liquid chromatography-mass spectrometry (LC-MS) 

methods, including HILIC analysis of water soluble metabolites in the positive ionization 

mode (HILIC-pos), HILIC analysis of water soluble metabolites in the negative ionization 

mode (HILIC-neg), positive ion mode analysis of polar and non-polar plasma lipids (C8-

pos) and negative ion mode analysis of free fatty acids and bile acids (C18-neg), as in 

(Paynter et al., 2018). We utilized at least 5 and 8 biological replicates per experimental 

group for treated and control mice, respectively, resulting in the total of 39 samples (Table 

S1B). The samples were homogenates of freshly frozen tissues of sacrificed animals, 

matched by age and sex.

Raw data from Q Exactive/Exactive Plus instruments were processed using TraceFinder 

software (Thermo Fisher Scientific; Waltham, MA) and Progenesis QI (Nonlinear 

Dynamics; Newcastle upon Tyne, UK) while MultiQuant (SCIEX; Framingham, MA) was 

used to process 5500 QTRAP data. For each method, metabolite identities were confirmed 

using authentic reference standards or reference samples.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNAseq Data Processing and Analysis—Quality filtering and adapter removal were 

performed using Trimmomatic (version 0.32) (Bolger et al., 2014). Processed/cleaned reads 

were then mapped with STAR (version 2.5.2b) (Dobin et al., 2013) and counted via 

featureCounts (version 1.5) (Liao et al., 2014). To filter out genes with low number of reads, 

we left only genes with at least 6 reads in at least 66.6% of samples, which resulted in 

12,861 and 8,999 detected genes according to Entrez annotation for RNAseq corresponding 

to lifespan-extending interventions and compounds predicted by CMap, respectively. 

Filtered data was then passed to RLE normalization (Anders and Huber, 2010).

Differential expression analysis was performed with R package edgeR (Robinson et al., 

2009). For individual interventions, we declared gene expression to be significantly changed, 

if p-value, adjusted by Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995), 

was smaller than 0.05 and fold change (FC) was bigger than 1.5 in any direction. When 

several doses and age groups were presented, we added separate factors accounting for that 

to the model and looked for genes significantly changed across these settings. As dose and 

age groups experiments were run separately and had their own controls, such factors allowed 

us to adjust for possible batch effect. The effects of certain interventions on different sexes 

were investigated separately. To determine the statistical significance of overlap between 
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differentially expressed genes corresponding to certain interventions, we performed Fisher 

exact test separately for up- and downregulated genes, considering 12,861 detected genes as 

a background.

When performing analysis of the feminizing effect, gene expression differences were 

identified between control males and females from UM-HET3 strains for each age group. 

Gene was declared significant if p-value, adjusted by Benjamini-Hochberg procedure, was 

smaller than 0.05 and FC was bigger than 1.5 in any direction. Identified lists of genes are 

stored in Table S3A. The intersection of these gene sets was used for subsequent calculation 

of the feminizing effect and distances between sexes. The statistical significance of 

correlation between sex-associated differences and response to certain intervention 

(“feminizing effect”) was calculated using Spearman correlation test and adjusted for 

multiple comparisons with Benjamini-Hochberg procedure. When calculating correlation 

between response to certain intervention in specific age group (6 or 12 months) and female-

associated differences, the latter were calculated using gene expression data for control 

males and females from the other age group (12 or 6 months, respectively). This approach 

provided us with unbiased correlations, based on different control samples and, therefore, 

free of regression to the mean effect. In case of MR, GHRKO and Snell dwarf mice, which 

possess their own controls, the feminizing effect was calculated using both age groups. 

Feminizing effect calculations are shown in Table S3C.

Differences in the feminizing effect of interventions in certain age groups between males 

and females were tested by Spearman correlation test, applied to the difference in log2FC of 

gender-associated genes in response to the specified conditions between males and females, 

and female-associated differences based on the other age group, with the following 

Benjamini-Hochberg adjustment. Manhattan distance between male and female gene 

expression profiles was calculated for individual samples in a pairwise manner using 

intersection of sex-specific gene sets across age groups. Unpaired Mann-Whitney test and 

Benjamini-Hochberg adjustment were used to assess statistical significance of difference 

between gender gene expression distances of control mice and animals subjected to 

interventions. Overlap between statistically significant sex-associated genes and genes 

differentially expressed in response to interventions was estimated by Fisher exact test 

similarly to comparison of individual interventions.

Heatmap of feminizing genes was created based on feminizing changes, aggregated across 

age groups, and log2FC of corresponding genes in response to individual interventions, 

aggregated across age groups as well (using edgeR). Only genes differentially expressed 

between control males and females (637 genes) were used to build the heatmap. Clustering 

was performed with average hierarchical approach and Spearman correlation distance.

To investigate genes responsible for the feminizing effect, we used single edgeR model to 

identify genes with changes associated with the feminizing effect, calculated within 

unbiased correlation analysis. We declared a gene to be significantly changed, if its 

Benjamini-Hochberg adjusted p-value was smaller than 0.05. We then took an intersection of 

sex-associated genes, aggregated across age groups, and genes associated with the 
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feminizing effect, separately for up- and downregulated genes, to obtain the final list of 

common genes. This resulted in 164 upregulated and 153 downregulated genes.

