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Abstract

Background: The time required to analyse RNA-seq data varies considerably, due to discrete steps for
computational assembly, quantification of gene expression and splicing analysis. Recent fast non-alignment tools
such as Kallisto and Salmon overcome these problems, but these tools require a high quality, comprehensive
reference transcripts dataset (RTD), which are rarely available in plants.

Results: A high-quality, non-redundant barley gene RTD and database (Barley Reference Transcripts – BaRTv1.0) has
been generated. BaRTv1.0, was constructed from a range of tissues, cultivars and abiotic treatments and transcripts
assembled and aligned to the barley cv. Morex reference genome (Mascher et al. Nature; 544: 427–433, 2017). Full-
length cDNAs from the barley variety Haruna nijo (Matsumoto et al. Plant Physiol; 156: 20–28, 2011) determined
transcript coverage, and high-resolution RT-PCR validated alternatively spliced (AS) transcripts of 86 genes in five
different organs and tissue. These methods were used as benchmarks to select an optimal barley RTD. BaRTv1.0-
Quantification of Alternatively Spliced Isoforms (QUASI) was also made to overcome inaccurate quantification due
to variation in 5′ and 3′ UTR ends of transcripts. BaRTv1.0-QUASI was used for accurate transcript quantification of
RNA-seq data of five barley organs/tissues. This analysis identified 20,972 significant differentially expressed genes,
2791 differentially alternatively spliced genes and 2768 transcripts with differential transcript usage.

Conclusion: A high confidence barley reference transcript dataset consisting of 60,444 genes with 177,240
transcripts has been generated. Compared to current barley transcripts, BaRTv1.0 transcripts are generally longer,
have less fragmentation and improved gene models that are well supported by splice junction reads. Precise
transcript quantification using BaRTv1.0 allows routine analysis of gene expression and AS.
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Background
Barley is an important cereal crop grown across a geo-
graphical range that extends from the Arctic Circle to
the hot and dry regions of North Africa, the near east
and equatorial highlands. Adaptation of barley to very
different growing conditions reflects important charac-
teristics of genomic and transcriptomic diversity that
leads to the success of the crop at different latitudes [3,
16, 47]. Changes in gene expression during development
and in response to daily and seasonal environmental
challenges and stresses drive re-programming of the barley
transcriptome [11, 26, 27, 30, 46]. Transcriptomes consist
of complex populations of transcripts produced through
the co-ordinated transcription and post-transcriptional
processing of precursor messenger RNAs (pre-mRNAs).
Alternative splicing (AS) of pre-mRNA transcripts is the
main source of different transcript isoforms that are gener-
ated through regulated differential selection of alternative
splice sites on the pre-mRNA and up to 60–70% intron-
containing plant genes undergo AS [11–14, 19, 31, 34, 36,
54, 55]. The two main functions of AS are to increase pro-
tein diversity and regulate expression levels of specific tran-
scripts by producing AS isoforms that are degraded by
nonsense mediated decay (NMD) [28, 32, 39, 45, 54].
Extensive AS has been reported in barley [11, 26, 41,
59, 60] and allelic diversity further contributes to the
landscape of AS transcript variation among genotypes
through elimination and formation of splice sites and
splicing signals [22, 33, 50].
Although RNA-seq is the current method of choice to

analyse gene expression, major problems exist in the
computational assembly and quantification of transcript
abundance from short read data with widely used pro-
grams. Such assemblies are typically inaccurate because
first, they generate a large proportion of mis-assembled
transcripts and second, they fail to assemble thousands
of real transcripts present in the sample dataset [25, 43].
In contrast, non-alignment tools such as Kallisto and
Salmon [6, 42] provide rapid and accurate quantification
of transcript/gene expression from RNA-seq data. How-
ever, they require high quality, comprehensive transcript
references, which are rarely available in plants [7]. In
barley, RNA-seq data from eight different barley organs
and tissues from the variety Morex, a six-rowed North
American cultivar, was used to support annotation of the
first barley genome sequence [26]. The subsequent release
of the barley pseudogenome, estimated to contain 98% of
the predicted barley genome content, has 42,000 high-
confidence and 40,000 low-confidence genes and ca. 344,
000 transcripts [35]. However, detailed analysis of individ-
ual gene models in the pseudogenome shows that the
current annotation contains a high frequency of chimeric
and fragmented transcripts that are likely to negatively
impact downstream genome-wide analyses of differential

expression and AS. In Arabidopsis, a diverse, comprehen-
sive and accurate Reference Transcript Dataset (AtRTD2),
was constructed from short read RNA-seq data by assem-
bling transcripts with the assembly functions of Cufflinks
and Stringtie, followed by multiple stringent quality con-
trol filters. These filters removed poorly assembled tran-
scripts (e.g. with unsupported splice junctions), transcript
fragments and redundant transcripts, all of which affected
the accuracy of transcript quantification by Salmon/Kal-
listo [61, 62]. AtRTD2 has been used for genome-wide
differential expression/differential AS to identify novel
regulators of the cold response and splicing factors that
regulate AS in innate immunity and root development [4,
9, 10, 63].
Here, we describe the development of a first barley ref-

erence transcript dataset and database (Barley Reference
Transcripts – BaRTv1.0) consisting of 60,444 genes and
177,240 non-redundant transcripts. To create BaRTv1.0,
we used 11 different RNA-seq experimental datasets repre-
senting 808 samples and 19.3 billion reads that were de-
rived from a range of tissues, cultivars and treatments. We
used high-resolution RT-PCR (HR RT-PCR) results to
optimise parameters for transcript assembly and to validate
differential AS in five different barley organs and tissues.
We further compared the BaRTv1.0 transcripts to 22,651
Haruna nijo full-length (fl) cDNAs [37] to assess the com-
pleteness and representation of the reference transcript
dataset. As in Arabidopsis, we also generated a version of
the RTD specifically for quantification of alternatively
spliced isoforms (BaRTv1.0-QUASI) for accurate expres-
sion and AS analysis, which overcomes inaccurate quantifi-
cation due to variation in the 5′ and 3′ UTR [53, 61].
Finally, we used BaRTv1.0-QUASI to explore RNA-seq
data derived from five diverse barley organs/tissues identi-
fying 20,972 differentially expressed genes and 2791 differ-
entially alternatively spliced genes amongst the samples.

