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Abstract

Background: Rising health care costs are a major public health issue. Thus, accurately predicting future costs and
understanding which factors contribute to increases in health care expenditures are important. The objective of this
project was to predict patients healthcare costs development in the subsequent year and to identify factors
contributing to this prediction, with a particular focus on the role of pharmacotherapy.

Methods: We used 2014–2015 Swiss health insurance claims data on 373′264 adult patients to classify individuals’
changes in health care costs. We performed extensive feature generation and developed predictive models using
logistic regression, boosted decision trees and neural networks. Based on the decision tree model, we performed a
detailed feature importance analysis and subgroup analysis, with an emphasis on drug classes.

Results: The boosted decision tree model achieved an overall accuracy of 67.6% and an area under the curve-score
of 0.74; the neural network and logistic regression models performed 0.4 and 1.9% worse, respectively. Feature
engineering played a key role in capturing temporal patterns in the data. The number of features was reduced
from 747 to 36 with only a 0.5% loss in the accuracy. In addition to hospitalisation and outpatient physician visits, 6
drug classes and the mode of drug administration were among the most important features. Patient subgroups
with a high probability of increase (up to 88%) and decrease (up to 92%) were identified.

Conclusions: Pharmacotherapy provides important information for predicting cost increases in the total
population. Moreover, its relative importance increases in combination with other features, including health care
utilisation.

Keywords: Machine learning, Health care utilisation, Health care costs, Boosted decision tree, Neural network,
Pharmacology, Claims data

Introduction
Rising health care costs are a major economic and public
health issue worldwide [1, 2]: According to the World
Health Organization, health care accounted for 7.9% of
Europe’s gross domestic product (GDP) in 2015 [3]. In
Switzerland, the health care sector contributes substan-
tially to the national GDP, and has increased from 10.7
to 12.1% between 2010 and 2015 [3]. Moreover, because

health care utilisation costs may serve as a surrogate for
an individual’s health status [4], understanding which
factors contribute to increases in health expenditures
may provide insight into risk factors and potential start-
ing points for preventive measures.
Several studies [4–21] have addressed the prediction

of health care costs, approaching the issue as either a re-
gression problem or a classification problem (classifying
costs into predefined “buckets”). Morid et al. [22] con-
ducted a literature review summarising and comparing
the existing models. As far as the annual difference in
costs is concerned, we are aware of only 1 study [23],
which classified healthcare costs development into only
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two classes (binary classification). Previous studies also
examined a broad variety of features. The most com-
monly used features include different sets of demo-
graphic features, health care utilisation parameters (e.g.
hospitalisation or outpatient visits), drug codes, diagno-
sis codes, procedure codes, various chronic disease
scores and cost features.
In this study, we aimed to predict changes in patients’

health care costs in the subsequent year and to identify
factors contributing substantially to this prediction. In
particular, we focused on the role of pharmacotherapy
and other medical features such as hospitalisations and
outpatient physician visits. We approached the problem
as a binary classification task, predicting whether pa-
tient’s total costs would increase or decrease in 2015,
based on their characteristics in 2014. We compared the
performance of 3 different models: feedforward neural
networks (FNN), boosted decision trees (BDT) and logis-
tic regression (LR). To capture different patterns in the
data, we performed extensive feature engineering and in-
troduced new domain-specific features, such as the drug
administration mode. Finally, we performed a detailed
feature importance analysis and subgroup analysis, based
on the decision tree model.

Methods
Study data
We used anonymised claims data provided by the Helsana
Group, one of the largest health insurance companies in
Switzerland, which covers about 15% of the population
across all regions of the country [24]. Basic health insur-
ance coverage is mandatory in Switzerland. All residents
are free to choose their preferred insurance providers,
which are privately owned. Insurance coverage is financed
by a premium and includes co-payments and deductibles
[25]. The amount of the deductible can be chosen by the
patient and changed every year. All health care invoices
submitted for reimbursement are recorded in Helsana’s
claims database [24]. The full dataset comprised informa-
tion on adults (aged ≥18 years) without additional private
insurance. All patients were insured by Helsana through-
out the study period (2014–2015), allowing for complete
records for both years. Furthermore, we required that all
patients had at least 5 drug prescriptions in both calendar
years and complete records on all demographic variables.
In total, 373′264 patients met these requirements. Our
dataset comprised demographic parameters, information
on health insurance status, prescribed drugs, claimed
health care utilisation, and total costs for each patient.
Total costs were defined as gross costs for all invoices sub-
mitted for reimbursement, thus not taking co-payments
and deductibles into account. Prescribed drugs are dis-
played using the Global Trade Item Number (GTIN).
Additionally, the active component (5th-level Anatomical

Therapeutic Chemical (ATC) code [26]) is available for
every drug. Diagnoses are not available in our dataset be-
cause of legal regulations in Switzerland.

Introduction of features
Feature engineering plays an important role in most of
the machine learning models and can greatly improve
prediction accuracy for any task.
Our exploratory linear regression analysis revealed

that, compared with the prediction of total costs, the
variance of the difference in costs is harder to explain
using basic features such as demographics [5, 6, 13–16, 19]
or simple count measures [17] described in the literature
(Additional file 1: Table S1). Therefore, we performed
extensive feature generation to include additional predictors
in our models. We assigned names to the feature sets,
which we later use to discuss their relative importance for
the overall accuracy.

Basic features
The included demographic features were age, gender,
deductible amount, insurance model and area of resi-
dence. We also included the simple count measures of
numbers of hospitalisations, outpatient physician office
visits, different drugs, and the number of individual pre-
scriptions (GTINs). Because our dataset lacks diagnosis
codes, we approximated chronic conditions following
the ATC classification proposed by Huber et al. [25] and
computed the number of prescribed ATC codes corre-
sponding to each group.

Features representing pharmacotherapy
In addition to the derived chronic conditions, we in-
cluded explicit drug information. To reduce sparsity, we
chose 4th-level ATC [26] codes (eg. C01AA, statins)
over the 8′705 unique GTINs or the 1′027 5th-level
ATC codes. For each of the resulting 449 categories, we
computed the number of corresponding prescriptions.