Metabolome Data Processing and Analysis—To filter out metabolites with low 

coverage, only metabolites detected in at least 66.6% of the samples were remained. 

Afterwards, filtered data were log10-transformed and scaled (Data S1B). The data were 

further aggregated with our previous metabolome dataset on acarbose, rapamycin, CR, 

GHRKO and Snell dwarf mice models together with the corresponding controls, obtained 

using similar experimental procedure (Ma et al., 2015). The second dataset was 

preprocessed in the same way as the first one. Genetic background, age groups and treatment 

doses in both datasets were consistent with those used for gene expression analysis (Table 

S1B).

Analysis of the feminizing effect was performed similarly to that described for gene 

expression. First, metabolites that differ between control males and females were identified 

for each dataset using limma. Metabolite was declared significant if p-value, adjusted by 

Benjamini-Hochberg procedure, was less than 0.1. The identified lists of metabolites are 

shown in Table S3B. Then, statistical significance of the feminizing effect was calculated 

using Spearman correlation test and adjusted for multiple comparisons with Benjamini-

Hochberg. For unbiased analysis, when calculating correlation between the response to 

certain interventions in specific datasets (new or published one) and female-associated 

differences, the latter were used from the metabolite data corresponding to the other dataset 

(the published or the new one, respectively) together with the set of metabolites identified 

for that dataset. In the case of GHRKO and Snell dwarf mice, which had their own controls, 

the feminizing effect was calculated using both datasets. The findings involving feminizing 

effect calculations are shown in Table S3C.

Differences in the feminizing effect of certain interventions in certain datasets between 

males and females was tested by Spearman correlation test, applied to the difference in 

log2FC of gender-associated metabolites (identified based on the other dataset) in response 

to the specified conditions between males and females, and female-associated differences 

from the other dataset, with the following Benjamini-Hochberg adjustment. Manhattan 

distance between male and female metabolite profiles was calculated for individual samples 

in a pairwise manner using intersection of sex-specific metabolite sets across datasets. 

Unpaired Mann-Whitney test and Benjamini-Hochberg adjustment were used to assess 

statistical significance of difference between gender-associated metabolite profile distances 

of control mice and animals subjected to interventions.

Functional Enrichment Analysis—For identification of functions enriched by genes 

differentially expressed in response to individual interventions within our RNAseq data and 

aggregated across datasets (CR, rapamycin and GH deficiency interventions), commonly 

changed across interventions (common signatures) as well as associated with the effect on 

lifespan, we performed gene set enrichment analysis (GSEA) (Subramanian et al., 2005) on 

a pre-ranked list of genes based on log10(p-value) corrected by the sign of regulation, 

calculated as:
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− log10(pv) × sgn(l f c),

where pv and lfc are p-value and logFC of certain gene, respectively, obtained from edgeR 

output, and sgn is signum function (is equal to 1, −1 and 0 if value is positive, negative and 

equal to 0, respectively). REACTOME, BIOCARTA, KEGG and GO biological process and 

molecular function from Molecular Signature Database (MSigDB) have been used as gene 

sets for GSEA (Subramanian et al., 2005). q-value cutoff of 0.1 was used to select 

statistically significant functions. Significance scores of enriched functions were calculated 

as:

signi f icance score = − log10(qv) × sgn(NES),

where NES and qv are normalized enrichment score and q-value, respectively.

Horizontal and vertical barplots were shown for manually chosen statistically significant 

functions with size of barplot being dependent on value of significance score. For functions 

associated with the lifespan effect and common signatures across tissues, heatmap colored 

based on significance scores was used. Clustering of functions enriched by individual 

interventions within RNAseq data was performed based on NES of functions with 

statistically significant enrichment (q-value < 0.1) by at least one intervention. Clustering 

has been performed with hierarchical average approach and Spearman correlation distance.

To identify functions enriched by genes shared by differences between males and females 

along with changes in response to lifespan-extending interventions in males, we performed 

Fisher exact test using Database for Annotation, Visualization and Integrated Discovery 

(DAVID) (Huang et al., 2009a, 2009b). INTERPRO, KEGG and GO BP and MF databases 

were used. We declared functions to be enriched if their Benjamini-Hochberg adjusted 

Fisher exact test p-value was smaller than 0.1.

Aggregation of Datasets for Meta-Analysis—To identify signatures associated with 

lifespan extension and the effect of certain interventions, we expanded our data with publicly 

available datasets from Gene Expression Omnibus (GEO) (Edgar, 2002) and ArrayExpress 

(Kolesnikov et al., 2015) databases: E-MEXP-153 (Amador-Noguez et al., 2004), E-

MEXP-2320 (Selman et al., 2009), E-MEXP-347 (Amador-Noguez et al., 2005), E-

MEXP-748 (Selman et al., 2006), GSE1093 (Tsuchiya et al., 2004), GSE11845 (Pearson et 

al., 2008), GSE2431 (Dhahbi et al., 2005), GSE26267 (Streeper et al., 2012), GSE3129 

(Boylston et al., 2006), GSE3150 (Boylston et al., 2006), GSE36838 (Zhou et al., 2012), 