Results
Transcript assembly and splice site determination
To maximise transcript diversity in the barley RTD as-
sembly we selected barley Illumina short read datasets
that covered different barley varieties, a range of organs
and tissues at different developmental stages and plants/
seedlings grown under different abiotic stresses. The data-
sets represent 11 different RNA-seq experiments, contain-
ing 808 samples and 19.3 billion reads (Additional file 1:
Table S1). Most samples consisted of paired-end reads
that were between 90 and 150 bp in length and produced
from Illumina HiSeq 2000 or Illumina HiSeq 2500 runs.
Exceptions were the dataset from Golden Promise anthers
and meiocytes, which contained over 2 billion paired end
35–76 bp reads and the internode dataset which contained
unpaired 100 bp reads (Additional file 1: Table S1). The
raw RNA-seq data of all samples were quality controlled,
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trimmed and adapters removed using FastQC and Trim-
momatic (Fig. 1; Additional file 1: Table S1). Reads were
mapped to the reference genome sequence of barley cv.
‘Morex’ (Hv_IBSC_PGSB_v2) [35] using STAR (Spliced
Transcripts Alignment to a Reference) software [17, 18]
(Fig. 1). To improve mapping accuracy and filter out
poorly supported splice junctions from the sequence
reads, while also considering the variability of expression
levels in the different samples, we performed a three-pass
STAR mapping (Additional file 2: Figure S1). This was
based on a two-pass alignment method to increase splice
junction alignment rate and sensitivity by performing a
high-stringency first pass with STAR, which was then used
as annotation for a second STAR pass at a lower strin-
gency alignment [57]. We also performed a less stringent
third pass with STAR to capture further splice junction
read number evidence from the range of barley datasets
that included different cultivars and landraces, which will
show sequence variation among reads and affect their
mapping. The third pass did not allow any additional
splice junctions to be generated that were not already
present after the second pass. The advantage of the third
pass was to allow more reads to map to the splice junction
and increase support for rarer splice site selections and in-
crease transcript diversity. (See Materials and Methods).
The number of uniquely mapped reads after the three

STAR passes ranged from 73 to 85% (data not shown)
across the 11 experiments. This iterative alignment and
filtering process using STAR produced a robust splice
junction reference dataset of 224,654 splice junctions that
was used to support the identification of multiple tran-
scripts per gene.

Optimisation of cv. Morex guided reference transcript
assemblies
Transcriptomes for each of the 808 samples were assem-
bled using StringTie [43] and different parameter combi-
nations tested to optimise the quality and number of
transcripts (Fig. 2; Additional file 1: Table S2). Through-
out this process the quality of the Morex reference-
based transcript assemblies were benchmarked against
data from a HR RT-PCR panel of 86 primer sets covering
83 genes and 220 transcripts [51] to accurately analyse the
proportion of alternatively spliced products in a subset of
the cv. Morex experimental samples (Developing inflores-
cences INF1 and INF2, leaf shoots from seedlings - LEA,
embryo - EMB, internode - NOD – see Materials and
Methods). The primer list is available at https://ics.hutton.
ac.uk/barleyrtd/primer_list.html (Additional file 1: Table
S3). At each stage the spliced proportions from HR RT-
PCR were compared to the spliced proportions of the
same AS event(s) derived from the Transcripts Per Million

Fig. 1 BaRTv1.0 assembly and validation pipeline. Steps in construction and validation of BaRTv1.0 and programs used in each step (right
hand side)
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Fig. 2 Benchmarking of 38 different StringTie Morex reference-based assemblies. The four plots show different benchmark tests to assess the
parameters used in the StringTie assemblies. The graphs do not start from 0 on the y axis. a Transcript number; b the number of HR RT-PCR
products that match transcripts; c correlation of the proportions of transcripts in 86 AS events derived from HR RT-PCR and the RNA-seq data
using the different assemblies as reference for transcript quantification by Salmon; and d the number of Haruna nijo fl cDNAs that match RTD
transcripts. Each plot point represents the result of a StringTie assembly using different parameters (Additional file 1: Table S2). The broken circled
plot points at assembly 4, an assembly using STAR defaults (without splice junction filtering) and StringTie defaults. The solid circled plot point at
assembly 34 represents the selected optimised StringTie parameters used to produce BaRTv1.0 (see also Materials and Methods; Additional file 2:
Figure S3; Additional file 1: Table S2)
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(TPM) counts extracted from the RNA-seq data analysis
[51, 61] using an automated method (see Fig. 1; Materials
and Methods for description and https://github.com/Pau-
loFlores/RNA-Seq-validation for script).
Each StringTie assembly was further compared to the

22,651 Haruna nijo full-length fl cDNAs [37] to assess
both the completeness and representation. Of these, 17,
619 (81.2%) fl cDNAs had at least 90% coverage and
90% sequence identity with transcripts in the RTD using
BLASTn [2] (Additional file 2: Figure S2). These fl
cDNAs were used to quantify coverage in the optimisa-
tion of assemblies with StringTie (Fig. 2; Additional file
1: Table S2).
Among the different StringTie parameters tested, the

read coverage (“-c” parameter) was found to be import-
ant and a value of 2.5 was selected as the optimum. A
lower read coverage value induced fragmentation, greatly
increasing the number of genes, fewer matching RT-
PCR products, poorer correlation with the HR RT-PCR
data and reduced matching to the Haruna nijo fl cDNAs
(Fig. 2, for example assemblies 9–16; Additional file 1:
Table S2), while a value of 3 led to a lower number of
genes and transcripts being defined (Fig. 2, for example
assemblies 26–30; Additional file 1: Table S2). The
isoform-fraction (“-f” parameter) was optimal at 0, maxi-
mising the number of transcripts, while still maintaining
a strong correlation with HR RT-PCR data and high
numbers of matching Haruna nijo fl cDNAs (Fig. 2, as-
semblies 17, 19–38; Additional file 1: Table S2). A mini-
mum locus gap separation value (“-g” parameter) of 50
bp was selected as an optimum value. Values greater
than 50 bp led to the prediction of fewer transcripts and
poorer correlation with the HR RT-PCR data, although
there was a small improvement in the coverage of the
Haruna nijo fl cDNAs. Increasing the gap separation to
500 bp forced distinct genes to merge resulting in longer
transcripts, poorer similarity with Haruna nijo fl cDNAs
and very poor correlation with the HR RT-PCR data due
to the creation of chimeric genes (Fig. 2; in assembly 3).
The improvement in the assemblies with the optimised
StringTie parameters is illustrated by comparison to the
assembly produced using StringTie default parameters
(Fig. 2). The optimised assembly had a 14% increase in
splice product detection in the HR RT-PCR analysis
(220 versus 189 RT-PCR products) and increased Pear-
son correlation values from 0.60 to 0.79 between the
RNA-seq data and HR RT-PCR data. It also recovered
634 more complete Haruna nijo fl cDNAs compared to
the StringTie assembly run in default mode.