Additional features
We included the following additional features: Hospital-
isation was identified using Swiss diagnosis-related
group (DRG) codes [27]. We generated features display-
ing the major diagnostic categories derived from DRG
codes (e.g., hospitalisation for diseases of the respiratory
system), the type of hospital, and the type of harm (e.g.,
accident, disease), as well as the overall length of hos-
pital stay. To capture temporal patterns [28], we com-
puted the frequencies of outpatient office and bedside
visits per month and per quarter of the year. We also
included physician’s specialisation, the institution dis-
pensing the drug and the number of visits on weekends
(which might indicate acuteness) as features. Addition-
ally, we computed the frequencies of prescriptions for
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different fine-grained periods of time and the number of
prescribed products with certain modes of administra-
tion (e.g., intravenous) for each patient. The number of
different drug classes and prescriptions (defined as dif-
ferent purchase dates), as well as features representing
psychiatric treatment, rehabilitation, nursing home stays,
and home care were also included. Finally, we generated
a number of descriptive statistics (median, mean, stand-
ard deviation, minimum, and maximum) for intervals
between, for example, prescriptions, visits and home
care to capture a regularity pattern. Our expectation was
that, the more regular these events are, the more con-
tinuous is the treatment, and that irregularity might
point to a more acute condition.

Costs feature
Total healthcare costs in 2014 was included only to as-
sess the overall accuracy and to determine whether the
medical features provided complementary information.

Data split
Using random assignment, we divided the dataset into
3 parts: training set (80%), validation set (10%), and
test set (10%). The training set was used to develop
the prediction models, and the validation set was used
for assessing the performance of various methods and
for subsequent tuning of the hyperparameters. The
test set was reserved for reporting the performance of
the final models. We report the basic descriptive sta-
tistics in Table 1.

Models
We used 3 different methods to develop models for our
analysis. As a reference model, we used LR and con-
trasted its performance to FNN and BDT. All models
were developed starting with a set of demographic fea-
tures. Additional feature sets were added in a stepwise
manner, resulting in a total of 747 different features in
the complete model (Table 2).

Table 1 Study population characteristics (2014)

All Train Validation Test

Patients, n (%) 373′264 (100%) 298′611 (80%) 37′326 (10%) 37′327 (10%)

Demographics

Age, median [IQR] 63.8 [49.2, 75.1] 63.8 [49.3, 75.1] 63.6 [49.0, 75.2] 63.8 [49.1, 75.1]

Gender [female], n (%) 226′085 (60.6%) 180′730 (60.5%) 22′565 (60.5%) 22′790 (61.1%)

Language Area, n (%)

German 275′025 (73.7%) 219′998 (73.7%) 27′469 (73.6%) 27′558 (73.8%)

French 69′120 (18.5%) 55′292 (18.5%) 6′927 (18.6%) 6′901 (18.5%)

Italian 29′119 (7.8%) 23′321 (7.8%) 2′930 (7.8%) 2′868 (7.7%)

Deductible, n (%)

CHF 300 250′287 (67.1%) 200′211 (67.0%) 25′026 (67.0%) 25′050 (67.1%)

CHF 500–1000 92′274 (24.7%) 73′900 (24.7%) 9′175 (24.6%) 9′199 (24.6%)

CHF > 1000 30′703 (8.2%) 24′500 (8.2%) 3′125 (8.4%) 3′078 (8.2%)

Cost

Total Costs (CHF), median [IQR] 3′932 [1′944, 8′597] 3′935 [1′946, 8′586] 3′948 [1′958, 8′642] 3′894 [1′915, 8′642]

Cost Difference (CHF)*, median [IQR] 93 [−1′746, 2365] 93 [− 1′750, 2′365] 62 [− 1′791, 2′305] 122 [− 1′668, 2′441]

Increase†, n (%) 193′766 (51.9%) 155′058 (51.9%) 19′130 (51.3%) 19′578 (52.4%)

Drug Therapy

Number of drugs‡, median [IQR] 9 [6, 15] 9 [6, 15] 9 [6, 15] 9 [6, 15]

Number of prescriptions§, median [IQR] 19 [11, 34] 19 [11, 34] 19 [11, 34] 19 [11, 34]

Route of administration, n (%)

oral 369'101 (98.9%) 295′313 (98.9%) 36′926 (98.9%) 36′862 (98.8%)

intravenous 122′361 (32.8%) 97′764 (32.7%) 12′427 (33.3%) 12′170 (32.6%)

Health Care Utilisation

Number of visits||, median [IQR] 8 [4, 13] 8 [4, 13] 8 [4, 13] 8 [4, 13]

Hospitalisation [yes], n (%) 66′427 (17.8%) 53′085 (17.8%) 6′688 (17.9%) 6′654 (17.8%)

Descriptive statistics such as median, interquartile range (IQR), absolute and relative frequencies were computed using R (Version 3.3.1). Age was used as 18 age
categories in the models, but shown as continuous variable in this table for easier interpretation. *Cost Difference = Total Costs 2015 - Total Costs 2014 (CHF = Swiss
Francs), †Increase = Cost Difference > 0, ‡Number of different drugs defined by active components, §Number of prescribed drugs, identified by GTIN, ||Number of
outpatient physician office visits
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Because we use BDT (in particular the XgBoost [29]
library) extensively for the subsequent analyses, a short
overview is in order: BDT is a variant of decision tree
methods with a gradient boosting algorithm governing
the learning process. In decision trees, the input is
mapped to a target label by a recursive creation of deci-
sion rules [30], which can be represented as nodes in a
graphical tree model. The gradient boosting method
produces a prediction model in the form of a weighted
average of several weak predictors (decision trees).

Feature importance analysis using BDT
We used BDT to conduct detailed feature and drug-
importance analyses. Using BDT, decision rules can be
mapped into respective cuts in our feature space, gener-
ating subgroups of patients with a high probability of an
increase in costs. In particular, we were interested in
medically relevant subgroups, with a particular emphasis
on pharmacotherapy.

