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Abstract

The behavior systems framework suggests that motivated behavior—e.g., seeking food and mates, 

avoiding predators—consists of sequences of actions organized within nested behavioral states. 

This framework has bridged behavioral ecology and experimental psychology, providing key 

insights into critical behavioral processes. In particular, the behavior systems framework entails a 

particular organization of behavior over time. The present paper examines whether such 

organization emerges from a generic Markov process, where the current behavioral state 

determines the probability distribution of subsequent behavioral states. This proposition is 

developed as a systematic examination of increasingly complex Markov models, seeking a 

computational formulation that balances adherence to the behavior systems approach, parsimony, 

and conformity to data. As a result of this exercise, a nonstationary partially hidden Markov model 

is selected as a computational formulation of the predatory subsystem. It is noted that the temporal 

distribution of discrete responses may further unveil the structure and parameters of the model but, 

without proper mathematical modeling, these discrete responses may be misleading. Opportunities 

for further elaboration of the proposed computational formulation are identified, including 

developments in its architecture, extensions to defensive and reproductive subsystems, and 

methodological refinements.
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1. Introduction

A key feature of the behavior systems approach to learning, motivation, and cognition is the 

organization of sequential actions into nested behavioral states (Bowers and Timberlake, 

2018; Fanselow and Lester, 1988; Pelletier et al., 2017; Silva et al., 2019; Silva and 

Timberlake, 1998a; Timberlake, 2001a, 1994, 1993; Timberlake and Lucas, 1989; 

Timberlake and Silva, 1995). Early descriptions of the reproductive behavior of stickleback 

fish (Tinbergen, 1942, cited by Bowers, 2018) and digger wasps (Baerends, 1941) suggested 

such organization: A sexually ready animal typically seeks mates first, then select among 

them, then mates with a selected conspecific, and then engages in postcopulatory behavior. 

Each link in this behavioral chain may be expressed in various specific actions, such as 

postcopulatory nest-digging in female wasps. Despite the longevity of this idea in classical 

ethology, only more recent laboratory research has capitalized on the hierarchical structure 

of sequential actions to develop an ecological account of psychological processes in a broad 

range of species (Bowers, 2018).

To illustrate the kind of behavioral organization postulated by the behavior systems 

framework, Figure 1 shows a hypothetical subset of actions and states that constitute the 

predatory behavior of a rat. Actions and states are organized according to the temporal 

proximity of a biologically relevant stimulus—general search occurs when preys are not 

readily available, consumption occurs when a prey is secured. One action in this subset, 

“sniffing,” may be an expression of either of two higher-order behavioral states—modules, 

in behavior-systems parlance: “socialize” or “investigate.” These modules, in turn, are 

nested within higher-order states—modes: “general search” and “focal search.” These 

modes are nested within a higher-order “predatory” subsystem, which is related to feeding 

functions, which is one of several functions that constitute a behavior system (Timberlake 

and Silva, 1995). A similar hierarchical organization of actions, arranged according to the 

temporal proximity of threats and conspecifics, is observed in defensive (Fanselow and 

Lester, 1988; Perusini and Fanselow, 2015) and reproductive (Akins and Cusato, 2015; 

Domjan, 1994; Domjan and Gutiérrez, 2019) subsystems. Implied by this organization of 

behavior is the notion that, within each level, the organism can only dwell in one state (or 

emit one action) at a time. In the predatory subsystem, for instance, if the rat is in focal 

search, it is not in general search, or if it is sniffing it is not pawing.1

According to the behavior systems framework, actions, such as sniffing and pawing, are 

points of contact between organism and environment. At each of these points of contact, the 

relation between the organism and its proximal environment may change. For instance, by 

sniffing, the rat may enter in contact with proximal aerosolized particles that were 

previously undetected. This change in the relation between organism and environment may 

transition the organism to a new mode, module, or subsystem. The sniffed particles, for 

instance, may indicate the presence of a prey, which may transition the rat from investigating 

to chasing, which may be expressed in a new action, such as tracking; alternatively, an odor 

1If the action of a rat at a given moment is described as “simultaneously sniffing and pawing”, then either the actions “sniff’ and 
“paw” must be redefined so that they cannot occur simultaneously, or a new action, “sniffing-while-pawing” must be introduced into 
the representation of the behavior subsystem.
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may indicate the presence of a predator, transitioning the rat from predation to defense. 

From an adaptive perspective, the dynamics of behavioral contact and state transition are 

shaped, either through natural selection or learning, to satisfy the function of the subsystem 

within which this process is embedded. In the example, the modes and modules that 

comprise the predatory subsystem of a rat support a cascade of actions that typically leads to 

the consumption of a prey.