Construction of BaRTv1.0
Having established optimal assembly parameters, to con-
struct the RTD, transcripts were merged to create a sin-
gle set of non-redundant transcripts. The dataset was

filtered to remove poorly expressed transcripts (< 0.3
TPM) and then merged with the genome-mapped Har-
una nijo full-length cDNAs (Fig. 1). Finally, we used
TransDecoder [24] to predict protein coding regions and
BLASTp [2] to filter out transcripts equal to or less than
300 bps long (8767 transcripts) and showing less than
70% protein coverage and identity with the Poaceae ref-
erence protein dataset (Fig. 1), which removed all but 25
transcripts of less than 300 bp (Additional file 2: Figure
S4). After merging and filtering, we retained 224,654
unique splice junctions, 60,444 genes and 177,240 tran-
scripts to establish the non-redundant reference tran-
script dataset named BaRTv1.0 (Table 1).
Previous studies in Arabidopsis and human RNA-seq

analysis showed that variation in the 5′ and 3′ ends of
assembled transcript isoforms of the same gene affected
accuracy of transcript quantification. Variation may be the
result of legitimate transcriptional and post-transcriptional
activity. However, transcript variation may also result from
aberrant reverse transcription/internal priming during
library preparation, RNA degradation and mis-assembly or
mis-annotation during transcript assembly [53, 61]. This
was overcome by padding shorter 5′ and 3′ ends to the 5′
and 3′ ends of the longest gene transcript [61, 63]. We
similarly modified BaRTv1.0 to produce transcripts of each
gene with the same 5′ and 3′ ends to generate BaRTv1.0-
QUASI specifically for transcript and AS quantification.
Both datasets are available for download from https://ics.
hutton.ac.uk/barleyrtd/downloads.html. An additional copy
of the RTD is available in the Zenodo repository (https://
doi.org/10.5281/zenodo.3360434). In addition, a website
was created to visualise individual BaRT transcripts, access
transcript sequences, and allow for BLAST searching and
comparison with existing HORVU transcripts [35] https://
ics.hutton.ac.uk/barleyrtd/index.html.

BaRTv1.0 represents an improved barley transcript dataset
The barley cv. Morex pseudo-molecule sequences were
accompanied by a set of ca. 344 k HORVU transcripts
[35], nearly double the number in BaRTv1.0. Close in-
spection of the HORVU transcripts identified short,
fragmented and redundant transcripts. The quality con-
trol filters used in the construction of BaRTv1.0 aimed
to reduce the number of transcript fragments and redun-
dancy as these negatively impact the accuracy of transcript
quantification [61]. The BaRTv1.0 and HORVU datasets
were directly compared with the numbers of complete
Haruna nijo fl cDNAs and correlating the proportions of
AS transcript variants measured by HR RT-PCR with
those derived from the RNA-seq analysis (Additional file
1: Table S4). The BaRTv1.0 transcript dataset identified
more of the experimentally determined HR RT-PCR prod-
ucts (220 versus 191) and has higher Pearson and Spear-
man correlation co-efficient (r) with quantification of the

Rapazote-Flores et al. BMC Genomics          (2019) 20:968 Page 5 of 17

https://github.com/PauloFlores/RNA-Seq-validation
https://github.com/PauloFlores/RNA-Seq-validation
https://ics.hutton.ac.uk/barleyrtd/downloads.html
https://ics.hutton.ac.uk/barleyrtd/downloads.html
https://doi.org/10.5281/zenodo.3360434
https://doi.org/10.5281/zenodo.3360434
https://ics.hutton.ac.uk/barleyrtd/index.html
https://ics.hutton.ac.uk/barleyrtd/index.html


AS events when compared to the HORVU dataset (Table
1). For the AS events detected in BaRTv1.0 and HORVU,
we plotted the percentage spliced in (PSI) values (the frac-
tion of mRNAs that represent the isoform that includes
most exon sequence. The fraction of mRNAs with the
most sequence spliced out (shortest transcript length) is
not reported) from HR RT-PCR and RNA-seq for each of
the three biological replicates from five different barley
organ and tissue samples (giving 1992 and 1642 data
points respectively) (Fig. 3a and b). Pearson and Spearman
ranked correlation (r) of the AS proportion values showed
an improvement when comparing the HR RT-PCR with
the three RNA-seq reference transcript datasets, HORVU
(0.769 and 0.768), BaRTv1.0 (0.793 and 0.795) and
BaRTv1.0-QUASI 0.828 and 0.83) (Table 1; Additional file
1: Table S4). We conclude that BaRTv1.0 (and the derived
BaRTv1.0-QUASI) RTD is a comprehensive, non-
redundant dataset suitable for differential gene expression
and AS analyses.

BaRTv1.0 genes and transcripts
We next explored the characteristics of BaRTv1.0 genes
and transcripts. A total of 57% of the BaRTv1.0 genes

contained introns and had on average ~ 7.7 exons per
gene (Table 2). Around 60% of the multi-exon genes had
multiple transcripts supporting the occurrence of wide-
spread AS in barley. Each transcript isoform within the
dataset is unique based on splice site usage (containing
at least one unique splice site). Analysis of the 177,240
predicted transcripts in BaRTv1.0 showed the expected
distribution of canonical splice site dinucleotides. Of the
224,654 splice junctions examined, 98.2% of the introns
spliced out have the expected GT..AG splice site dinucleo-
tides, 1.7% had GC-AG dinucleotide borders, and 0.1%
showed the U12- intron-dependent splicing AT-AC di-
nucleotide splice sites. Half of these splice junctions were
observed in all the RNA-seq datasets tested but, 1.3% were
unique to a single dataset, indicating unique tissue or con-
dition specific splicing (Additional file 1: Table S5).
We then used the SUPPA software version 2.3 [1] to

determine different splicing events and their frequency
in our transcript dataset. We identified all the expected
major forms of AS, including alternative 5′ and 3′ splice
site selection (Alt 5’ss; Alt 3’ss), exon skipping (ES) and
intron retention (IR). Frequencies of the different AS
events were consistent with studies in other plant

Table 1 Transcriptome dataset comparisons with HR RT-PCR and Haruna nijo fl cDNAs