General feature importance
We used backward deletion to assess the general feature
importance. Backward deletion begins with all candidate
features (here, the complete model), and the deletion of
each feature is tested using a chosen model fit criterion.
The feature that makes the most statistically insignifi-
cant contribution to the model fit quality is deleted. The
process is repeated until no further variables can be de-
leted without a large loss in accuracy. This process is dis-
played in Additional file 1: Figure S1 in the supplement.

Drug importance analysis

Conditional drug probabilities The feature importance
analysis based on backward deletion selects features
according to their overall contribution to the total accur-
acy. As the latter depends on the feature’s frequency in
the dataset and its relative discriminative contribution,
more frequently prescribed drugs have an advantage

Table 2 Comparison of prediction performance of logistic regression (LR), boosted decision tree (BDT) and feedforward neural
network (FNN) using different sets of features

Models

Model performance on validation dataset LR BDT FNN

Features Size Acc (%) AUC Acc (%) AUC Acc (%) AUC

Demographic model* 7 51.2 0.52 51.3 0.52 52.2 0.53

+ number of different drugs 8 58.0 0.61 58.1 0.61 58.7 0.61

+ number of individual prescriptions 8 55.3 0.58 56.9 0.60 57.5 0.60

+ number of hospitalisations 8 61.0 0.62 61.0 0.62 61.1 0.63

+ number of outpatient physician office visits 8 59.4 0.63 60.1 0.63 60.4 0.64

+ chronic conditions 29 54.8 0.57 57.0 0.59 57.5 0.60

Extended model† 33 62.8 0.67 63.1 0.68 64.0 0.69

+ additional features 297 64.8 0.70 66.3 0.72 66.1 0.72

+ features representing pharmacotherapy 482 64.5 0.69 65.4 0.71 65.6 0.71

+ total costs 34 62.1 0.67 64.8 0.71 65.7 0.71

+ additional features + total costs 298 65.0 0.70 67.0 0.74 67.0 0.73

Complete model‡ without total costs 746 65.3 0.71 66.5 0.73 66.5 0.72

Complete model 747 65.2 0.70 67.4 0.74 67.4 0.73

Backward Deletion 36 – – 66.9 0.73 – –

Model performance on test dataset

Complete model‡ without total costs 746 65.9 0.71 66.8 0.73 66.4 0.72

Complete model 747 65.7 0.71 67.6 0.74 67.2 0.73

Backward Deletion 36 – – 67.1 0.73 – –

Acc = Accuracy, AUC = Area under the curve, Size = Number of features in the model
*Demographic model = age + gender + area of residence + deductible + insurance model,
†Extended model = Demographic model + number of different drugs + number of individual prescriptions + number of hospitalisations + number of outpatient
physician office visits + chronic conditions
‡Complete model = Extended model + additional predictors + features representing pharmacotherapy + total costs
Bold data are significant
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over those that are prescribed less frequently, even if dis-
criminating less efficiently. In order to get additional
insight into the drug-importance, we computed the
probability of increase, conditioned on the drug classes
and stratified by hospitalisation.

Weight analysis Although conditional drug probabil-
ities provide an important overview, interactions of the
drug classes with other features (except for hospitalisa-
tion) could not be assessed. Therefore, we performed a
weight analysis to investigate the decision tree model
predictions using the test set. To understand the concept
of weight analysis, it is important to clarify how the BDT
prediction is generated during the inference stage. For a
given input sample, the BDT maps every feature in the
sample to learned weights or scores. The individual
score can be either positive or negative, depending on
whether the feature contributes to increase or decrease
prediction, respectively. The final prediction is an in-
crease, if the sum of all scores is positive; otherwise it is
a decrease. Thus, by analysing the weights of particular
features using a sample of inputs, one can understand
how often and how strongly these features contribute
[31]. Using this intuition, we filtered out the drug classes
that contributed to increases or decreases with a high
proportion (at least 5% of the overall positive or negative
score).

Subgroup analysis BDT produces a prediction model in
the form of a weighted average of several weak predic-
tors. To find examples of highly predictive subgroups in-
volving drug classes, we employed the following strategy:
First, we filtered out all decision paths in all trees where
a particular drug class was used. More precisely, we con-
sidered only the paths where the prescription of the drug
contributed. Next, we measured the conditional prob-
ability of increase for the cuts given by the filtered paths.
We denote this probability by P(increase | cut). For every
such a cut, we computed the conditional probability
without the drug class cut, P(increase | cut without drug
class). We defined a gain to be the difference |P(increase
| cut) - P(increase | cut without drug class)|. Lastly, we
chose the subgroups with high values of gain.

Results
In Table 1 we show the basic descriptive statistics for
the total dataset, as well as for the three subsets. As one
can see from the table, the training, validation and test
datasets follow the same distribution over all parameters.
In particular, it is important that the variation of the an-
nual cost difference and the proportion of cost increase/
decrease is small (within ±0.6% for the cost increase).

Performance of models
The BDT model performed the best, leading to 67.6%
accuracy and an area under the curve (AUC) score of
0.74, indicating good discrimination between the classes.
The receiver operating characteristic curves of all 3
models are presented in Fig. 1. Table 2 indicates the per-
formance of the models on different sets of features.
Whereas demographic features alone were not predictive
at all, adding simple count measures — especially the
number of outpatient office visits and the number of hos-
pitalisations — substantially improved prediction accur-
acy. The effects of additional features (n = 264), total
costs, and pharmacotherapy (n = 449) were about the
same (2–3%), depending on the chosen model. Once com-
bined, the overall accuracy further improved by more than
1%, indicating that these features contain complementary
information. As for the model comparison, FNN and BDT
consistently outperformed LR by about 2%. Moreover,
BDT generalised better on the unseen samples, outper-
forming the FNN in accuracy by about 0.4%.