2. Conditioned Responding: What and When

The behavioral systems framework has provided key guidance for empirical research and 

data interpretation over a broad range of phenomena, from unconditioned behavioral 

sequences (Baerends, 1976; Timberlake and Lucas, 1989), to fundamental learning functions 

(Krause and Domjan, 2017; Timberlake, 2004, 1994, 1993), to complex cognitive processes 

(Bowers, 2018; Bowers and Timberlake, 2018, 2017). Consider two examples:

The first example is Silva and Timberlake’s (1998b) study on the response of hungry rats to 

stimuli presented at different times during an inter-food interval (IFI). In their Experiment 1, 

distinct visual stimuli signaled each of four 12-s quarters in a 48-s IFI. After sufficient 

training with these stimuli, presenting a rolling ball bearing (a prey-like stimulus) in the 

second quarter of the IFI (24-36 s before food) elicited more contact responses with the ball 

bearing than presenting it at other times (Figure 2A). These results support a key insight into 

associative learning: The behavioral expression of the association between two stimuli—

e.g., visual stimulus and food—depends on the interval separating them. If the interval 

between conditioned stimulus and food is relatively long, the conditioned stimulus primes 

actions related to general search, such as tracking a moving object (Figure 1). In contrast, if 

the interval is relatively short, the conditioned stimulus primes actions related to focal 

search, such as grabbing an idle object. These actions are observed only if the appropriate 

stimuli are present to afford them, such as a rolling ball bearing for actions related to general 

search, and a metal lever for actions related to focal search (in sign-tracking experiments; 

see Anselme, 2016).

The second example is Lucas, Timberlake and Gawley’s (1988) observational study of rat 

behavior across various IFIs (16-512 s). Drinking was among the behaviors recorded; its 

typical distribution over the IFI replicated a large number of studies showing excessive 

drinking early in the IFI (e.g., López-Crespo et al., 2004; Figure 2B), a pattern known as 

schedule-induced polydipsia. This behavior is generally treated as an anomaly, even as a 

model of compulsive behavior (Moreno and Flores, 2012). Lucas et al., however, suggest an 

alternative interpretation: drinking in rats is an action manifested in the early stages of the 

food-seeking behavior chain, particularly when pre-prandial behavior does not obscure it.

For learning scientists, a particularly important aspect of the behavior systems framework is 

that it is a theory of conditioned responding, whether Pavlovian (illustrated by the ball 

bearing study), elicited by a periodic stimuli (illustrated by schedule-induced polydipsia), or 

instrumental (Timberlake, 1993). This framework accounts for the form of the conditioned 

response (what the animal does; e.g., tracking vs. grabbing) and for its timing (when the 

animal does it; e.g., tracking typically happens earlier in the IFI than grabbing). It is 
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important to highlight, however, that both accounts are typically formulated in qualitative 

form, relying primarily on verbal descriptions of response form and timing.

In most scientific domains, comprehensive accounts rely on explanations that are formulated 

qualitatively as theories (e.g., evolution by natural selection) and quantitatively as 

mathematical or computational models (e.g., population dynamics, artificial life). The latter 

explanations are neither substitutes of nor alternatives to the former. Instead, models 

complement theories by instantiating theoretical intuitions in algorithmic form and 

examining their implications. Complementing the qualitative formulation of the behavior 

systems framework with a quantitative formulation may thus aid in building a more 

comprehensive account of conditioned responding, enriching its account of behavior, 

broadening the range of its experimental predictions, and further solidifying its falsifiability.

The purpose of this paper is to identify those features of the behavior systems framework 

that may be more readily complemented with a quantitative account, and to articulate the 

foundation for such account. In particular, the paper focuses on the implications of the 

sequential organization of actions (illustrated in Figure 1) on the temporal organization of 

behavior. It examines the utility of representing such organization as a Markov model, with 

states representing various actions. On the basis of empirical data, various modifications are 

then introduced to this preliminary model: actions are replaced with discrete responses, 

which are then represented as the output of unobserved states, and the probability of states 

and outputs are made dynamic.

3. Modeling the Temporal Organization of Behavior

Although the behavior systems framework accounts for the form and timing of conditioned 

responding, only the latter seems—at least initially—amenable to a quantitative formulation. 

Whereas most quantitative theories of learning and motivation are agnostic about response 

form (Tsibulsky and Norman, 2007), they can be readily instantiated as mathematical state-

based models that output the distribution of behavior over time (e.g., Daniels and Sanabria, 

2017a; de Carvalho et al., 2016; Gershman et al., 2014). Therefore, as a first step to 

formulate the behavior systems framework quantitatively, it seems reasonable to focus on its 

account of the temporal organization of behavior.

Consider again Silva and Timberlake’s (1998b) ball-bearing contact study and Lucas et al.’s 

(1988) polydipsia study. The conventional qualitative formulation of the behavior systems 

framework explains performance in these studies in terms of the sequence of behavioral 

modes within the rat’s predatory subsystem, in which tracking a prey and drinking is the 

expression of a mode located early in the interval between feedings. The distribution of 

latencies to contacts and drinking bouts, or the precise distribution of the durations of those 

contacts and drinking bouts are beyond the scope of a qualitative formulation. These 

quantitative characteristics are nonetheless important, because they constrain the range of 

candidate mechanisms that may govern the transition between behavior modes, the duration 

of these modes, and the expression of actions within each mode. To account for the 

quantitative properties of the temporal organization of motivated behavior, and thus broaden 
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the scope of the behavior systems framework, computational models of the processes that 

generate behavior may be devised and evaluated.