Transcriptome Version BaRTv1.0 BaRTv1.0-QUASI HORVU

# HR RT-PCR products 220 220 191

Pearson Correlation 0.793 0.828 0.769

Spearman Ranked Correlaton 0.795 0.830 0.768

# Complete HN flcDNAs 17,619 17,695 17,099

# Genes 60,444 60,444 81,683

# Transcripts 177,240 177,240 334,126

Fig. 3 Correlation of alternative splicing from HR RT-PCR and RNA-seq. Percentage spliced in (PSI) values were calculated from relative
fluorescence units from HR RT-PCR and transcript abundances (TPM) from RNA-seq data quantified with Salmon using the (a) BaRTv1.0, b HORVU
and (c) BaRTv1.0-QUASI transcript datasets as reference. The 86 primer pairs designed to cv. Morex genes covered 220 AS events in BaRTv1.0
(three biological replicates of 5 different barley organs/tissues) giving 1992 data points and 81 primer pairs covered 191 AS events giving 1642
points for HORVU
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species (Alt 5′ – 23.6%; Alt 3′ – 28.0%; ES – 9.7% and
IR – 37.9% - Table 3) [14, 34, 45]. Of the alternative 3′
splice site events, 2743 were of the NAGNAG type
where two alternative 3′ splice sites are found 3 nt apart.
Alternative NAGNAG 3′ splice sites can be of functional
importance and are commonly found in human and
plant genomes in coding sequences where they can add
or remove a single amino acid and may be subject to
regulation [8, 48, 49].

Differential expression and differential alternative splicing
in different barley organs/tissues
The major motivation for developing BaRTv1.0 was to
exploit the fast, alignment-free transcript quantification
software, Salmon, which requires an RTD to quantify
transcript isoform abundances using k-mer indexing and
counting [42]. We used RNA-seq data from three bio-
logical repeats of five organs/tissues of Morex to quan-
tify transcripts with Salmon and BaRTv1.0-QUASI.
Differential expression (DE) at both gene and transcript
levels, differential AS (DAS) genes and differential tran-
script usage (DTU) were analysed using the recently de-
veloped 3D RNA-seq App [9, 10, 23]. All the parameters,
underlying software, statistical tests used to generate the
DE and DAS results for the 5 barley tissues are given in

the supplementary 3D analysis report. We removed poorly
expressed transcripts from the dataset by stringent filter-
ing (transcripts with ≥1 counts per million in at least 4 of
the 15 samples were retained). A gene/transcript was sig-
nificantly DE if it had an adjusted p-value of < 0.01 and
log2 fold change of ≥1. To identify significant DAS genes,
consistency of expression changes (log2 fold change) be-
tween the gene and its transcripts was determined along
with the change in splice ratio (Δ Percent Spliced – ΔPS).
A DAS gene had at least one transcript which differed
significantly from the gene and with an adjusted p-value
of < 0.01 and had at least a 0.1 (10%) change in ΔPS.
Across the five organs and tissues, we detected expression
of 60,807 transcripts from 25,940 genes. 20,972 genes
were significantly DE across all tissues and 2791 genes
showed significant DAS (Fig. 4a & d; Additional file 1:
Table S6). The overlap between DE and DAS genes (those
genes regulated by both transcription and AS) was 2199
such that 592 genes were DAS-only and regulated only at
the level of AS with no change in overall gene expression.
We also identified 4151 transcripts with significant DTU
which underpins the differential AS. DTU transcripts be-
have differently from other transcripts of DAS genes and
were identified by testing the expression changes of every
transcript against the weighted average of all the other

Table 2 Characteristics of barley genes and transcripts in BaRTv1.0. Percentages given are of total number of genes or transcripts

Number of genes 60,444

Number of predicted transcripts 177,240

Single exon genes 25,719 (43%)

Multi exon genes 34,725 (57%)

Single transcript genes 39,534 (65%)

Single exon transcripts 27,754 (16%)

Multi-Exon transcripts 149,486 (84%)

Number of Multi-exonic genes with alternative transcript variants 20910 (60%)

Mean number of transcripts per gene 2.93

Number of distinct exons 466,247

Mean number of distinct exons per gene 7.7

Mean transcript locus size (first to last exon) (nt) 5,633

Mean exon size (nt) 573

Table 3 Frequencies of different alternative splicing events in BaRTv1.0

Type of event # %

Alternative 3' 44,590 28.0%

Alternative 5' 37,626 23.6%

Retained intron 60,327 37.9%

Skipped exon 15,387 9.7%

Mutually exclusive exons 1,311 0.8%

159,241 100.0%
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transcripts of the gene [10]. DTU transcripts differ signifi-
cantly from the gene level and show a ΔPS of ≥0.1 with an
adjusted p-value of < 0.01. Pair-wise comparison of the
number of up and down DE genes between each of the
tissues showed that the two most related tissues (different
developmental stages of inflorescence) had the fewest
genes that were differentially expressed between them (ca.
700) but also had the highest number of DE genes when
compared to other organs/tissues (ca. 14.5 k between
INF2 and NOD) (Fig. 4b). There were ca. 10-fold fewer
genes showing differential AS and pair-wise comparisons,
which again showed that the two inflorescence tissues had
the fewest numbers of DAS genes between them and
INF2 compared to NOD, EMB and LEA had the highest
numbers of DAS genes (Fig. 4c). These results suggest that
barley inflorescence transcriptomes differ substantially
from shoot leaf, internode and embryos.
Hierarchical clustering of gene expression profiles of

the 20,971 DE genes (DE-only and DE + DAS genes)
across the organs/tissues identified clusters of genes that
were co-ordinately and differentially expressed in each
of the organs and tissues (Fig. 4d). Cluster 1 (n = 2435)
contained genes that were most highly expressed in the
embryo, cluster 3 (n = 2477) and 6 (n = 2714) in the
internode, cluster 5 (n = 2498) and 8 (n = 4906) in inflo-
rescences and cluster 4 (n = 1880) and 9 (n = 1316) in
leaf (Fig. 4d; Additional file 1: Table S6). Hierarchical

clustering also identified 2768 transcripts differentially
expressed DTU that showed some specificity of expres-
sion in each of the sampled tissues (Fig. 4e; Additional
file 1: Table S6). Cluster 1 (n = 292) contains DTUs that
are up-regulated in the embryo, Cluster 4, 5 and 6 (total
n = 885) in the internode and cluster 7 (total n = 355) in
shoot leaf. Cluster 3 (n = 225) showed a cluster of DTU
transcripts at the early stage of inflorescence develop-
ment, cluster 8 (n = 296) at both stages of inflorescence
development and cluster 9 (n = 559) at the later stage
of inflorescence development. Some DTUs show signifi-
cant isoform switching between the tissues and organs
indicating an important role for AS in these genes (Add-
itional file 2: Figure S5 for examples). Thus, extensive dif-
ferential gene and transcript expression and differential
alternative splicing was revealed among the different sam-
ples using BaRTv1.0.