GSE39313 (Zhang et al., 2012), GSE40936 (Martin-Montalvo et al., 2013), GSE40977 (Fok 

et al., 2014b), GSE46895 (Mercken et al., 2014a), GSE48331 (Fok et al., 2014a), GSE48333 

(Fok et al., 2014a), GSE50789 (Collino et al., 2013), GSE51108 (Sun et al., 2013), 

GSE55272 (Hofmann et al., 2015), GSE61233 (Rusli et al., 2015), GSE6323 (Edwards et 

al., 2007), GSE70857, GSE81959 (Mitchell et al., 2016) and GSE988 (Rowland et al., 

2005). For the analysis of signatures associated with certain interventions (CR, rapamycin, 

GH deficiency), we integrated available gene expression data obtained from liver of mice 
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from healthy genetic strains on standard diets subjected to CR, rapamycin and mutations 

associated with GH deficiency (Ames dwarf mice, GHRKO, Little mice, Snell dwarf mice). 

For the analysis of signatures shared across lifespan-extending interventions, we included 

only the data with the experimental design statistically confirmed to extend lifespan. Finally, 

for the analysis of signatures associated with the lifespan extension effect, we integrated 

datasets on interventions with available and reliable survival data corresponding to the same 

experimental design (sex, strain, dose, age when the intervention started). In total, our 

hepatic meta-analysis covered 17 different interventions presented in 77 control-intervention 

datasets from 22 different sources (including ours) (Fig. 3D, Table S1). The same approach 

was used to obtain microarray data corresponding to white adipose tissue (WAT) (9 control-

intervention datasets from 5 sources: GSE60596 (Soo et al., 2015), GSE70857, GSE75574 

(Barger et al., 2017), GSE39313 (Zhang et al., 2012) and GSE55272 (Hofmann et al., 2015)) 

and skeletal muscle (13 control-intervention datasets from 9 sources: GSE11291 (Barger et 

al., 2008), GSE11845 (Pearson et al., 2008), GSE39313 (Zhang et al., 2012), GSE40936 

(Martin-Montalvo et al., 2013), GSE49000 (Mercken et al., 2014b), GSE55272 (Hofmann et 

al., 2015), GSE6323 (Edwards et al., 2007), GSE70857 and GSE75574 (Barger et al., 2017)) 

(Table S1D).

To aggregate data across different platforms and studies, we developed the following 

method. First, data within each study was preprocessed independently and log-transformed 

to conform to normal distribution if needed. Then, filtering of low-covered genes was 

performed with soft threshold. Then, all identifiers were mapped to Entrez ID gene format, 

and genes not detected in our RNAseq data were filtered out. This resulted in the coverage 

of 12,861 genes or less if some of these genes were filtered out because of the low coverage. 

Afterwards, samples within every study were normalized by quantile normalization and 

scaling, followed by multiplication by the certain value to make it on the same scale as 

RNAseq data with more natural interpretation. Finally, mean and standard error of logFC of 

every gene for every response to intervention was calculated together with p-value (along 

with Benjamini-Hochberg adjusted p-value) estimated by edgeR (Robinson et al., 2009) and 

limma (Ritchie et al., 2015) for RNAseq and microarrays datasets, respectively. This resulted 

in 2 values representing every gene from every dataset. Importantly, one study may include 

several datasets if several interventions or settings have been analyzed there, and sometimes, 

different interventions or doses share the same control samples. This may be a source of 

batch effect, which we removed during subsequent steps of the analysis.

Scaling of genes within every sample, performed before calculation of logFC, results in 

similar and comparable distribution of gene changes across different studies and platforms. 

Importantly, scaling is not performed after calculation of logFC as different interventions 

may lead to different size of gene expression profile perturbation. Indeed, lifespan-extending 

genetic manipulations generally lead to bigger perturbation of transcriptome compared to 

diets and compounds (Fig. S1). To demonstrate this effect, we calculated median and 

standard deviation of logFC distribution across the whole transcriptome for every individual 

dataset. Median may be interpreted as imbalance between up- and downregulated changes 

whereas standard deviation corresponds to the scale of perturbation. To visualize distribution 

of specified metrics for different kinds of interventions (pharmacological, dietary and 

genetic manipulations), we used violinplots. Unpaired Mann-Whitney test was used to 
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compare medians and standard deviations of logFC distributions corresponding to different 

kinds of interventions.

Gene Signatures of Individual Interventions—logFC calculated for every dataset 

were further used as inputs to the statistical tests for meta-analysis. To account for standard 

error of logFC and remove batch effect related to the belonging of several datasets to the 

same study or same control sampling within the study, we applied mixed-effect model using 

R package metafor (Viechtbauer, 2010). As an input, we used both mean and standard error 

of logFC. Such approach allowed us to account for the size of the effect and variance of 

estimated gene expression change within each individual dataset, which provides a more 

sensitive and accurate analysis compared to previous studies focused on the comparison of 

lists of differentially expressed genes.

When calculating gene expression changes of individual interventions across different 

sources (such as CR and rapamycin), to remove batch effect, belonging to the same study or 

control group was considered as a random term. When calculating such changes for GH 

deficiency interventions, we also included type of intervention as a random term. Using this 

procedure, we obtained aggregated logFC and corresponding p-value for every gene. 