Computational models specify the interactions between components of a system, such that 

target features of the system may be simulated (Melnik, 2015; Pitt et al., 2002). The feature 

of behavior systems that this paper targets is the temporal organization of behavior that they 

imply. Simulating such organization requires precise rules that govern the relation among 

components of the system—in this case, among behavioral states and actions. The exercise 

of identifying these rules facilitates the identification of features of the system that are 

imprecisely defined in its qualitative description. For instance, when simulating the behavior 

of a rat engaged in food-seeking behavior, the behavior systems framework indicates that 

behavior should transition across behavioral modes, whose expression depends on available 

stimuli. Nonetheless, programming such simulation requires specifying the rules that govern 

those transitions—is the probability of a transition constant over time or variable? If 

variable, how does it vary? Is it independent on when prior transitions occurred, or on the 

duration of prior behavioral modes or actions (i.e., is it memoryless)? Specifying rules like 

these facilitates the distinction between structural aspects of the model—which define it—

and parameters of that structure—which may vary between instantiations of the model 

(Lillacci and Khammash, 2010). It also promotes the formulation of more precise 

predictions and provides the analytic tools for testing those predictions. The importance of 

computational models to investigate complex systems, particularly in relation to behavior 

and cognition, has been widely discussed (Farrell and Lewandowsky, 2018; Kriegeskorte 

and Douglas, 2018; Tron and Margaliot, 2004).

Some preliminary steps are necessary to formulate a precise computational model of the 

temporal organization of behavior in any behavior subsystems (predatory, reproductive, 

defensive, etc.) Such steps involve focusing on a single subsystem, identifying key 

dependent measures, formulating the simplest model possible, and progressively building 

upon it to integrate relevant and available empirical data, thus seeking to balance three 

factors: adherence to the behavior systems approach, parsimony, and conformity to data. The 

preliminary formulation advanced here focuses on the predatory subsystem, particularly of 

the rat in laboratory conditions, mainly because informative data are more abundant for this 

motivational subsystem.

4. Behavior Systems as Markov Chains

From the perspective of the behavior systems framework, actions involved in seeking food, 

securing mates, or preventing predation are produced in a modal yet flexible order that 

facilitates contact with or avoidance of key stimuli. The simplest computational model that 

generates a stochastic sequence of actions is a Markov chain (Gagniuc, 2017). As applied to 

animal behavior, Markov chains involve the probabilistic transition between observable 

actions (states) in discrete timesteps,2 such that the probability distribution of actions in 

timestep t depends exclusively on the action realized in timestep t – 1.

2Discrete-time Markov processes may be generalized to continuous time. For simplicity, this paper considers only discrete-time 
processes.
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Markov chains have been widely used to model a broad range of behaviors in natural 

habitats (e.g., Meissner et al., 2015), including foraging patterns (e.g., van Gils et al., 2015). 

In relation to behavior systems, Figure 3 A shows a potential representation of a portion of 

the predatory subsystem of the rat as a Markov chain. In this example, a rat tracking a 

potential prey may transition to cutting off a escaping prey with probability p, or transition 

back to pawing its prey with probability q, or remain tracking with probability 1 − q − p; all 

transition probabilities from a state, including self-transitions, must add to unity.

5. Actions as Markov States

Action sequences obtained from detailed and systematic behavioral observations, such as 

those provided by ethograms, may aid in further elaborating a model like Figure 3A. The 

wealth of behavioral information that these sequences contain is critical to study the 

adaptation of species-specific behavior to its ecological niche and its expression in natural 

and artificial environments (e.g., Pelletier et al., 2017). However, data drawn from ethograms 

confound multiple sources of variability, including those derived from mismatches among 

observations, behavioral categories, and functional actions, and those derived from the 

stochastic nature of transitions between actions. Methodological tactics such as interrater 

reliability address some but not all of these challenges. Also, the definition of each action 

may be refined on the basis of the correlation among its ostensive components, that is, 

among “sub-actions.” This latter solution, however, is rarely implemented in ethological 

studies, perhaps because it implies a potential infinite regression, having to define sub-

actions in terms of sub-sub-actions, and so on. Slater (1973) discusses in detail the 

challenges of defining behavioral categories to characterize streams of behavior.

Methodological issues aside, an ethogram-based Markov chain is vulnerable to relying on 

incorrect assumptions. A key assumption of Markov chains is that they are memoryless: 

whether the organism remains in the same state or transitions to another state depends only 

on its current state and its transition probabilities to other states. If it is assumed that the 

predatory subsystem of a rat (Figure 3A) operates as a Markov chain, with individual actions 

constituting its states, then the probability of cutting off a prey’s escape after tracking it 

should not depend on what the rat was doing before tracking the prey. It is possible, 

however, that the tracking-cutting off sequence is the end portion of a longer pre-

programmed “interception” sequence, such that cutting off after tracking is more likely if 

tracking is preceded by pawing. This would mean that a future state (in timestep t + 1) is 

selected on the basis of a prior state (in t − 1), a demonstration of memory that is 

incompatible with the representation of the system as a Markov chain. In fact, the categories 

that Staddon and Simmelhag (1971) used to describe the behavior of pigeons between 

periodic deliveries of food were analogous to the actions of Figure 3A, and show sequential 

dependencies that do not meet the memorylessness assumption of Markov chains (Staddon, 

1972; for a similar finding in rats, see Staddon and Ayres, 1975). This problem may be 

addressed using higher-order Markov chains, in which the probability distribution of actions 

in timestep t depends on actions realized in timesteps t − 1, t − 2, etc. (Raftery, 1985). Such 

approach, however, entails a substantial increase in the complexity of the model.
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Alternatively, instead of representing each action as a separate Markov state, these may be 

represented as components of higher-order functional units, more akin to modules or modes 

in Figure 1. These units may not only prove to meet the memorylessness assumption of 

Markov chains, but may also reflect the fractal organization of behavior (e.g., Magnusson et 

al., 2016; Seuront and Cribb, 2011). These module-like behavioral categories may be built 

on the basis of shared variance among its component actions (e.g., Espejo, 1997; Ivanov and 

Krupina, 2017). When such tactic is adopted, however, the memorylessness of behavioral 

categories is typically presumed; data supporting such presumption on any motivational 

subsystem has not been reported.