Validation of differential AS from RNA-seq with HR RT-PCR
and RNA-seq
To validate differential AS observed for individual genes
among the different organs/tissues, we compared the
RNA-seq quantifications of the 86 AS genes and 220
transcripts used in HR-RT-PCR. HR RT-PCR data
showed over two-thirds of these transcripts had a signifi-
cant differential AS (p = < 0.001; > 5% change) across the
five samples (Additional file 1: Table S7). Given the

Fig. 4 Differential gene and alternative splicing analysis in five barley organs. a. Numbers of expressed genes, differentially expressed genes (DE)
and differential AS (DAS) across all 5 barley organs/tissues. b. Number of up- and down-regulated DE genes between pairs of different organs.
Dark blue (up-regulated genes); light blue (down-regulated genes). c Number of DAS genes between pairs of different organs. d. Heatmap and
hierarchical clustering of 20,972 DE. e. Heatmap and hierarchical clustering of 2768 DTU transcripts. The z-score scale in D and E represents mean-
subtracted normalised log-transformed TPMs
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RNA samples used in both the HR RT-PCR and RNA-
seq was the same, we were able to directly compare dif-
ferential AS observed at the individual gene level. For
example, primer pairs Hv110 (HORVU5Hr1G027080;
BART1_0-u34104) and Hv118 (HORVU1Hr1G078110;
BART1_0-u5387) assay AS events that generate two al-
ternative transcripts in BaRTv1.0. The AS transcripts are
the result of alternative 5′ splice sites, 5 nt (Fig. 5a) and
4 nt (Fig. 5b) apart respectively. In each case selection of
the distal 5′ splice sites produce the full-length CDS and
use of the proximal 5′ splice site will result in a frame-shift
and premature termination codons. Primer pair Hv173
(HORVU7Hr1G062930; BART1_0-u52907) assays alterna-
tive selection of two 3′ splice sites 33 nt apart (Fig. 5c) and
Hv217 (HORVU7Hr1G071060; BART1_0-u52404) assays
retention of intron 1 (Fig. 5d). Each of these examples
show the pattern of AS across the tissues are essentially
equivalent between HR RT-PCR and RNA-seq (Fig. 5) and
overall, we observed remarkable consistency. Thus, there is
good agreement between the differential alternative spli-
cing analysis from the RNA-seq data and the experimental
verification with HR RT-PCR. These data provide strong
support for the value of using BaRTv1.0 and BaRTv1.0-

QUASI as reference datasets for accurate expression and
AS analysis.

Complex patterns of AS
A principal aim of establishing BaRTv1.0 was to achieve
higher accuracy of differential expression and AS ana-
lysis in barley RNA-seq datasets by improved transcript
quantification. While the overall number of Morex tran-
scripts in the HORVU collection (ca. 344 k) was approxi-
mately halved in BaRTv1.0 (ca. 177 k) (Table 1), some
genes have multiple transcripts due to combinations of
complex AS events. To fully characterise multiple gene
transcripts will require long read transcript sequencing
to determine the different combinations of splice sites
used. However, we can determine the selection of mul-
tiple alternative splice sites using HR RT-PCR. As an
example, AS events in BART1_0-u51812, which codes
for a WW domain-containing protein, were validated.
BART1_0-u51812 contains 44 different transcript iso-
forms in the BaRTv1.0 dataset due to unique combina-
tions of different AS events (Fig. 6a). We analysed two
regions that showed complex AS: between exons 2 and 3
and between exons 6 and 7 by HR RT-PCR (Fig. 6). HR

Fig. 5 Comparison of alternative splicing in different barley tissues with HR RT-PCR and RNA-seq data. Splicing proportions of four different genes
in 5 different barley tissues are presented. a. Hv110; HORVU5Hr1G027080, b. Hv118; HORVU1Hr1G078110, c. Hv173; HORVU7Hr1G062930, d. Hv217;
HORVU7Hr1G071060. Schematic transcript/AS models are presented above histograms of PSIs derived from HR-RT-PCR (black) and RNA-seq
(white) with standard error bars across three biological repeats. White boxes - exons, lines - introns; chevrons – splicing events; grey boxes region
between alternative splice sites; thick intron line represents an intron retention
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RT-PCR analysis identified fully spliced (FS), two alter-
native 5′ splice sites and retention of intron 2 as the
main AS events between exons 2 and 3. In addition, four
minor HR RT-PCR products were also identified and
these were characterised as two further alternative 5′
splice sites and two alternative exons from the BaRTv1.0
transcripts (Fig. 6b). Between exons 6 and 7, the main
AS events are fully spliced, retention of intron 6, inclu-
sion of an alternative exon and an alternative 5′ splice
site (Fig. 6c). HR RT-PCR across exons 6–7 (primer pair
Hv79 in exons 6 and 8) accurately identified these AS
events (Fig. 6C). These AS events were also quantified
using transcript abundances from the RNA-seq data
using BaRTv1.0_QUASI and showed good agreement
with the HR RT-PCR results with Pearson correlations
of 0.92 for the Hv78 regions and 0.73 for the Hv79 re-
gion. These examples support the accuracy of alternative
splicing found in BaRTv1.0 and that the proportions of
alternative splice sites selected in short-read RNA-seq
can be determined.

Discussion
Comprehensive reference transcript datasets are required
for accurate quantification of transcripts for expression
analysis using RNA-seq. Quantification at the transcript
level improves gene level expression estimates and allows
robust and routine analysis of alternative splicing. Here
we describe the BaRTv1.0 transcript dataset or transcrip-
tome for barley, produced by merging and filtering tran-
scripts assembled from extensive RNA-seq data and its
utility in differential expression and differential alternative
splicing. The transcripts were assembled against cv. Morex
and this reference transcript dataset is therefore a Morex
assembly. BaRTv1.0 achieves a balance between maximis-
ing transcript diversity – all 177,240 transcripts have a
unique combination of different splice sites with strong
junction support – and reducing the numbers of mis-
assembled transcripts, transcript fragments and redundant
transcripts. This barley transcript dataset represents the
first stage of an evolving resource which will continue to
improve and expand as more complete barley genomes
are released and by incorporation of new Illumina short
read data along with single molecule sequencing (Pacific
Biosciences or Oxford Nanopore Technology) datasets
when they become available. Long-read data will confirm
transcript features proposed by the short-read assemblies
by defining the exact combinations of different AS events
and 5′ and 3′ ends and may identify rare transcripts. The
transcript and splice junction data generated here will be
valuable in improving the barley genome annotation.
Finally, the BaRTv1.0 transcript dataset will enable accur-
ate gene and transcript level expression and AS analysis
increasing our understanding of the full impact of AS and
how transcriptional and AS regulation of expression