General feature importance
Gradually adding feature sets already provides some in-
tuition about their relative importance, but decision tree
models can be further utilised for the systematic analysis
of feature importance. Using backward deletion, we
found that the number of features could be reduced up
to 36, with only a 0.5% loss in the accuracy (Table 2,
Additional file 1: Figure S1). We identified the length of
hospital stay, total costs, and intravenous mode of drug
administration as the most important features. The full
list of 36 features is presented in Additional file 1: Table
S2. The list comprises both demographic and various med-
ical features such as the number of individual prescriptions,
the temporal pattern of outpatient visits, and diabetes as a
chronic condition. Interestingly, the following 6 drug clas-
ses remained in the model: A03BA (belladonna alkaloids),
B03BB (folic acid), N01AH (opioid anaesthetics), N01AX
(other general anaesthetics), S01BC (ophthalmologic non-
steroidal anti-inflammatory agents) and S01CA (ophthal-
mologic corticosteroids and anti-infectives in combination).

Drug importance analysis
Conditional drug probabilities
For the total study population, irrespective of prescribed
drugs, the probability of cost increase was 51.9%. Condi-
tioned on hospitalisation, the probabilities for increase
were 23.1 and 58.1% with and without hospitalisation in
2014, respectively. We subsequently computed the prob-
abilities of increase or decrease in costs conditioned on
the 449 drug classes and on hospitalisation. The results
are presented in Table 3. In particular, we present the
drug classes with the highest probabilities for cost in-
crease or decrease and with frequent prescriptions. All 6
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drug classes identified in the previous section are in-
cluded in this table, with only folic acid (B03BB) being
an indicator for an increase in costs.

Weight analysis
Through the weight analysis, we identified additional drug
classes that contributed to the accuracy of prediction.
Many of them were found to contribute to predictions of
both increases and decreases (Table 4). For instance, mag-
nesium is among the drug groups with a high accuracy for
increase (71.4%), but also an important feature for de-
creases among the patients without hospitalisation (78.6%).

Subgroup analysis
We present examples of the subgroup analysis in Table 5.
We found small (100–600 people) but highly predictive
subgroups for costs increases (as high as 88%). More-
over, the gain because of the drug class was high, reach-
ing up to 23% for folic acid (Example #1) and 21% for
oral iron supplements (Example #3). In addition to drug
classes, subgroups were further characterised by a variety
of features, including outpatient visits, drug prescription
information (both counts and temporal information), in-
formation on the deductible, home care, and hospitalisa-
tion. Example #7 represents a rather large subgroup of

patients without hospitalisation that have a high fraction
of decrease (fraction of decrease 0.74, gain 18%).

Discussion
Our models classify patients according to their probabil-
ity of an increase in costs, with especially a few features
contributing substantially to the prediction. Pharmaco-
therapy provides important information on the cost in-
crease prediction, and its relative importance increases
in interaction with other features including health care
utilisation. We identified patient subgroups with very
high probabilities of increase and decrease.

Performance of models
Our models predict whether patients’ total health care
costs will increase in the subsequent year, with an accur-
acy of up to 67.6% (AUC 0.74). Lahiri et al. [23] reported
a higher accuracy (77.6%) when investigating increases
in inpatient claims costs using Medicare data. Although
this study is the closest in terms of setting to our study,
some major differences should be emphasised: First,
Lahiri et al. predicted inpatient expenditures using both
inpatient and outpatient information, whereas we con-
sider the change in total health care costs using only
outpatient claims and whether or not a patient was hos-
pitalised. Moreover, they found diagnoses and features

Fig. 1 Area under the receiver operating characteristic curve (AUC): Comparison of prediction performance. LR = logistic regression, BDT =
boosted decision tree. FNN = feedforward neural network
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indicating the development of a new chronic condition
the most important features. Diagnoses are not available
in our dataset because of legal regulations in
Switzerland, and the derivation of features indicating the
development of a new chronic condition requires infor-
mation from the year for which predictions are made.
Because these data are typically not available in a

prospective scenario, our study was designed so that all
the features could be generated without any information
from the subsequent year. We found that, for the predic-
tion of a costs increase, medical and costs features con-
tained complementary information. Additionally, the
inclusion of medical features facilitates the identification
of potential targets for preventive measures [32, 33].

Table 3 Probabilities of cost increase and decrease for patient groups, conditioned on drug groups and hospitalisation

All Hospitalisation No Hospitalisation

N P (Increase), % N P (Increase), % N P (Increase), %

Total study population (irrespective of drug groups) 373′264 51.9 66′427 23.1 306′837 58.1

Patients with drug group and highest probability of increase in costs

ATC Name N P (Increase), % N P (Increase), % N P (Increase), %

N06DA Anticholinesterases 2′214 61.1 587 43.4 1′627 67.4

N04BA Dopa and dopa derivatives 3′722 56.1 1′158 35.1 2′564 65.6

B01AA Vitamin K antagonists 18′893 51.6 6′087 27.0 12′806 63.2

B03BB Folic acid and derivatives 10′467 52.6 3′177 28.4 7′290 63.1

C01BD Antiarrhythmics, class III 4′622 47.3 1′890 25.7 2′732 62.3

C03CA Sulfonamides, plain 29′741 50.3 10′793 29.5 18′948 62.1

B03AD Iron in combination with folic acid 4′483 41.6 1′919 14.8 2′564 61.7

C03BA Sulfonamides, plain 3′256 52.7 961 31.2 2′295 61.7

G04CB Testosterone-5a-reductase inhibitors 2′238 53.2 552 27.5 1′686 61.6

A10BB Sulfonylureas 11′418 54.7 2′298 27.8 9′120 61.4

Patients with drug group and highest probability of decrease in costs

ATC Name N P (Decrease), % N P (Decrease), % N P (Decrease), %

S01FA Anticholinergics 2′959 72.4 626 78.9 2′333 70.7

A03BA Belladonna alkaloids, tertiary amines 7′851 73.4 1′964 82.1 5′887 70.5

N01AH Opioid anaesthetics 9′715 72.3 2′235 81.9 7′480 69.5

S01HA Local anaesthetics 7′783 71.5 1′598 79.3 6′185 69.5

A04AA Serotonin (5HT3) antagonists 3′771 70.9 1′637 77.3 2′134 66.0

N01AX Other general anaesthetics 29′106 68.2 7′299 80.3 21′807 64.1

S01EC Carbonic anhydrase inhibitors 9′510 66.7 2′120 79.7 7′390 63.0

S01BC Antiinflammatory agents, non-steroids 13′218 65.3 2′935 77.9 10′283 61.7

C01CA Adrenergic and dopaminergic agents 13′690 65.3 3′085 79.7 10′605 61.2

A03BB Belladonna alkaloids, semisynthetic 7′718 66.1 2′089 80.7 5′629 60.8

Patients with drug group, high probability of decrease in costs and frequent prescriptions