6. Discrete Responses as Markov States

There is yet another way of leveraging the notion that mode- or module-like behavioral 

categories, rather than specific actions, constitute memoryless Markov states. Instead of 

defining these categories in terms of intercorrelated actions, they are defined in terms of the 

occurrence of a discrete response, often measured automatically. These responses are thus 

treated as manifestations of an underlying behavioral category. Silva and Timberlake 

(1998b) adopted this assumption when interpreting discrete contacts with a rolling ball 

bearing as a manifestation of a general-search predatory state. Whether such contacts are 

memoryless or not (i.e., whether or not a Poisson process generates them) is an open 

empirical question. However, examples from other domains suggest that this is a fruitful 

approach. For instance, the locomotion of rats across predefined segments of a modified 

elevated plus-maze appears to show such memorylessness, and also appears to be associated 

with defensive actions (Tejada et al., 2010). As will be shown, the memorylessness that is 

characteristic of Markov processes is also evident in discrete, automatically-recorded food-

reinforced responses, such as key pecking in pigeons and lever pressing in rats.

7. Modeling General Search Behavior Induced by Period Feeding

Discrete contact with moving objects, locomotion across discrete spaces, and discrete food-

procurement responses are informationally leaner than ethogram-derived behavioral 

sequences. Nonetheless, discrete responses may provide a simpler and more reliable first 

step toward the validation and refinement of models such as the one shown in Figure 3A. To 

illustrate the advantage of this approach, a simple, generic, and preliminary Markov-chain 

representation of a behavior subsystem is proposed and applied to model general search 

behavior related to predation.

The Markov model in Figure 3B reformulates the model in Figure 3A in terms of only three 

states: A disengagement state (D), a target response state (R), and a consumption state (C). 

Each state is a generic representation of a category of actions: the actions in R are those that 

are expressed as the discrete target response (e.g., tracking and cutting off a moving prey-

like object may be expressed as “contacting a rolling ball bearing”), whereas the actions in D 

and C are those that precede and follow, respectively, those in R (e.g., D may include 

postprandial behavior, Silva and Timberlake, 1998a; C may include biting and gnawing). 

The arrows indicate transition probabilities between states, each identified with a letter (b, c, 
d, f), and self-transitions (1 − b, 1 − f, etc.) For reference, Table 1 lists key components of 
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this 3-state Markov model, along with more components introduced later in more elaborate 

models, and the role every component plays in each model.

To test whether the 3-state model in Figure 3B can account for general search behavior, it 

was fit to the data in Figure 2, with the simplifying assumption that d = f = 0 (allowing d or f 
to take other values does not improve fit). This instantiation of the model thus assumes that, 

after each feeding, rats transition to D,3 from which, on each timestep, it may transition to R 

with probability b, and from R to C with probability c, where it dwells until the next feeding 

is completed; rats cannot return to a previous state. Figure 3C shows the fitted probability of 

each state at each of 40 timesteps in the IFI. Based on these probabilities, a fitted proportion 

of trials in which the (simulated) rat dwelt at least for one timestep in R (i.e., the proportion 

of trials with a ball-bearing contact) was computed for each quarter of the IFI. Figure 3D 

shows these proportions, along with the data from Silva and Timberlake (1998b).

It is readily evident from Figure 3D that the 3-state model, even when fit to data, cannot 

account for the high probability of observing contacts in the second quarter of the IFI; the 

model accounts for just 33% of the variance in the data. Nonetheless, a slightly more 

elaborate 4-state model (Figure 4A; transition probabilities of zero are removed) performs 

substantially better (Figures 4B and 4C). The new state (D1) may represent a post-prandial 

state, or some other pre-tracking interim state that more detailed observation may reveal 

(Staddon and Ayres, 1975). The improvement obtained from adding a second state before R 

is observed in a 10.6% increase, relative to the 3-state model (Figure 3D), in trials with a 

contact in the second quarter, and a reduction of similar magnitude in trials with a contact in 

the fourth quarter; this 4-state model accounts for 70% of the variance in the data. In fact, a 

5-state model with three states prior to R (not shown) performs even better, accounting for 

84% of the variance in the data.

To further evaluate the 4-state model, its parameters were adjusted to account for the 

drinking data from López-Crespo et al. (2004; Figure 2B). Figure 5 shows that, when 

multiplied by a scaling factor and fitted to the data, the expected changes in the probability 

of R over the IFI closely resembles the pattern of drinking that periodic feeding elicits.

Figures 3 through 5 show that, when general search behavior is expressed and measured as 

discrete target responses (contacts, licks), inferences may be drawn about the computational 

processes that govern their temporal organization. The behavior systems framework suggests 

that such processes may be generically represented as relatively simple Markov-chain 

models. In the particular case of periodic feeding, Silva and Timberlake’s (1998b) data 

suggests that rats transition through at least 5 behavioral states in 48-s periods; 4 states are 

sufficient to explain López-Crespo et al.’s (2004) data. These states may thus constitute the 

“internal clock” of interval timing models, which are behaviorally expressed as distinct 

responses (cf. Fetterman et al., 1998).