interact to determine barley development, responses to
environment and ultimately important crop phenotypes
such as yield, disease resistance and stress tolerance.
BaRTv1.0 represents 60,444 genes, which is consider-

ably fewer than the 81,683 genes reported in the current
barley genome [35] where residual gene fragmentation
has likely inflated the number of annotated genes. How-
ever, the arrangement of BaRTv1.0 transcripts have
identified mis-annotated chimeric genes in the barley
reference genome, helping to improve gene resolution.
BaRTv1.0 was established using RNA-seq data contain-
ing approximately 19 billion reads from a range of differ-
ent biological samples (organs, tissues, treatments and
genotypes) and was assembled initially against the Morex
genome. The sequence depth and rigorous filtering and
validation allowed us to establish a diverse set of high-
quality, robust and experimentally supported transcripts.
A key function of the BaRTv1.0 transcript dataset is

improved accuracy of transcript abundance. Variation in
the 5′ and 3′ ends of transcripts of the same gene was
shown previously to affect transcript quantification in
Arabidopsis [61] and similar results for 3′ end variation
have been found in human RNA-seq analysis [53]. Ex-
tending the sequences of shorter transcripts with gen-
omic sequences such that all transcripts of a gene had
the same 5′ and 3′ ends improved the accuracy of tran-
script quantification compared to experimental data [61].
We also found an improvement in the quantification of
transcripts and splicing proportions by applying the same
approach to produce the BaRTv1.0-QUASI version, spe-
cifically for quantification of alternatively spliced isoforms
(Table 1). The continued development of reference tran-
script datasets for other lines and cultivars will be essential
for accurate gene expression and AS analysis. One signifi-
cant application will be to enable genome-wide association
studies using gene expression data to identify eQTLs and
transcript abundance/splicing ratios to identify splicing
QTLs [56].
To demonstrate the value of the new RTD for gene

expression studies and AS analysis, we used BaRTv1.0-
QUASI to quantify transcripts in the five developmental
organs and tissues RNA-seq datasets that we had used
previously for HR RT-PCR optimisation and validation.
We observed extensive differences in gene expression
and AS among the five divergent samples. Clustered co-
expression patterns clearly showed that the different or-
gans and tissues have distinct transcriptomes reflecting
major differences in both transcription and AS, as re-
cently demonstrated in the cold response in Arabidopsis
[10]. The abundance of individual BaRT transcripts in
these five organs/tissues, and in the eleven other organs
and tissues used to annotate the barley genome [35] are
displayed in a barley reference transcript database web-
site https://ics.hutton.ac.uk/barleyrtd/index.html.
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Fig. 6 Alternative splicing in a WW domain containing protein gene (BART1_0-u51812). a. BART1_0-u51812 transcript models represented in the BaRTv1.0
database. b. AS events involving intron 2 validated by HR-RT-PCR. c. AS events between exon 6 and 8 validated by HR-RT-PCR. Electropherogram output
from the ABI3730 shows the HR RT-PCR products (x-axis RT-PCR products (bp); y-axis relative fluorescence units). The products expected from RNA-seq are
indicated as FS – Fully spliced, AE - Alternative exon, Alt 5’ss - Alternative 5′ splice site, IR-intron retention and Unspl.-Unspliced. * in B. indicates minor
alternative transcripts identified in HR RT-PCR and in RNA-seq. + in C. indicates an uncharacterised alternative transcript identified in HR RT-PCR
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Barley is adapted to a wide range of environments and
is grown for many purposes. As a result, different culti-
vars/genotypes will have unique transcriptome profiles
that will respond differently to varying developmental or
environmental conditions and challenges. BaRTv1.0 en-
ables rapid and robust analysis of gene expression and
AS in a wide range of experimental scenarios. BaRTv1.0
is based on cv. Morex but used RNA-seq data from a
wide-range of cultivars and lines. We anticipate signifi-
cant and incremental improvements in subsequent BaRT
iterations by adding new short and long-read RNA-seq
datasets but understand the need to capture the diversity
of different transcripts which will occur among different
cultivars and landraces. Sequence variation among dif-
ferent lines will generate quantitative variation in expres-
sion and alternative splicing [21]. Therefore, using the
methods presented here, RTDs for other widely used
cultivars can be generated. For example, construction of
RTDs for Golden Promise (used for genetic transform-
ation studies) [38], Bowman (the background cultivar for
a collection of near isogenic lines) [15] and Barke (a cultivar
more relevant to modern European cultivated barley) [44]
would all have specific utility. Ultimately, transcript
data from a wide range of genotypes will stimulate
the move towards the development of a reference pan-
transcriptome to parallel the generation of the barley pan-
genome sequence.

Conclusions
A comprehensive, non-redundant barley reference tran-
script dataset called BaRTv1.0 has been generated, which
enables fast, precise transcript abundances. Downstream
analysis of transcript abundances in five barley organs/
tissues, identified significant differential expression of
many genes and transcripts. BaRTv1.0 is part of a unique
pipeline that facilitates the robust routine analysis of
barley gene expression and AS. The reference transcripts
have broader opportunities to develop unique expression
markers, support proteomic resources for barley and en-
able transcript/co-expression/regulatory networks. The
pipeline developed here has relevance to the develop-
ment of other crop reference transcript datasets.

Materials and methods
An experimental and bioinformatics workflow showing
the assembly, filtering and validation approach taken is
shown in Fig. 1.

Selected RNA-seq datasets and data processing
A total of 11 large RNA-seq datasets consisting of 808
samples including replicates, were selected to assemble a
barley transcriptome (Additional file 1: Table S1). Eight
publicly available datasets were downloaded from NCBI
- Sequence Read Archive database (https://www.ncbi.

nlm.nih.gov/sra/) and the 3 remaining datasets are cur-
rently unpublished. All datasets were produced using
Illumina platforms and were selected based on being the
most recent datasets with the longest read length available
(mostly > 90 bp and paired-end reads) with a quality of
q > =20. All raw data were processed using Trimmomatic-
0.30 [5] using default settings to preserve a minimum
Phred score of Q20 over 60 bp. One of the samples
(NOD1) was over-represented with respect to read num-
bers due to a repeat run being necessary, and was there-
fore subsampled to 60 million reads. Read quality before
and after trimming was performed using FastQC (fastqc_
v0.11.5) (https://www.bioinformatics.babraham.ac.uk/pro-
jects/fastqc/).