Besides standard p-value, we also calculated leave-one-out (LOO) and robust p-value. ‘LOO 

p-value’ is defined as the highest p-value after removal of every study one by one. On the 

other hand, ‘robust p-value’ is the lowest p-value after the same procedure. Benjamini-

Hochberg procedure was used to adjust every type of p-value for multiple comparisons. We 

declared genes to be differentially expressed in response to CR, rapamycin and GH 

deficiency across datasets if adjusted p-value was smaller than 0.01 and their LOO p-value 

was smaller than 0.01. The significance of overlap between the lists of differentially 

expressed genes obtained from meta-analysis was estimated by Fisher exact test separately 

for up- and downregulated genes, considering 12,861 detected genes as background.

Similarly, aggregated logFC together with p-values were calculated for all interventions 

presented in our data by multiple sources. For interventions presented as a single dataset, 

logFC and p-values were obtained from individual datasets as described previously. For 

interventions measured in several datasets from the same source, single edgeR or limma 

model was used depending on the origin of the data (RNAseq or microarray). This resulted 

in the matrix containing aggregated log2FC values of every gene in response to different 

interventions. To visualize change of each gene within each individual intervention, we built 

barplots representing aggregated log2FC of a certain gene in response to all intervention 

where it has been detected. Statistically significant changes were defined based on 

Benjamini-Hochberg adjusted p-value.

To identify upstream regulators of the detected gene expression response to CR, rapamycin 

and GH deficiency, we applied the TRANSFAC platform (Matys, 2006). First, for every 

individual dataset, we identified transcription factor binding to sequences enriched in the 

promoters of differentially expressed genes using the platform. This resulted in a matrix, 

where every transcription factor was either enriched (1) or not (0) for the certain dataset. At 

this step, we excluded redundant IDs corresponding to different binding patterns of the same 

factor by considering factor to be enriched if at least one of its patterns is enriched. This 
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resulted in 1,466 different upstream regulators. To identify factors overrepresented across 

different datasets of the same intervention, we applied permutation version of binomial 

statistical test as described in (Plank et al., 2012). Briefly, to identify the p-value threshold 

corresponding to the desired FDR (equal to 0.01), permutation test is performed, where 1 

and 0 (corresponding to enrichment of different transcription factors) are shuffled within 

each dataset and number of false positives for different binomial test p-value thresholds are 

calculated. Based on the obtained numbers, p-value threshold ensuring FDR threshold of 

0.01 is determined. The significance of overlap between enriched upstream regulators of 

different interventions was estimated by Fisher exact test, considering 1,466 non-redundant 

transcription factors as background.

Mutual Organization of Interventions—To assess similarity of gene expression 

response across interventions, we built a heatmap of aggregated log2FC of genes 

significantly changed in response to CR, rapamycin and GH deficiency interventions (2507 

genes in total). Complete hierarchical clustering was employed for the heatmap. Correlation 

matrix representing similarity between aggregated logFC of different interventions was 

calculated based on Spearman correlation coefficient.

To calculate correlations between interventions in unbiased way, we applied the following 

approach. For every pair of interventions, including comparison of intervention with itself, 

we examined all pairs of datasets from different sources. For each such pair we selected 250 

genes consisting of 125 genes with the most significant expression change (with the lowest 

p-values) from each dataset and calculated Spearman correlation coefficient within the pair. 

We reiterated this algorithm and, as a result, for every pair of interventions obtained 

distribution of Spearman correlation coefficients, calculated between datasets from different 

sources. For CR and rapamycin, we visualized these distributions using violinplot. One-

sample Mann-Whitney test and Benjamini-Hochberg adjustment were used to check if 

means of correlation coefficients are different from 0 with statistical significance. We 

declared correlation coefficient to be significant if adjusted p-value was smaller than 0.1.

For correlation matrix we employed median values of Spearman correlation coefficients. By 

filtering out comparisons of datasets from the same source, we removed possible batch effect 

and ended up with independent and unbiased comparison of interventions. However, as 

some interventions were presented only within the same source, we couldn’t estimate 

unbiased correlation for such cases. This missing data was visualized by grey boxes. The 

same was sometimes true for comparison of intervention with itself, as in this case we also 

employed only datasets from different sources. For this reason, correlation coefficient of 

intervention with itself was not equal to 1 in resulted unbiased correlation matrix. Complete 

hierarchical clustering approach was employed for visualization of correlation matrix.

To demonstrate similarities between different interventions in network mode, we employed 

Cytoscape (Shannon et al., 2003). Only edges between interventions with significant positive 

correlation coefficients (median Spearman correlation coefficient > 0 and adjusted Mann-

Whitney p-value < 0.1) were shown. The width of edge was defined by the log10(adjusted p-

value). Smaller p-value led to wider edge.
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Gene Signatures of Lifespan Extension—To identify hepatic genes, whose 

expression change is shared across lifespan-extending interventions, we filtered out all 

interventions and settings with unproven lifespan extension effects. To account for possible 

differences in the intervention effect on lifespan across different sexes, ages, strains and 

doses, we only considered the datasets, whose experimental settings were shown to produce 

a statistically significant extension of lifespan. Therefore, for example, 40% CR in C57BL/6 

females was excluded from the analysis as this setting doesn’t lead to a statistically 

significant lifespan extension, contrary to 20% CR applied to the same mouse strain 

(Mitchell et al., 2016). In the case of drugs, we also filtered out the datasets containing the 

response to compounds, which had not been confirmed by ITP studies (such as metformin 

and resveratrol).