ATC Name N P (Decrease), % N P (Decrease), % N P (Decrease), %

B05BB Solutions affecting the electrolyte balance 66′792 64.0 20′392 77.9 46′400 58.0

V08AB Low osmolar X-ray contrast media* 29′654 63.7 10′870 78.1 18′784 55.3

S01CA Corticosteroids and antiinfectives in combination 28′050 59.7 5′774 78.0 22′276 55.0

N01BB Amides 57′144 59.6 14′887 77.0 42′257 53.5

Bold data are considered table section headings. N = Number of patients per group (characterised by drug group and hospitalisation/no hospitalisation). P (Increase),
P (Decrease) = Probability of cost increase or cost decrease in the respective group, displayed in %. The probability of increase in costs conditioned on hospitalisation
was computed for all drug classes
Selection criteria: 1.) prescribed to ≥1500 patients who didn’t have a hospitalisation, arranged by descending probability of increase or decrease (top 10 shown),
2.) prescribed to more than 10′000 patients who didn’t have a hospitalisation, arranged by descending probability of increase or decrease (top 4 not included in
1.) shown)
ATC = “Anatomical Therapeutic Chemical” classification code, *Water-soluble, nephrotropic, low osmolar X-ray contrast media
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Table 4 Weight analysis: Contribution of drug classes to the prediction

Contribution to prediction of increase

ATC Name Acc,% N

N06DA Anticholinesterases 77.3 88

A12CC Magnesium 71.4 56

B03BB Folic acid and derivatives 69.1 408

A10AE Insulins and analogues for injection, long-acting 68.1 91

B01AA Vitamin K antagonists 67.3 1065

A03FA Propulsives 65.5 58

Contribution to prediction of decrease

Without Hospitalisation With Hospitalisation

ATC Name Acc,% N Acc,% N

A12CC Magnesium 78.6 28 78.8 33

B01AC Platelet aggregation inhibitors excluding heparin 76.9 26 82.9 345

C01BD Antiarrhythmics, class III 73.3 30 81.0 58

N06CA Antidepressants in combination with psycholeptics 69.5 59 75.0 44

B01AA Vitamin K antagonists 68.8 173 74.5 471

A03FA Propulsives 65.8 146 84.6 143

All numbers were calculated on the test dataset. Drug groups contributing at least 5% to the overall positive or negative score (complete model without costs).
Additionally, the drug classes must have contributed for at least N = 40 patients (increase) or N = 20 patients (decrease without hospitalisation). The top 6 drug
classes are provided, arranged by descending order of accuracy
Acc = Accuracy
N = Number of patients for whom the drug class contributed at least 5% to the overall positive or negative score
ATC = “Anatomical Therapeutic Chemical” classification code
Bold data are significant

Table 5 Examples of subgroups derived from the decision tree

Examples of subgroups for increase N PI Gain

#1 Patients younger than 35 years with at least 1 prescription for folic acid (B03BB), no more than two outpatient office visits in
the second quarter of the year, and fewer than 12 drug prescriptions

634 0.88 0.23

#2 Patients with at least 1 prescription for magnesium (A12CC), no hospitalisation (≤ 1 day), at least 5 outpatient office visits
with a gynaecologist during the year, no more than 1 outpatient visit in the first quarter of the year overall, and at least 4
visits in the third quarter of the year

265 0.86 0.16

#3 Patients with at least 1 prescription for iron (trivalent, oral preparations, B03AB), a deductible > 1000 Swiss francs for 2014,
no change in this deductible for 2015, at least 6 prescribed drugs, and no more than 5 prescriptions*

114 0.78 0.21

#4 Patients with at least 1 prescription for anticholinesterases for dementia (N06DA), no home care (≤ 1 day), no more than 1
prescription in February, and few prescriptions filled by pharmacies

276 0.70 0.13

Examples of subgroups for decrease N PD Gain

#5 Patients with at least 2 prescriptions for anticholinergics for ophthalmologic use (S01FA), no concomitant therapy with
Vitamin K antagonists, no more than 11 prescriptions, and no more than 6 outpatient physician visits in the third quarter of
the year

303 0.89 0.45

#6 Patients with at least 4 prescriptions for platelet aggregation inhibitors (excluding heparin, B01AC), who were hospitalised
(cardiac-related major disease category) and had frequent home care (mean interval < 3.3 days)

3777 0.83 0.04

#7 Patients with at least 2 prescriptions for any other general anaesthetics (N01AX), with a mode of administration
‘intravenously’ and fewer than 2 prescriptions for sulfonamides (C03CA), and no hospitalisation in the first year

4237 0.74 0.18

#8 Patients with at least 1 prescription for both a beta blocking agent (S01ED) and a corticosteroid and anti-infective (S01CA)
for ophthalmologic use within one year, who had a maximum of 2 outpatient visits in December

2229 0.67 0.08

N = size of subgroup; PI, PD = conditional probability of increase or decrease for the cuts, P(increase | cut); Gain = |difference P(increase | cut) − P(increase | cut
without drug class)|; Maximal number of cuts = 5, *defined as different purchase dates
Bold data are significant
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General feature importance
In general, we found that high healthcare utilisation in the
first year was an indicator for a decrease in the following
year. Using backward deletion, we identified the 36 most
important features, including, for example, length of hos-
pital stay, home care, and count measures for outpatient
visits and drug prescriptions. Simple count measures ac-
curately capture the intensity of health care utilisation and
therefore may reflect the severity of the disease state [17].
Additionally, when they are generated for multiple time-
frames, these measures can be used to introduce valuable
temporal information, which was highlighted in a recent
study by Morid et al. [28] Interestingly, the counts of drug
prescriptions and outpatient visits in the last quarter and
the last month of the year are among the most important
features, which indicates that the model assigns a risk of
therapy continuation in the next year. Intravenously ad-
ministered drugs are typically associated with some severe
conditions, explaining why the intravenous mode of ad-
ministration was an important feature in our study. Like-
wise, Pritchard et al. [1] reported that physician-
administered injectable or infusible treatments account
for a comparably higher fraction of expenditures in high-
resource patients. We identified diabetes as an important
chronic condition for the prediction of a cost increase,
which is consistent with diagnoses identified as important
in other studies [23]. In general, chronic conditions [2, 34]
and multimorbidity [35] are well-described risk factors for
high health care utilisation.