Transcriptome assembly
Alignment
Transcript assembly was performed using a data pipeline
that initially used STAR (version 2.5 [18];) to align reads
from each of the 808 samples individually to the latest
barley cv. Morex reference genome (version 160404_bar-
ley_pseudomolecules_parts_masked /Hv_IBSC_PGSB_v2)
[35]. Many alignment programmes use a two-step ap-
proach to identify exon junctions and then use the junc-
tions to guide the final alignment [20]. A three-step STAR
alignment approach was developed to improve alignment
accuracy and identification of splice junctions and to take
into consideration the sequence variation in reads from
different cultivars and lines used. This approach further
captured splice junctions from tissue/conditions samples
where the amount of material or sequencing depth were
limited or where genotypes were represented by small
numbers of samples. In the first pass, reads were mapped
to the genome allowing a single mismatch and only those
with an overhang minimum of 10 bp on each side of the
splice junction were taken forward. This step identified 1,
057,650 splice junctions, many of which were supported
by only a single read. These splice junctions with 5 or
more uniquely mapped reads (reads that match only one
genomic position) were kept. In some cases, reads align
equally to several genomic locations, in these cases only
splice junctions containing at least 10 (multi-mapped)
reads were kept. After filtering, the remaining 206,688
splice junctions were used as annotation for the second
pass. In the second pass the alignment was relaxed to
allow 2 mismatches in the splice junction region with an
overhang minimum of 7 bp. This step identified 1,088,440
splice junctions and these were further filtered to select
splice junctions on the basis of one of three sets of criteria
depending on the range of expression levels between the
different samples: a) splice junctions with 3 or more
uniquely mapped reads (5 or more reads if multi-mapped
reads are present) in at least 2 samples; b) splice junctions
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with 2 or more uniquely mapped reads in at least 5 sam-
ples or c) splice junctions supported by 1 or more
uniquely mapped reads in at least 10 samples and allowing
for 2% mismatches in the alignment of reads outside the
splice junction. In the final pass, the 323,619 filtered splice
junctions from the previous step were used as annotation
and no new splice junctions were allowed. In this step, the
read mismatch rate was relaxed to 3% to allow more reads
to map. In all three passes, only canonical splice junctions
(GT..AG, GC..AG and AT..AC) and concordant align-
ments were kept.

Transcript assembly
After STAR alignment, each sample was run individually
using StringTie (version 1.3.3b) [43]. Different combina-
tions of StringTie parameters were extensively tested
and the parameters that produced the best assembly
were retained (see Results). Evaluation of each assembly
was performed based on comparison with HR RT-PCR
data consisting of 86 genes and 220 alternatively spliced
RT-PCR products (see Results). To evaluate the com-
pleteness of the transcripts assembled, 22,651 Haruna
nijo fl-cDNAs [37] were aligned using BLASTn (blastn,
version ncbi-blast-2.2.28+ [2];) to each RNA-seq tran-
scriptome assembly generated. All fl-cDNAs with ≥90%
coverage and ≥ 90% identity were identified and the total
number was considered a measure of completeness.
Optimal StringTie parameters were coverage (−c 2.5); gap
between readings triggering a new bundle (−g 50); isoform
fraction was set at -f 0, gene abundance estimation was set
as output (−A), minimum anchor length for junctions 5
(−a); minimum junction coverage 0.1 (−j) and fraction of
bundle allowed to be covered by multi-hit reads 1 (−M).

Removal of low abundance transcripts
Salmon is a software tool that utilises a defined set of refer-
ence sequences to perform a rapid, alignment-free estima-
tion of isoform abundances by using k-mer indexing and
counting. It uses an accelerated expectation-maximization
algorithm for quantifying isoform abundance, which is
given in transcripts per million (TPM). All 808 individual
StringTie assemblies were merged with StringTie-merge,
after all 808 read samples were aligned to the merged refer-
ence transcriptome with Salmon (version Salmon-0.8.2)
[42] to obtain transcript quantification. All transcripts that
were expressed at less than 0.3 TPM, across all samples,
were filtered out.

Assembly merge
All 808 assembly predictions from StringTie were merged
using StringTie-merge to create a unique consensus as-
sembly version. A minimum isoform fraction of 0 (−f) and
a minimum input transcript TPM of 0.1 (−T) was used in

StringTie-merge. The consensus transcriptome, after fil-
tering out the transcripts less than 0.3 TPM, was further
merged (gtf format) with the 22,651 Haruna nijo (HN) fl
cDNAs [37]. The HN fl cDNAs were previously mapped
to the barley cv. Morex genome with the GMAP tool (ver-
sion 2017-10-30) [58]. Finally, we used TransDecoder
(version 5.3.0) [24] and BLASTp to identify and filter out
all transcripts equal to or less than 300 bp (8831 tran-
scripts) with less than 70% of coverage and identity pro-
tein homology with the protein datasets from 3 reference
Poaceae species – Oriza sativa (v7_JGI), Brachypodium
distachyon (Bd21–3 v1.1) and Sorghum bicolor (v3.1.1)
(https://genome.jgi.doe.gov/portal/) (Additional file 2: Fig-
ure S4) to establish BaRTv1.0.

Alternative splicing analysis
The newly created non-redundant BaRTv1.0 consensus
transcriptome was further refined to allow accurate
quantification of AS as described previously, to create a
separate dataset specifically for quantification of AS iso-
forms (BaRTv1.0 – QUASI) [61]. All transcripts with
shorter 5′ and 3′ UTR regions were padded out to the
5′ and 3′ ends of the longest transcript of that gene
using the cv. Morex genome.

High resolution RT-PCR
The RNA from five of sixteen developmental stages of
barley cv. Morex was used for HR RT-PCR validation
[35]. This consisted of three biological replicates of leaf
tissue (LEA) sampled from seedlings at 17 days after
planting (dap); the third stem internode (NOD) dis-
sected at 42 dap; whole developing inflorescence tissue
sampled at 30 dap (INF1) and 50 dap (INF2) and embry-
onic tissue (including mesocotyl and seminal roots;
EMB) dissected after 4 days. High resolution RT-PCR
was performed essentially as described previously [51]. A
panel of 86 primer pairs covering 220 RT-PCR products
(Additional file 1: Table S3), were designed to barley
genes that showed evidence of AS and more than 100
RNA-seq reads for each primer pair to support transcrip-
tion, with the exception of 14 primer pairs numbered
between primers #14 and 51. These primers were designed
to genes already under study and consisted of splicing
factor genes, clock response genes and Rubisco activase
(Additional file 1: Table S3). Primers were designed to
amplify products between 100 and 700 bp to capture the
different splicing events. The 5′ upstream primer was 5′
labelled with 6-Carboxyfluorescein (6-FAM). Total RNA
(5 μg) was used for first-strand cDNA synthesis by reverse
transcription with oligo (dT)18 using Ready-To-Go You-
Prime First-Strand Beads (GE Healthcare) in a final volume
of 20 μL. RT-PCR was performed as described [51] and the
resultant RT-PCR products representing AS transcripts
were detected on an ABI3730 DNA Analyzer (Thermo
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Fisher Scientific) along with GeneScan 500 LIZ size standard
(Applied Biosystems). RT-PCR products were accurately
sized and peak areas calculated (Relative Fluorescence
Units – RFUs) using GeneMapper (ABI) software.