First, for every single gene we calculated number of interventions, where it is differentially 

expressed based on adjusted aggregated p-value estimated as described previously. We 

considered gene to be differentially expressed if its adjusted aggregated p-value was smaller 

than 0.1. However, this approach overfits genes changed in response to similar interventions 

(such as GH deficiency interventions) and doesn’t take into account possible consistent 

changes, which may be, however, not significant due to low sampling size or high variance. 

To overcome this problem, we applied single mixed-effect model to every gene as described 

previously and looked for genes, whose aggregated logFC across lifespan-extending 

interventions is significantly different from 0. Here, however, we also included the type of 

intervention as a random term together with correlation matrix specifying similarities 

between general response of the interventions. This correlation matrix was taken from 

unbiased mutual organization analysis described previously. We declared genes to be 

significantly shared across interventions if Benjamini-Hochberg adjusted robust p-value, 

obtained after removal of every type of intervention one by one, was smaller than 0.05. The 

same approach was used to identify genes shared across lifespan-extending interventions in 

the skeletal muscle and WAT. Heatmap with expression changes of significant genes across 

individual datasets was clustered using a complete hierarchical approach.

To identify genes associated with the lifespan effect, first, we estimated three main metrics 

of lifespan for every available setting, including median lifespan ratio (in logarithmic scale), 

maximum lifespan ratio (in logarithmic scale), defined as ratio of average lifespan of 10% 

most survived individuals, and median hazard ratio, defined as ratio of slopes of survival 

curves at the median point (timepoint where 50% of cohort is remained survived). These 

metrics were obtained from published survival data for the corresponding interventions. To 

account for heterogeneity of our data, we integrated gene expression and longevity studies 

only if they were associated with the same experimental design (sex, dose, strain, age when 

intervention started). We then calculated average metric values across the studies to obtain 

most consistent and reliable estimates. Interventions or settings, for which no appropriate 

longevity study was available, were excluded.

Afterwards, we applied mixed-effect model as described previously to identify genes 

associated with each of the 3 numeric metrics of the lifespan effect. Control group and type 

of intervention were considered as random term, and correlation matrix between 

interventions was used to define covariance matrix. We declared genes to be significantly 
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associated with the lifespan effect if Benjamini-Hochberg adjusted p-value and LOO p-

value, obtained after removal of every intervention one by one, were both smaller than 0.05. 

The significance of overlap between lists of genes associated with different metrics of the 

lifespan effect was estimated by Fisher exact test separately for genes with positive and 

negative association, considering 12,861 detected genes as a background. Complete 

hierarchical clustering was used to sort genes on heatmap, representing logFC of genes with 

significant association across individual datasets. Individual datasets were sorted there based 

on their effect on maximum lifespan.

Overlap between gene signatures associated with lifespan extension and genes, whose 

manipulation was demonstrated to extend or shorten mouse lifespan, was estimated by 

Fisher exact test, as described previously. The latter set was obtained from GenAge database 

and included 84 and 44 genes with pro- and anti-longevity effects, respectively (De 

Magalhães and Toussaint, 2004).

Prediction of Lifespan-Extending Effects—To test association of interventions with 

longevity signatures related to individual interventions (CR, rapamycin and GH deficiency), 

common changes and lifespan effect association, we employed GSEA-based approach. First, 

for every signature we specified 250 genes with the lowest p-values and divided them into 

up- and downregulated genes. These lists were considered as gene sets. Then we ranked 

genes related to interventions of interest based on their p-values, calculated as described in 

functional enrichment section. When running association test for lifespan-extending 

interventions (Fig. 4A), we used p-values obtained from the aggregated analysis as described 

earlier.

For interventions from publicly available sources (Fig. 7E (upper)), we downloaded them 

from GEO under the following accession numbers: GSE21060 (Ramadoss et al., 2010), 

GSE77082 (Alonso et al., 2017), GSE15891 (Baze et al., 2010b), GSE11287 (Osburn et al., 

2008), GSE49000 (Mercken et al., 2014b), GSE10421 (Kautz et al., 2008) and GSE104234 

(Rhoads et al., 2018). Data corresponding to Sirt6 overexpression (Kanfi et al., 2012) were 

downloaded via the link provided in the original paper. When running association test for the 

rhesus monkey data, we converted monkey genes to mouse orthologs using Ensembl 

BioMart platform. We preprocessed each dataset, performed quantile normalization and 

Entrez ID transformation and applied limma model for calculation of p-values, which were 

converted to log10(p-value) corrected by the sign of regulation as explained earlier.

For compounds predicted with the longevity signatures via CMap, we calculated p-values of 

gene expression changes compared to control independently for every drug using edgeR. We 

then converted them to log10(p-value) corrected by the sign of regulation as described earlier 

and proceeded to GSEA-based analysis.