Drug importance analysis
We found that high probabilities of increase are mainly as-
sociated with drug groups used to treat chronic conditions
that have a higher likelihood of worsening over time (e.g.,
anticholinesterases and dopa derivatives for treating de-
mentia or parkinson). In contrast, drug groups associated
with higher probability of decrease are predominantly
used for severe acute conditions requiring extensive treat-
ment (e.g., adrenergic and dopaminergic agents) or are
proxies for expensive procedures, such as (local) anaes-
thetics used in day surgery. Evaluating the contribution of
drug classes to the prediction using a weight analysis, we
found that many drug groups contribute to the prediction
of both increases and decreases. This finding indicates that
the contribution of pharmacotherapy depends on other
features and can vary greatly across subgroups.

Subgroup analysis
When evaluating several example drug groups in
more detail, their contribution becomes even clearer.
We identified subgroups with a high probability of in-
crease (up to 88%). Although there may be even
more, we can derive at least 3 higher-level groups
from our examples: 1.) potentially pregnant patients

who have not yet delivered; 2.) healthy patients; and
3.) patients suffering from chronic conditions with
low use of health care resources. Pregnancy without
delivery is considered an important condition for pre-
dicting future resource use [36] and is therefore in-
cluded as a feature in some diagnosis-based
comorbidity scores. Lacking diagnosis codes, our
model identifies combinations of ATC codes (e.g.,
folic acid, magnesium), outpatient specialist visits for
gynaecology, and few outpatient visits at the begin-
ning of the year as patterns indicating potential preg-
nancy. For a subgroup of patients hospitalised for
delivery, the model predicted a decrease in costs, with
as much as 92% accuracy. The “healthy patients”
group was characterised by few prescriptions (includ-
ing at least 1 prescription for oral iron supplements)
and a high deductible that did not change in the next
year, indicating a self-assessment of very good health
status. Self-reported general health has been found to
be an important indicator of future health care util-
isation in previous studies [18, 37]. Claims data do
not include information on self-reported health, so
changes in the deductible may serve as an indicator
of patients’ individual expectations regarding upcom-
ing health expenditures. Tamang et al. [21] found that
patients with a large increase in costs were younger
and less likely to have hospitalisation costs and
chronic conditions, compared with persistent high-
costs patients, which is consistent with our subgroup
findings. The final group represents elderly patients
suffering from a chronic or worsening conditions,
with low use of health care resources, yet having a
higher likelihood for an increase in the latter for the
following year. Subgroups of patients with a high
probability of a cost decrease were characterised by
chronic conditions, with intensive health-related
claims (hospitalisation, home care), or expensive diag-
nostic procedures or day surgery.

Limitations
Change in health care costs is a very broad outcome,
and our data represents a whole population, without
restrictions on underlying diseases or demographic
groups. We therefore found multiple reasons for the
increase and decrease in costs, many of which are not
predictable or preventable (e.g., accidents). Diagnoses
might have provided additional patient information,
but they were not available in Swiss claims data. Ex-
pensive claims such as hospitalisation in the first year
may mask less expensive changes such as new drug
prescriptions or additional physician visits in the
following year, making the development of costs
unsuitable for the evaluation of causal drug-related
risk-factors. Model-wise, the main limitation was
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associated with the sparsity in representing the pre-
scriptions. We think that learning distributed embed-
dings via techniques similar to skip-gram [38] might
mediate this problem. Moreover, it is an active re-
search area to apply recurrent neural networks for
learning representations of medical codes and patients
[39–43]. In this context, the findings of our study can
provide a good starting point for interpreting the re-
sults of such advanced models.

Outlook
This research focused on cost increase on the population
level covering two subsequent years. Future research
should cover multiple subsequent years. In a recent
Danish study, Tamang et al. [21] reported that over the
course of eight years, the majority of high-cost patients
showed only one high-cost year. Among those with mul-
tiple high-cost years, many did not experience them con-
secutively. In the light of high fluctuation of individual
annual costs, the evaluation of an increase in costs using
a longer study period may provide insight into long-
term effects.
Our project was designed to evaluate the risk fac-

tors for cost increase for the total population. While
this approach allows for a broad investigation, it nat-
urally reduces the impact of rare drug classes on the
overall accuracy. However, such drug classes including
chemotherapeutics or biologicals would be of special
interest due to their contribution to the overall cost
increase in healthcare. To evaluate the impact of rare
but high-cost treatments in more detail, future studies
have to focus on specific subgroups. This approach
would reduce sparsity in the data and would allow to
use substances instead of drug classes. Additionally,
temporal information on treatment induction, dur-
ation and intensity should be included in future
analyses.
Our results provide subgroups with high probability of

cost increase. This information can help decision makers
to optimise the healthcare services for these subgroups
through an improved resource allocation planning. For in-
stance, we identified a subgroup of healthy patients which
are likely to develop a cost increase. This group may be
further investigated with respect to causes, amount and
preventability of cost increase. For patients suffering from
chronic conditions with low use of health care resources,
preventive measures such as disease management pro-
grams could be established. Additionally, patients may
better choose their deductibles for the next year based on
the prediction of the future cost development.

Conclusion
The development of costs can be predicted using a
binary classification. Our results indicate that the

contribution of pharmacotherapy depends strongly on
other features and can vary across subgroups. Therefore,
further studies may focus on the development of models
for predefined and therefore less heterogeneous sub-
groups. The detailed understanding of such subgroups
may help to identify potential starting points for improv-
ing patient management.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12913-019-4616-x.