3The simplifying assumption that feeding is followed by D stems from the prevalence of post-reinforcement pauses (Felton & Lyon, 
1966). Findings from Lucas, Timberlake & Gawley (1988) suggest that postprandial actions should be incorporated to the predatory 
subsystem of rats (cf. Figure 1; see also Harzem et al., 1978).
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8. Modeling Instrumental Focal-Search Behavior

Perhaps the validity of the Markov model proposed in Figure 4A derives from the simplicity 

of the data that validates it. In particular, the low-resolution nature of the data in Figure 2 

may obscure key limitations of a simple Markov-chain model of the processes underlying 

those data. For instance, a Markov-chain model like Figure 4A with n states preceding R 

(i.e., D1, D2, D3, … Dn, R, etc.) with equal transition probabilities predicts that intervals 

between trial onset and first response (contact with a ball bearing in Silva and Timberlake’s, 

1998b; lick in López-Crespo et al., 2004) would follow a negative binomial distribution. 

Such distribution is not visible when responses are just counted, particularly if those counts 

are binned within broad segments of the IFI.

Whereas data on the precise temporal organization of unconditioned and Pavlovian 

responses are scarce (a noticeable exception is Killeen et al., 2009), comparable data on 

instrumental behavior are abundant. These data have been collected to test different accounts 

of the distribution of instrumental behavior over time under various schedules of 

reinforcement, including periodic reinforcement (e.g., de Carvalho et al., 2016; Machado, 

1997) and reinforcement with constant probability (e.g., Brackney et al., 2011; Daniels and 

Sanabria, 2017b; Shull et al., 2001). Markov models of predatory behavior may thus be also 

tested against data on the temporal distribution of instrumental behavior.

When applying the model in Figure 3B to represent instrumental lever pressing in the rat, the 

generic states D, R, and C and their corresponding transition probabilities (Table 1) adopt 

new meanings and values. Instead of including general search behavior, state R now includes 

all food-seeking actions related to the imminence of food consumption (e.g., grabbing, 

gnawing), which may be expressed as a lever press; as before, D and C include all actions 

that precede and follow, respectively, those in R. According to this model, a rat may initiate 

a bout of lever presses with probability b. After each lever press, one of three events may 

occur: it may be reinforced (with probability c), it may end the bout (with probability d), or 

the rat may continue the bout with another lever press (with probability 1 − c − d). 

Transition probability c thus defines the schedule of reinforcement (e.g., a constant c 
represents a random ratio schedule). Because completion of reinforcement transitions the rat 

from C back to D (see footnote 3), it may be assumed that f = 0.

The Markov-chain model of instrumental behavior predicts that this behavior is organized in 

response bouts of geometrically-distributed length [mean = 1 / (1 − c − d) timesteps], 

separated by pauses also of geometrically-distributed length [mean = 1 / (1 − b) timesteps]. 

These predictions are consistent with the typical performance in simple variable-interval 

(VI) schedules of reinforcement, where rats produce response bouts and pauses of 

exponentially-distributed length (Brackney et al., 2011; Brackney and Sanabria, 2015; 

Jiménez et al., 2017; Shull et al., 2001).

9. The Visit-State Models

A closer examination of the distribution of instrumental inter-response times (IRTs) points at 

a limitation of the Markov-chain account of instrumental behavior, in interval schedules and 
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otherwise. Regardless of schedule, the bout-and-pause pattern of instrumental behavior is 

typically expressed as a mixture of two IRT distributions (Blough and Blough, 1968; 

Brackney et al., 2011; Kirkpatrick and Church, 2003; Matsui et al., 2018; Reed, 2015; Reed 

et al., 2018; Shull et al., 2001; Tanno, 2016). One distribution, with a longer mean, 

corresponds to pauses between bouts of responding; the other distribution, with a shorter 

mean, corresponds to IRTs within those bouts. Under VI and variable-ratio (VR) schedules, 

where the probability of reinforcement is often constant over time and responses, 

respectively, both distributions are typically exponential (e.g., Matsui et al., 2018; but see 

Bowers et al., 2008; Tanno, 2016). The representation of this exponential-exponential 

mixture distribution in a semi-log survival plot shows a hockey-stick pattern normally 

observed in VI and VR data (Figure 6).

Although, in the 3- and 4-state models (Figures 3B and 4A), between-bout IRTs may emerge 

from dwelling in D, within-bout IRTs cannot emerge from dwelling in R: the models do not 

allow for pauses between responses that are not disengagements. This may be solved by 

assuming that timesteps are separated by random pauses; under variable schedules, pauses 

would be exponentially distributed. Perhaps these pauses reflect the time it takes to produce 

the actions in R (Gharib et al., 2004). Regardless, the model would have to specify the 

parameters of that distribution and their provenance. In other words, addressing the 

limitations of the 3- and 4-state models necessarily entails added complexity.

Shull et al. (2001) suggested a parsimonious expansion of the 3-state model, one that fully 

accounts for the mixture distribution of IRTs. This visit-state model is shown in Figure 7A, 

with minor modifications with respect to Shull et al. (2001) for completeness and 

comparability. Killeen et al. (2002) first pointed out that the states of this model may be 

mapped to the modules and actions that constitute the behavior systems framework. Table 1 

highlights the key differences between the 3-, 4-state models and the visit-state model.