We calculated GSEA scores separately for up- and downregulated lists of gene set as 

described in (Lamb et al., 2006) and defined final GSEA score as a mean of the two. To 

calculate statistical significance of obtained GSEA score, we performed permutation test 

where we randomly assigned genes to the lists of gene set maintaining their size. To get p-

value of association between certain intervention and longevity signature, we calculated the 
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frequency of real final GSEA score being bigger by absolute value than random final GSEA 

scores obtained as results of 3,000 permutations. To adjust for multiple comparisons, we 

performed Benjamini-Hochberg procedure. Resulted adjusted p-values were converted into 

significance scores as:

signi f icance score = − log10(ad j . pv) × sgn(GSEA score),

where adj. pv and GSEA score are BH adjusted p-value and final GSEA score, respectively. 

Heatmaps were colored based on values of significance scores.

DATA AND CODE AVAILABILITY

RNAseq data are available at Gene Expression Omnibus (GEO) (Edgar, 2002) under 

accession number GSE131901 (SubSeries GSE131754 and GSE131868).

Metabolome data are stored in Data S1.

GENtervention App is available via the following link: http://gladyshevlab.org/

GENtervention/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CONTEXT AND SIGNIFICANCE

Many interventions are known that extend the lifespan of mammals, including drugs, 

diets and genetic manipulations. However, a systematic understanding of the general 

principles of lifespan control is lacking. Tyshkovskiy et al. performed a comprehensive 

analysis of existing lifespan-extending interventions and their effect on gene expression 

in mice. They discovered that certain patterns of gene expression are associated with 

longevity regardless of the intervention type. Researchers then used these ‘longevity 

signatures’ to predict candidate lifespan-extending drugs. It may be possible to one day 

translate these findings to maximize human lifespan and delay the effects of aging.
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HIGHLIGHTS

• Sex-specific differences are decreased in response to longevity interventions

• Many interventions, but not rapamycin, exhibit similar transcriptomic 

responses

• Certain gene expression changes are associated with longevity across 

interventions

• Longevity signatures may be used to discover new lifespan-extending 

interventions
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Figure 1. RNAseq of mouse hepatic response to longevity interventions
(A) RNAseq dataset. X denotes utilized experimental designs (n=3 for each group). 

Interventions, which have not been previously analyzed at the level of gene expression, are 

colored in green. Grey X marks denote experimental designs that failed to extend lifespan 

with statistical significance.

(B) Overlap of significant gene expression changes in response to longevity interventions.

(C) Functions enriched by genes changed in response to lifespan-extending 
interventions. Normalized enrichment scores (NES) of functions enriched by at least one 

intervention are shown.

(D) Functions enriched by up- (up) and downregulated (down) genes across 
interventions. Significance score, calculated as log10(q-value) corrected by the sign of 

regulation, is plotted on the y axis. FDR threshold of 0.1 is shown by dotted lines. The 

whole list of enriched functions is in Table S2.

Cytochrome P450: Drug metabolism by cytochrome P450; Glutathione: Glutathione 

metabolism; Ox Phosph: Oxidative phosphorylation; TCA cycle: Citrate Cycle/TCA Cycle; 

FA oxidation: Fatty acid β-oxidation; Mito Translation: Mitochondrial translation; Snell: 

Snell dwarf mice; F: Females; M: Males.
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See also Figure S1 and Tables S1 and S2.
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Figure 2. Feminizing effect of lifespan-extending interventions
(A) Overlap of genes differentially expressed between males and females and in 
response to interventions. Fisher exact test adjusted p-value < 4.1·10−4 for overlap of all 

presented interventions with sex-associated genes.

(B) Feminizing effect of gene expression changes across interventions. The feminizing 

effect is defined as correlation between log2FC of gender-associated genes across sexes and 

in response to certain intervention. Error bars represent 90% confidence intervals.

(C) Diminution of gender gene expression differences by lifespan-extending 
interventions. Each dot represents a distance between the expression of sex-specific genes 

in 2 samples (corresponding to male and female). All pairwise comparisons between single 

samples are shown. Distances are centered around the average distance between 

corresponding control samples. * P.adjusted < 0.1; ** P.adjusted < 0.05; *** P.adjusted < 

0.01.

(D) Feminizing effect of metabolite changes across interventions. Error bars represent 

90% confidence intervals.

(E) Diminution of gender metabolome differences by lifespan-extending interventions. 
Each dot represents a distance between the level of sex-specific metabolites in 2 samples 

(corresponding to male and female). All distances are centered around the average distance 

between corresponding control samples. * P.adjusted < 0.1; ** P.adjusted < 0.05; *** 

P.adjusted < 0.01.
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(F) log2FC of genes differentially expressed between females and males (Fem changes) and 

in response to longevity interventions.

(G) Functional enrichment of feminizing changes across interventions. Major urinary 

proteins are annotated by INTERPRO, other presented functions are annotated by KEGG. 

Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; F: Females; M: Males; 12m: 12 months; 

6m: 6 months; 5m: 5 months.

See also Figure S1 and Tables S1 and S3.
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Figure 3. Gene signatures of CR, rapamycin and GH-deficiency
(A) Overlap of genes significantly up- and downregulated in response to interventions.

(B) Functional enrichment of gene signatures. Significance score, calculated as log10(q-

value) corrected by the sign of regulation, is plotted on y axis. q-value threshold of 0.1 is 

shown by dotted lines. The whole list of enriched functions is in Table S4A. Ox Phosph: 

Oxidative phosphorylation; TCA cycle: Citrate Cycle/TCA Cycle; Parkinsons: Parkinson’s 

Disease; Huntingtons: Huntington’s Disease; Amino Acid Catabolism: Cellular Amino Acid 

Catabolic Process; Glycolysis: Glycolysis/Gluconeogenesis; Metabolism by P450: Drug 

metabolism by cytochrome P450.