Additional file 1. Supplementary information: Variance of cost
difference explained by basic features using multiple linear regression
analysis (Table S1. Multiple linear regression models using features
observed in 2014) and Backward deletion (Table S2. Features included in
the small model derived from backward deletion, Figure S1. Backward
deletion: Number of features included in the complete model and
corresponding accuracy levels).

Abbreviations
ATC: Anatomical Therapeutic Chemical Classification; AUC: Area under the
curve; BDT: Boosted decision tree; DRG: Diagnosis-related group;
FNN: Feedforward neural networks; GDP: Gross domestic product;
GTIN: Global Trade Item Number; LR: Logistic regression

Acknowledgements
The authors thank the Helsana Group for providing the data.

Authors’ contributions
ME, AJ, HS, TN, IC, MR and GK designed the study. IT and UZ extracted and
organised the data according to the study needs. AJ, TN and HS analysed
the data, generated features and developed the models. MR provided
statistical advice. AJ, IC and ME medically interpreted the results. AJ and HS
drafted the manuscript. All authors critically reviewed and approved the final
version of the manuscript.

Funding
None.

Availability of data and materials
The datasets analysed during the current study are not publicly available as
they are part of the confidential Helsana health insurance claims database.
Additional information not included in the paper is available from the
corresponding author on reasonable request.

Ethics approval and consent to participate
The harmlessness of the study was confirmed by the Cantonal Ethics
Committee of Zurich, although no formal ethical approval was required
under Swiss law.

Consent for publication
Not applicable.

Competing interests
UZ and IT are employed by the Helsana Group. The other authors declare
that they have no competing interests.

Author details
1Department of Clinical Pharmacology and Toxicology, University Hospital
Zurich, University of Zurich, Zurich, Switzerland. 2Swiss Federal Institute of
Technology Zurich (ETH Zurich), Zurich, Switzerland. 3Department of Client
Services & Claims, Helsana Group, Zurich, Switzerland. 4EPha.ch AG, Data
Science in Healthcare, Zurich, Switzerland. 5EBPI, Department of Biostatistics,
University of Zurich, Zurich, Switzerland.

Jödicke et al. BMC Health Services Research          (2019) 19:953 Page 10 of 11

https://doi.org/10.1186/s12913-019-4616-x
https://doi.org/10.1186/s12913-019-4616-x


Received: 7 May 2019 Accepted: 3 October 2019

References
1. Pritchard D, Petrilla A, Hallinan S, et al. What contributes Most to high

health care costs? Health care spending in high resource patients. JMCP.
2016;22(2):102–9.

2. Hu Z, Hao S, Jin B, et al. Online prediction of health care utilization in the
next six months based on electronic health record information: a cohort
and validation study. J Med Internet Res. 2015;17(9):e219.

3. World Health Organisation Global Health Observatory data repository 2019
[Available from: http://apps.who.int/gho/data/view.main.GHEDCHEGDPSHA2
011REGv?lang=en.] Accessed 2 Feb. 2019.

4. Bertsimas D, Bjarnadóttir MV, Kane MA, et al. Algorithmic prediction of
health-care costs. Oper Res. 2008;56(6):1382–92.

5. Powers CA, Meyer CM, Roebuck MC, et al. Predictive modeling of Total
healthcare costs using pharmacy claims data: a comparison of alternative
econometric cost modeling techniques. Med Care. 2005;43(11):1065–72.

6. Kuo RN, Dong Y-H, Liu J-P, et al. Predicting healthcare utilization using a
pharmacy-based metric with the WHO’s anatomic therapeutic chemical
algorithm. Med Care. 2011;49(11):1031–9.

7. Yang C, Delcher C, Shenkman E, et al. Machine learning approaches for
predicting high cost high need patient expenditures in health care. Biomed
Eng Online. 2018;17(Suppl 1):131.

8. König HH, Leicht H, Bickel H, et al. Effects of multiple chronic conditions on
health care costs: an analysis based on an advanced tree-based regression
model. BMC Health Serv Res. 2013;13:219.

9. Lee S-M, Kang J-O, Suh Y-M. Comparison of hospital charge prediction
models for colorectal Cancer patients: neural network vs. decision tree
models. J Korean Med Sci. 2004;19:677–81.

10. Guo X, Gandy W, Coberley C, et al. Predicting health care cost transitions
using a multidimensional adaptive prediction process. Popul Health Manag.
2015;18(4):290–9.

11. Sushmita S, Newman S, Marquardt J, et al. Population Cost Prediction on
Public Healthcare Datasets. In: DH '15 Proceedings of the 5th International
Conference on Digital Health; 2015. p. 87–94.

12. Duncan I, Loginov M, Ludkovski M. Testing alternative regression
frameworks for predictive modeling of health care costs. North American
Actuarial Journal. 2016;20(1):65–87.

13. Huber CA, Schneeweiss S, Signorell A, et al. Improved prediction of medical
expenditures and health care utilization using an updated chronic disease
score and claims data. J Clin Epidemiol. 2013;66(10):1118–27.

14. Sales AE, Liu C-F, Sloan KL, et al. Predicting costs of care using a pharmacy-
based measure risk adjustment in a veteran population. Med Care. 2003;
41(6):753–60.

15. Zhao Y, Ellis RP, Ash AS, et al. Measuring population health risks using
inpatient diagnoses and outpatient pharmacy data. Health Serv Res. 2001;
36(6):180–93.

16. Kuo RN, Lai MS. Comparison of Rx-defined morbidity groups and diagnosis-
based risk adjusters for predicting healthcare costs in Taiwan. BMC Health
Serv Res. 2010;10:126.

17. Farley JF, Harley CR, Devine JW. A comparison of comorbidity
measurements to predict healthcare expenditures. Am J Manag Care. 2006;
12(2):110–7.

18. Frees EW, Jin X, Lin X. Actuarial applications of multivariate two-part
regression models. Annals of Actuarial Science. 2013;7(02):258–87.

19. Fishman PA, Goodman MJ, Hornbrook MC, et al. Risk adjustment using
automated ambulatory pharmacy data. Med Care. 2003;41(1):84–99.