By interpolating a visit (V) state between D and R in Figure 7A, the visit-state model can 

pause between responses without disengagement; those pauses are represented as self-

transitions in V; there are no self-transitions in R. Nonetheless, if all the actions are already 

distributed among D, R, and C, what actions could V include? One possibility is that V 

corresponds not to any category of actions, but to the focal search mode, in which R-related 

actions may occur. Focal search may be expressed as R-related actions such as gnawing 

(through the activation of capture or test modules), but it may also be expressed as R-

unrelated actions, such as tracking or pouncing (Figure 1), and other adjunctive behavior, 

such as drinking. The former would be expressed as lever presses; the latter would not. R-

unrelated actions within the focal search mode may include responses directed at the lever 

that are, nonetheless, too weak to activate it. In any case, these actions may be represented 

each as an individual state connected to V. For simplicity, however, R-unrelated actions are 

represented as self-transitions in V. Thus, focal search—dwelling in V—sometimes results 

in lever presses (with probability w; Figure 7A) and sometimes not (with probability 1 − d − 

w). From this perspective, within-bout IRTs may not only reflect the time it takes to produce 

the actions in R, but it may also reflect the time it takes to produce R-unrelated actions while 

in focal search.
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The analysis of discrete, measurable responses reveals key aspects of the temporal 

organization of behavior, including its fine structure—the short IRTs within response bouts. 

The mixture distribution of long and short IRTs, which justifies including V in the visit-state 

model, is not unique to instrumental behavior: it is also evident, although rarely reported, in 

Pavlovian, adjunctive, and even unconditioned behavior (Cabrera et al., 2013; Íbias et al., 

2017, 2015; Killeen et al., 2009). For instance, rats and hamsters, when in a small enclosure 

furnished with a lever, will press the lever in bouts, generating IRT distributions similar to 

that in Figure 6, even though lever pressing has no programmed consequences (Cabrera et 

al., 2013). In this example, the emission of response bouts appears to reflect a rapid 

alternation between behavioral states V and R, which may correspond to the engagement of 

the defense-escape subsystem. Similarly, instrumental response bouts appear to reflect a 

similar alternation between states, which may correspond to a focal search for food.

10. Hidden States and Observable Outputs

The discrete responses that presumably unveil the underlying organization of behavior are 

only a small sample of the behavioral repertoire of an animal. The lever-pressing response is 

only one of many food-seeking behaviors expressed in the Skinner box (Timberlake, 2001b). 

This approach implies that only some behavior is observable—the discrete, measured 

response— and every other behavior is not. This distinction is not reflected in the models 

depicted in Figures 3, 4, and 7A. To incorporate it, it is necessary to couch the visit-state 

model as a hidden Markov model (HMM; Zucchini et al., 2016, 2008).

An HMM is a Markov model in which states are unobservable but may have probabilistic 

observable outputs. In the visit-state model, only the response state is actually observable, so 

it may be represented instead as an output of a hidden visit state. Figure 7B shows a 

preliminary sketch of the resulting HMM, applied to a rat lever pressing for food. In this 

sketch, states D, V, and C are hidden, but the response output from V is observable.4 Table 1 

summarizes the key characteristics of the HMM and contrasts them against the visit-state 

model.

Figure 8 shows the result of simulating the HMM of Figure 7B with a baseline set of 

transition and output probabilities, and the effect of changing each probability separately.5 

The results are shown as semi-log survival plots of IRTs expressed in timesteps. The hockey-

stick pattern of these plots is consistent with the exponential mixture distribution of IRTs 

observed in rats responding on variable schedules of food reinforcement (cf. Figure 6). 

Moreover, the effects shown in Figure 8 are consistent with the effects of specific 

manipulations on VI performance. As d decreases, the “blade” (short) portion of the hockey-

stick pattern of the IRT survival plot is extended (Figure 8A), reflecting longer dwellings in 

V. Schedule manipulations, such as appending a tandem ratio schedule to the VI schedule, 

have a similar effect on the IRT distribution of rats (Brackney and Sanabria, 2015; Shull, 

2004; Shull et al., 2004, 2001; Shull and Grimes, 2003). As b increases, the slope of the 

“shaft” (long) portion of the survival plot becomes steeper (Figure 8B), reflecting shorter 

4Breaks of an infrared beam positioned in the food port may serve as observable outputs of C.
5The simulation was programmed in R for Mac OS X (R Core Team, 2017). The script is provided as supplementary material.
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dwellings in D. Manipulations aimed at enhancing motivation, such as increasing the rate of 

reinforcement (Brackney et al., 2011; Reed, 2015, 2011; Reed et al., 2018; Shull, 2004; 

Shull et al., 2004, 2001; Shull and Grimes, 2003), the level of deprivation (Brackney et al., 

2011; Johnson et al., 2009; Shull, 2004), and the magnitude of reinforcers (Shull et al., 

2001), have a similar effect on rodent IRTs. Finally, as w increases, the slope of the blade 

portion of the plot becomes steeper (Figure 8C), reflecting the increased rate of responding 

within each visit. Motoric manipulations, such as changes in the manipulandum (Jiménez et 

al., 2017), have a similar effect on rat IRTs.