(C) Overlap of transcription factors IDs enriched by gene signatures. The whole list of 

enriched transcription factors is in Table S5.
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(D) Interventions included into meta-analysis. Two interventions shown in grey didn’t 

significantly extend lifespan in ITP studies.

(E) Aggregated response (log2FC) of CR, rapamycin and GH-deficiency gene 
signatures to different interventions. Union of genes shown in Fig. 3A were used.

(F) Spearman correlation between aggregated response of CR, rapamycin and GH-
deficiency gene signatures to different interventions. Union of genes shown in Fig. 3A 

were used for calculation.

Snell: Snell dwarf mice; Ames: Ames dwarf mice; Little: Little mice; FGF21 over: FGF21 

overexpression.

See also Figures S2 and S3 and Tables S1, S4 and S5.
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Figure 4. Mutual organization of longevity interventions
(A) Enrichment of interventions by gene signatures of CR, rapamycin and GH 
deficiency. Each cell represents a significance score calculated based on GSEA. Only 

significant associations are colored.

(B) Similarity between gene expression profiles of CR and other interventions. For 

every intervention, violinplot shows distribution of Spearman correlation coefficients 

between individual datasets.

(C) Correlation matrix of aggregated gene expression profiles across interventions. For 

each pair of interventions, including main diagonal, matrix represents median Spearman 

correlation value across all possible comparisons of individual datasets from different 

sources. Boxes, for which no 2 independent datasets are available, are colored in grey.

(D) Network of interventions based on similarity of their gene expression profiles. The 

width of edge is defined by significance of Spearman correlation between interventions. 

Only significant connections are shown.

Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; Ames: Ames dwarf mice; FGF21 over: 

FGF21 overexpression; Little: Little mice.

See also Figure S4.
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Figure 5. Common signatures of longevity interventions
(A) Fold change of genes commonly changed (166 up- and 134 downregulated) in 
response to interventions. X axis represents individual datasets.

(B) Cth expression response across interventions (upper) and individual datasets 
(lower). On the lower plot, dots are colored based on the type of intervention. Red asterisk: 

adjusted p-value < 0.05. Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; Ames: Ames 

dwarf mice; Little: Little mice; FGF21 over: FGF21 overexpression.

(C) Functional enrichment of common longevity signatures in liver. Only enriched 

functions are shown. Significance score, calculated as log10(q-value) corrected by the sign of 

regulation, is presented on x-axis. The whole list of enriched functions is in Table S4B.

(D) Overlap of common longevity signatures across tissues.

(E) Functional enrichment of common longevity signatures across tissues. Only 

functions enriched within at least one tissue are presented. Cells are colored based on 

significance scores, calculated as log10(q-value) corrected by sign of regulation. The whole 

list of enriched functions is in Table S4B. Muscle: Skeletal Muscle; WAT: White Adipose 

Tissue.

See also Figures S5 and S6 and Tables S1, S4 and S6.
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Figure 6. Gene signatures associated with the effect on lifespan
(A) Genes positively (351) and negatively (264) associated with the effect on maximum 
lifespan. X axis represents individual datasets. Upper plot shows the effect on maximum 

lifespan for the corresponding dataset.

(B) Association of Dgat1 expression change with the effect on maximum lifespan.

(C-F) Association of Hint1 (C), Irf2 (D), Eci1 (E) and Ndufab1 (F) expression change 
with the effect on maximum (left) and median (right) lifespan. All specified genes are 

significantly associated with both metrics.

FGF21 over: FGF21 overexpression; Snell: Snell dwarf mice; Ames: Ames dwarf mice; 

Little: Little mice.

See also Figure S6.

Tyshkovskiy et al. Page 51

Cell Metab. Author manuscript; available in PMC 2020 September 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Persistent longevity patterns and identification of new lifespan-extending interventions
(A-B) Expression changes of Nqo1 (A) and Slc15a4 (B) across interventions (upper) 
and against the effect on maximum lifespan (lower). Red asterisk: adjusted p-value < 0.1. 

Estradiol: 17-α-estradiol; Snell: Snell dwarf mice; Ames: Ames dwarf mice; Little: Little 

mice; FGF21 over: FGF21 overexpression.

(C) Functional enrichment of genes associated with lifespan extension effect. Only 

functions significantly associated with at least one lifespan extension metric are shown. 

Cells are colored based on significance score, calculated as log10(q-value) corrected by the 

sign of regulation. The whole list of enriched functions is in Table S4C.
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(D) Overlap of genes positively (left) and negatively (right) associated with effect on 
different metrics of lifespan. Fisher exact test p-value < 10−18 for all pairwise comparisons.

(E) Association of gene expression profiles of interventions from public sources (upper) 
and predicted by CMap (lower) with identified longevity signatures. The latter include 

gene signatures of individual interventions (CR, rapamycin and GH deficiency), common 

signatures (Interventions common) and signatures associated with the effect on lifespan 

(Maximum and median lifespan). Cells are colored based on significance score, calculated 

as log10(adjusted p-value) corrected by sign of regulation. Sirt6 Over: Sirt6 Overexpression.