20. Dove HG, Duncan I, Robb A. A prediction model for targeting low-cost,
high-risk members of managed care organizations. Am J Manag Care. 2003;
9(5):381–9.

21. Tamang S, Milstein A, Sørensen HT, et al. Predicting patient 'cost blooms' in
Denmark: a longitudinal population-based study. BMJ Open. 2017;7(1):e011580.

22. Morid MA, Kawamoto K, Ault T, et al. Supervised learning methods for
predicting healthcare costs: systematic literature review and empirical
evaluation. AMIA Annu Symp Proc. 2017:1312–21.

23. Lahiri B, Agarwal N. Predicting healthcare expenditure increase for an
individual from Medicare data. Proceedings of the ACM SIGKDD Workshop
on Health Informatics. 2014. “[Available from http://cci.drexel.edu/hi/hi-kdd2
014/morning_5.pdf]. Accessed 19 Feb 2019

24. Reich O, Rosemann T, Rapold R, et al. Potentially inappropriate medication
use in older patients in Swiss managed care plans: prevalence, determinants
and association with hospitalization. PLoS One. 2014;9(8):e105425.

25. Huber CA, Szucs TD, Rapold R, et al. Identifying patients with chronic
conditions using pharmacy data in Switzerland: an updated mapping
approach to the classification of medications. BMC Public Health. 2013;13:1030.

26. World Health Organisation Collaborating Centre for Drug Statistics
Methodology ATC Structure and principles [Available from: https://www.
whocc.no/atc/structure_and_principles/.] Accessed 22 Jan. 2018.

27. SwissDRG. Online Definitionshandbuch SwissDRG 3.0 Abrechnungsversion
2013. Available from: https://manual30.swissdrg.org/?locale=de. Accessed 5
Dec 2017.

28. Morid MA, Liu Sheng OR, Kawamoto K, et al. Healthcare cost prediction:
leveraging fine-grain temporal patterns. J Biomed Inform. 2019;91:103113.

29. Chen T, Guestrin C. XGBoost: A scalable tree boosting system. In Proc 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining 785–794 (ACM, 2016) 2016:785–794.

30. Schapire RE. The boosting approach to machine learning: an overview. In:
Denison DD, Hansen MH, Holmes CC, Mallick B, Yu B, editors. Nonlinear
estimation and classification. Lecture notes in statistics. New York: Springer;
2003. p. 171.

31. ELI5 [Available from: https://eli5.readthedocs.io/en/latest/.] Accessed,3 Nov. 2018.
32. Forrest CB, Lemke KW, Bodycombe DP, et al. Medication, diagnostic, and

cost information as predictors of high-risk patients in need of care
management. Am J Manag Care. 2009;15(1):41–8.

33. Ash AS, Zhao Y, Ellis RP, et al. Finding future high-cost cases: comparing prior
cost versus diagnosis-based methods. Health Serv Res. 2001;36(6):194–206.

34. Hartmann J, Jacobs S, Eberhard S, et al. Analysing predictors for future high-
cost patients using German SHI data to identify starting points for
prevention. Eur J Pub Health. 2016;26(4):549–55.

35. Bähler C, Huber CA, Brüngger B, et al. Multimorbidity, health care utilization
and costs in an elderly community-dwelling population: a claims data
based observational study. BMC Health Serv Res. 2015;15:23.

36. Johns Hopkins University Bloomberg School of Public Health: The Johns
Hopkins ACG System Technical Reference Guide 2011.

37. Rosella LC, Kornas K, Yao Z, et al. Predicting high health care resource
utilization in a single-payer public health care system. Med Care. 2018;
56(10):e61–169.

38. Le Q. Mikolov T. Distributed Representations of Sentences and Documents.
In Proceedings of ICML 2014. [Available from https://cs.stanford.edu/~
quocle/paragraph_vector.pdf]. Accessed 11 Mar 2019

39. Choi E, Bahadori MT, Schuetz A, et al. Doctor AI: Predicting Clinical Events
via Recurrent Neural Networks. arXiv:151105942v11 2016.

40. Choi E, Bahadori MT, Song L, et al. GRAM: Graph-based Attention Model for
Healthcare Representation Learning. arXiv:161107012v3. 2017.

41. Choi E, Schuetz A, Stewart WF, et al. Medical Concept Representation
Learning from Electronic Health Records and its Application on Heart
Failure Prediction. arXiv:160203686v2. 2017.

42. Mikolov T, Sutskever I, Chen K, et al. Distributed Representations of Words
and Phrases and their Compositionality. arXiv:13104546v1. 2013.

43. Miotto R, Li L, Kidd BA, et al. Deep patient: an unsupervised representation
to predict the future of patients from the electronic health records. Sci Rep.
2016;6:26094.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Jödicke et al. BMC Health Services Research          (2019) 19:953 Page 11 of 11

http://apps.who.int/gho/data/view.main.GHEDCHEGDPSHA2011REGv?lang=en
http://apps.who.int/gho/data/view.main.GHEDCHEGDPSHA2011REGv?lang=en
http://cci.drexel.edu/hi/hi-kdd2014/morning_5.pdf
http://cci.drexel.edu/hi/hi-kdd2014/morning_5.pdf
https://www.whocc.no/atc/structure_and_principles/
https://www.whocc.no/atc/structure_and_principles/
https://manual30.swissdrg.org/?locale=de
https://eli5.readthedocs.io/en/latest/
https://cs.stanford.edu/~quocle/paragraph_vector.pdf
https://cs.stanford.edu/~quocle/paragraph_vector.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study data
	Introduction of features
	Basic features
	Features representing pharmacotherapy
	Additional features
	Costs feature

	Data split
	Models
	Feature importance analysis using BDT
	General feature importance
	Drug importance analysis


	Results
	Performance of models
	General feature importance
	Drug importance analysis
	Conditional drug probabilities
	Weight analysis

	Subgroup analysis

	Discussion
	Performance of models
	General feature importance
	Drug importance analysis
	Subgroup analysis
	Limitations
	Outlook

	Conclusion
	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