Taken together, this pattern of empirical effects further validates the classification of 

motivated actions into three hidden states. When R corresponds to a focal-search action, the 

three states correspond to the three behavioral modes (post-food/general search, focal 

search, handle/consumption) that the behavior systems framework postulates. Moreover, 

empirical findings suggest that (a) the transition from post-food/general to focal search is 

governed not only by the proximity of the incentive (Silva and Timberlake, 1998a), but also 

by the motivational state of the organism and the quality of the incentive, and (b) the 

transition from focal search back to general search is governed by the completion of the 

learned actions required to retrieve the incentive.

So far, the HMM of Figure 7B appears to serve as a parsimonious computational hitch 

connecting theory (behavior systems) and data (e.g., distribution of IRTs in VI schedules). 

Nonetheless, further extensions of the model are required to strengthen that hitch. Some of 

these extensions are discussed next.

11. Instrumental Contingencies and “Disengaged” Responses

In the context of learning and motivation research, the contingencies that link actions to 

consequences are particularly important. These instrumental contingencies were represented 

in Figure 7A as c, the transition probability between R and C. However, in Figure 7B, R is 

no longer a state, and c is the transition probability between V and C; reinforcement cannot 

be contingent on V, because V is not observable. Incorporating an instrumental contingency 

into the HMM of Figure 7B would entail making the transition probability c a function of R; 

such function would represent a schedule of reinforcement. For instance, a random-ratio 1/c 
schedule would be implemented as c = 0 in the absence of R and c > 0 in the presence of R; 

in omission training (Sanabria et al., 2006), c = 0 in the presence of R and c > 0 in the 

absence of R for a period of time. Figure 9 represents a potential instrumental contingency 

as a dashed line connecting R and C. To the extent that the HMM includes a hidden state (C) 

that may be conditional on an observation (R), it constitutes a partially hidden Markov 

model (PHMM; Forchhammer and Rissanen, 1996). This distinct feature of the PHMM is 

highlighted in Table 1, indicating that c “may depend on R.”

Another limitation of the models in Figure 7 is that they do not consider the possibility of 

responses that do not reflect the target behavioral mode. In fact, lever presses may occur as 

the expression of actions not related to the procurement of food, such as exploratory 

behavior (Cabrera et al., 2013). Inferences on the organization of behavior would be 
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inaccurate if drawn from behavioral data that does not distinguish between responses that 

reflect the target behavioral mode and those disengaged responses that do not.

The visit-state model (Figure 7A) cannot represent disengaged responses adequately, 

because it does not allow for transitions from D to R without transitioning through V (D → 
V → R). Allowing a direct transition from D to R in that model would open a second route 

to initiate a visit (D → R → V). This second route seems at odds with the sequential 

organization of behavior implied in the behavior systems framework, and the mixture 

distribution of instrumental IRTs does not demand it. It would mean, for instance, that 

accidental lever presses during postprandial behavior would transition the rat into a food-

seeking state. Moreover, one model that allows for this second route (Staddon and 

Simmelhag, 1971) fails to show the memorylessness that is characteristic of Markov models 

(Staddon, 1972; Staddon and Ayres, 1975).

The HMM (Figure 7B) cannot represent disengaged responses either, because it assumes 

that all responses are the output of V—i.e., that they all reflect the target behavioral model. 

To incorporate the disengaged responses, the PHMM of Figure 9 extends the HMM of 

Figure 7B by assuming that disengaged responses are the output of D with probability q; this 

additional parameter is listed as a component of the PHMM in Table 1. Unlike the visit-state 

model, disengaged responses in the PHMM do not entail the transition to a new state, so 

they do not create another route to V.

Disengaged responses may have a noticeable impact on the temporal organization of 

responses. When a rare disengaged response occurs, it (a) lowers the mean bout length by 

adding a one-response bout, and (b) increases the bout-initiation rate by turning an otherwise 

long between-bout IRT into two shorter IRTs. These effects are depicted in Figure 10A, 

showing that an increase in q (i.e., an increase in disengaged responses) produces a shorter 

blade and a steeper shaft of the IRT survival plot.

Because IRT survival plots confound changes in q with simultaneous changes in d and b, 

evidence for the presence of disengaged responses must be sought elsewhere. One method to 

reveal these responses involves the estimation of the distribution of bout lengths (Brackney 

and Sanabria, 2015; Jiménez et al., 2017). According to the PHMM, bout lengths are 

sampled from a mixture of two geometric distributions, one generated from V and the other 

from D.6 If q is zero (no disengaged responses), then all bouts would be generated from V, 

and their lengths would thus be geometrically distributed; deviations from such distribution 

would therefore suggest the presence of disengaged responses. More precisely, a geometric 

distribution function fit to the distribution of bout lengths generated with q > 0 is expected to 

slightly underestimate the relative frequency of very short bouts (1-2 responses long) and 

slightly overestimate the relative frequency of bouts of intermediate length (Figure 10B).

A challenge to this approach is that bout lengths are not directly visible, so their distribution 

is not known. Nonetheless, the single-geometric-distribution hypothesis can be tested by 

6More specifically, a proportion of b/(b + d) bouts are V-generated and have a mean length of w/d responses (or 1/d timesteps). The 
remaining bouts are D-generated and have a mean length of q/b responses (or 1/b timesteps). The mixture weight of V-generated bouts 
is obtained from the stationary distribution of the PHMM.