See also Tables S1, S4 and S6.
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KEY RESOURCES TABLE

REAGENT or
RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Rapamycin LC Laboratories Cat#R-5000

Protandim LifeVantage Corporation https://www.lifevantage.com/

17-alpha-estradiol Steraloids Inc. Cat#E0870-000

Acarbose Spectrum Chemical Mfg. Corp. Cat#A3965

Ascorbyl-palmitate MedChemExpress Cat#HY-B0987

KU-0063794 MedChemExpress Cat#HY-50710

AZD8055 MedChemExpress Cat#HY-10422

Rilmenidine AK Scientific, Inc. Cat#H733

Critical Commercial Assays

PureLink RNA Mini Kit Thermo Fisher Scientific Cat#12183020

Deposited Data

Raw and mapped RNAseq data This paper GEO: GSE131901

Raw and preprocessed metabolome 
data (batch 1)

This paper Data S1

Additional metabolome data (batch 
2)

Ma et al., 2015 N/A

App for visualization of associations 
between gene expression response 
and longevity: GENtervention

This paper http://gladyshevlab.org/GENtervention/

Database of genes regulating 
lifespan: GenAge

De Magalhães and Toussaint, 2004 http://genomics.senescence.info/genes/

Public data on gene expression in 
response to lifespan-extending 
interventions

Amador-Noguez et al., 2004; Selman et al., 2009; 
Amador-Noguez et al., 2005; Selman et al., 2006; 
Tsuchiya et al., 2004; Pearson et al., 2008; Dhahbi 
et al., 2005; Streeper et al., 2012; Boylston et al., 
2006; Zhou et al., 2012; Zhang et al., 2012; Martin-
Montalvo et al., 2013; Fok et al., 2014b; Mercken et 
al., 2014a; Fok et al., 2014a; Collino et al., 2013; 
Sun et al., 2013; Hofmann et al., 2015; Rusli et al., 
2015; Edwards et al., 2007; Mitchell et al., 2016; 
Rowland et al., 2005; Soo et al., 2015; Barger et al., 
2017; Barger et al., 2008

ArrayExpress: E-MEXP-153, E-MEXP-2320, 
E-MEXP-347, E-MEXP-748.
GEO: GSE1093, GSE11291, GSE11845, 
GSE2431, GSE26267, GSE3129, GSE3150, 
GSE36838, GSE39313, GSE40936, 
GSE40977, GSE46895, GSE48331, 
GSE48333, GSE49000, GSE50789, 
GSE51108, GSE55272, GSE60596, 
GSE61233, GSE6323, GSE70857, 
GSE75574, GSE81959 and GSE988

Public data on gene expression in 
response to interventions for 
association test

Ramadoss et al., 2010; Alonso et al., 2017; Baze et 
al., 2010b; Osburn et al., 2008; Mercken et al., 
2014b; Kautz et al., 2008; Rhoads et al., 2018; 
Kanfi et al., 2012

GEO: GSE21060, GSE77082, GSE15891, 
GSE11287, GSE49000, GSE10421 and 
GSE104234

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory JAX 000664

Mouse: UM-HET3 Laboratory of Richard Miller (Miller et al., 2007) N/A

Mouse: GHRKO ([C57BL/6J × 
BALB/cByJ]/F2)

Laboratory of Richard Miller (Coschigano et al., 
2003)

N/A

Mouse: Snell dwarf mice ([DW/J × 
C3H/HEJ]/F2)

Laboratory of Richard Miller (Flurkey et al., 2001) N/A

Software and Algorithms

Mapping reads: STAR 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR/releases
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REAGENT or
RESOURCE SOURCE IDENTIFIER

Counting reads: featureCounts 1.5 Liao et al., 2014 http://subread.sourceforge.net/

Adaptor removing: Trimmomatic Bolger et al., 2014 http://www.usadellab.org/cms/index.php?
page=trimmomatic

Functional enrichment: GSEA Subramanian et al., 2005 http://software.broadinstitute.org/gsea/
index.jsp

App development: shiny Chang et al., 2016 https://shiny.rstudio.com/

Programming environment: RStudio https://www.rstudio.com/ N/A

Enrichment by transcriptional 
factors: TRANSFAC

Matys, 2006 http://genexplain.com/transfac/

Network visualization: Cytoscape Shannon et al., 2003 https://cytoscape.org/

Functional annotation: DAVID Huang et al., 2009a, 2009b https://david.ncifcrf.gov/

Differential gene expression analysis 
of RNAseq: edgeR

Robinson et al., 2009 https://bioconductor.org/packages/release/
bioc/html/edgeR.html

Differential gene expression analysis 
of microarrays: limma

Ritchie et al., 2015 https://bioconductor.org/packages/release/
bioc/html/limma.html

Mixed-effect model: metafor Viechtbauer, 2010 http://CRAN.R-project.org/package=metafor

RNAseq normalization: RLE Anders and Huber, 2010 https://bioconductor.org/packages/release/
bioc/html/edgeR.html

Prediction of compounds with similar 
gene expression response: CMap

Lamb et al., 2006; Subramanian et al., 2017 https://clue.io
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