Comparing HR RT-PCR and RNA-seq alternative splicing
proportions
To assess the accuracy of BaRTv1.0 to detect changes in
AS in the RNA-seq data, we compared the splicing pro-
portions for AS events from HR RT-PCR with those cal-
culated from the RNA-seq data using the HORVU
transcript set, BaRTv1.0 and BaRTv1.0-QUASI as tran-
script references. To establish the correlations, a number
of considerations were required. First, HR RT-PCR data
reports exclusively on the events that occur within a
gene bordered by the primers used for the analysis. The
RNA-seq data reports on individual transcripts that may
contain multiple AS events or have an alternative tran-
script start and/or stop. For this reason, multiple RNA-
seq transcripts may represent the same AS product that
is detected by HR RT-PCR. We therefore developed a
method (https://github.com/PauloFlores/RNA-Seq-valid-
ation) that determined the size of the expected PCR
product by aligning the primer pairs against each RNA-
seq transcript and determining the predicted length that
PCR would produce. The TPM values of all transcripts
that produce the same AS PCR product were added to-
gether to give a combined RNA-seq value for that PCR
product. The proportions of the different AS products
for both HR-RT-PCR and RNA-seq were then subse-
quently calculated and correlated.
Firstly, the method mapped the HR RT-PCR primers

to the transcriptome using BLAST (blastn-short com-
mand; version ncbi-blast-2.2.28+ [2];). All transcripts
with perfect identity and coverage for both reverse and
forward primers at one gene transcript location were se-
lected (http://ics.hutton.ac.uk/barleyrtd/primer_list.html).
Secondly, the distance was calculated between the pairs of
primers for each selected transcript, and thirdly, tran-
scripts with equal product length associated with the same
pair of primers were clustered together. Fourthly, five
reference samples from the sample dataset, each with 3
biological replicates to give 15 datasets [26] were individu-
ally quantified by Salmon (version Salmon-0.8.2 [42];).
The five reference samples consisted of 4-day old embryos
dissected from germinating grains (EMB), young develop-
ing inflorescences (5mm) (INF1), developing inflores-
cences (1–1.5 cm) (INF2), developing tillers at 6 leaf stage,
third internode (NOD) and shoots from seedlings (LEA).
The levels of expression (in TPM) from Salmon were
summed for transcripts with the same RT-PCR product
lengths. For each pair of primers and allowing for a differ-
ence of ±6 bp (to allow for inaccuracies in HR RT-PCR
size calling), products of the same length between HR RT-

PCR and RNA-seq were identified. Finally, based on the
calculated values of RNA-seq levels of expression and the
calculated values of HR RT-PCR for each RT-PCR prod-
uct, the proportions of the alternative transcripts were cal-
culated. The proportions determined the level of one gene
transcript in relation to all the alternative transcripts. It
was calculated by dividing a transcript TPM (RNA-seq) or
RFU (HR RT-PCR) value by the total number of transcript
values for a particular gene. Pearson’s and Spearman’s cor-
relation co-efficient (r) was calculated to determine the
extent to which the AS proportions fluctuate between the
RNA-seq and HR RT-PCR methods. (see Additional file 2:
Figure S6 for a pipeline summary).

Percent spliced in values and identification of alternative
splicing type
SUPPA version 2.3 [1] determined AS events and calcu-
lated the relative inclusion values of AS events. Outputs
from Salmon were fed into SUPPA to quantify AS events
across the tissue sample datasets and generate percent-
age spliced in (PSI) values.

Generation of the BaRTv1.0 database
A database and website front-end were constructed to
allow easy access to BaRTv1.0 transcripts and expression
analyses using the LAMP configuration (Linux, Apache,
mySQL, and Perl). Additional annotation was added to
the transcripts by homology searching against the pre-
dicted peptides from rice (rice pseudo-peptides v 6.0;
[40]) and from Arabidopsis thaliana (TAIR pseudo-
peptides v 10, The Arabidopsis Information Resource)
using BLASTX at an e-value cutoff of less than 1e-50 [2].
The website https://ics.hutton.ac.uk/barleyrtd/index.html
allows users to interrogate data through an entry point via
three methods: (i) a BLAST search of the reference barley
assembly or the predicted transcripts; (ii) a keyword search
of the derived rice and Arabidopsis thaliana BLAST anno-
tation, and; (iii) a direct string search using the transcript,
gene, or contig identifiers. To distinguish this new set of
predicted genes and transcripts from previously published
‘MLOC_’ and HORVU identifiers, they have subsequently
been assigned a prefix of ‘BART1_0-u00000’ for the unpad-
ded or ‘BART1_0-p00000’ for the padded QUASI version,
with BART1_0-p00000.000 representing the individual
transcript number.
The RNA-seq TPM values for the developmental stages

of barley (Morex cultivar) [35] at the replicate and stage
are shown in both graphic and tabular formats for each
gene. The exon structures of the transcripts for each gene
are shown in graphical form, and links to the transcripts
themselves provides access to the transcript sequences in
FASTA format. Each transcript has also been compared to
the published set of predicted genes (HORVUs) in order
to provide backwards compatibility.
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Statistical analysis
HR RT-PCR ANOVA
Pairwise significance of the variation between the devel-
opmental tissues was assessed by analysis of variance
(ANOVA). Each peak of each primer was analysed sep-
arately with three replicate values for each treatment
combination. Response was measured as the percentage
contribution of a particular isoform to the total tran-
scripts measured, and ANOVA was carried out after an
angular (arcsin) transformation was used to transform
values from [0, 1] to [−π/2,+ π/2] to give the data a nor-
mal distribution [52]. ANOVA was conducted in R by
using the code anova (lm(x~tissue)) where x was the
transformed splicing proportion for a site. Fisher’s Least
Significant Difference (LSD) test was performed for the
pairwise comparisons between the different tissues tested
at a p- value < 0.001. In the subsequent analysis, we
focused on those transcripts which showed a significant
increase or decrease with a 5% difference between the
means of the different plant tissues. This level of differ-
ence was selected because we previously determined that
when comparing variation in technical reps in the AS
RT–PCR system, the majority of transcripts showed a
standard error of the mean of < 3% [29, 51].
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