Sanabria et al. Page 13

Behav Processes. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



calculating the probability that each IRT separates bouts or separates responses within a 

bout, assuming that all responses are V-generated. Based on these probabilities, an expected 

distribution of bout lengths may be obtained using Monte Carlo simulations, from which the 

likelihood of a single versus a mixture distribution can be established. Using food-reinforced 

IRTs obtained from rats pressing levers at various heights, Jiménez et al. (2017) showed that 

a mixture of two geometric distribution of bout lengths was substantially more likely than a 

single geometric distribution (Figure 10C). In all lever-height conditions, the estimated 

distribution of bout lengths deviated from a geometric distribution function as expected from 

the presence of disengaged responses.

In summary, the empirical data thus highlight the importance of disengaged responses that, 

if neglected, may bias the estimates of the parameters governing the temporal organization 

of behavior. Disengaged responses reflect a weakness of the discrete-response approach 

advocated here: responses aimed at tapping into one state may occasionally be emitted in 

another state. Including the possibility that D generates responses, as indicated in the 

PHMM of Figure 9, appears to address this vulnerability. Nonetheless, estimating the 

prevalence of disengaged responses is particularly challenging, because bouts are not 

defined in response streams. Monte Carlo simulations address this challenge.

12. Nonstationary Transition and Output Probabilities

The PHMM (Figure 9) predicts geometrically-distributed times in D and V, and 

geometrically-distributed times between responses within each state. Implemented in a 

continuous time scale, the PHMM entails two Poisson processes, one governing the 

initiation of bouts and another governing the production of responses within bouts. The 

PHMM cannot account for deviations from these restrictive predictions, even though those 

deviations are readily visible in data drawn from stable performance and from its 

acquisition. Allowing for dynamic transition and output probabilities addresses this 

limitation.

When applied to instrumental behavior, the restrictive predictions of the PHMM appear to 

account only for performance in simple VI and VR schedules of reinforcement. However, if 

a tandem FR schedule is appended to the VI schedule, for instance, the distribution of bout 

lengths, measured in number of responses, is not geometrical, but appears to peak around the 

FR requirement (Brackney and Sanabria, 2015). This distribution suggests a noisy counting 

process, absent in the PHMM, governing d. Also, when reinforcement is contingent on the 

interval between consecutive responses, a bimodal distribution of IRTs is typically observed, 

with one mode located close to zero and the other close to the interval requirement (e.g., 

Cho and Jeantet, 2010; Hill et al., 2012a). This distribution suggests a noisy timing process, 

also absent in the PHMM, governing w. What these examples indicate is that, to broaden the 

scope of the PHMM beyond variable-schedule performance, the model must be 

nonstationary (Sin and Kim, 1995). That is, the generality of the PHMM demands transition 

and output probabilities that can change rapidly. Table 1 highlights the dynamic nature of the 

transition and output probabilities of the nonstationary PHMM (nPHMM).
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The nonstationarity of the PHMM was already suggested when, to account for instrumental 

behavior, c was made conditional on responding (Figure 9). In general, transition and output 

probabilities may vary over time as a function of the frequency of a significant event 

(response, reinforcer, or some stimulus) or the passage of time since some other event. The 

examples from tandem FR and IRT requirements illustrate this point. Also, the passage of 

time since the last reinforcer (i.e., in extinction, fixed-interval [FI] schedules) and the 

number of non-contingent reinforcers change distinct parameters of the distribution of 

instrumental IRTs and latencies to respond (Brackney et al., 2017; Cheung et al., 2012; 

Daniels et al., 2018; Daniels and Sanabria, 2017a). Transitions between general and focal 

search in the predatory behavior of rats are particularly attuned to the passage of time since 

the last feeding (Silva and Timberlake, 1998a), suggesting a close link between these 

transitions and time-sensitive IRT distribution parameters. Similarly selective changes in 

transition probabilities may occur when appetitive or aversive conditioned stimuli are 

introduced (e.g., Marshall et al., 2018). When reinforcers are delivered at a high rate, 

changes in the distribution of IRTs may occur due to satiation and habituation effects (e.g., 

Bizo et al., 1998).

Furthermore, it is not clear that IRTs under a simple VI schedule are always distributed 

according to a mixture of two exponential distributions, as would be predicted by the 

nPHMM operating on continuous time. Tanno (2016), for instance, has reported IRTs under 

a VI schedule that more likely follow a mixture of four log-normal distributions. 

Distributions of similar complexity have been suggested for the distribution of pigeon IRTs 

in simple VI schedules (Bowers et al., 2008; Davison, 2004; Smith et al., 2014). Also, rat 

and pigeon IRTs in simple VI schedules are not sequentially independent, but positively 

autocorrelated (Jiménez et al., 2017; Killeen et al., 2002), as would be expected from 

transition probabilities that fluctuate with hysteresis. These deviations from simple Poisson 

processes motivates further research on the temporal organization of behavior, which may 

inform the hierarchical structure of behavior that defines the behavior systems approach.

So far, the empirical examples that support a nPHMM come from stable performance: they 

involve changes in the distribution of IRTs that take place within each inter-reinforcer 

interval or session, but that are generally reset and repeated between reinforcers and sessions 

as long as conditions are kept constant. The scalloped pattern of FI-maintained cumulative 

records, for instance, implies an accelerated reduction in IRTs between reinforcers, but also 

a reset and repetition of that processes with every reinforcer (Daniels and Sanabria, 2017a). 

The PHMM predicts a distribution of IRTs with fixed mean and variance,7 and thus cannot 

account for rapid changes in IRT. To capture this feature of the data, a set of higher-order 

parameters must govern the dynamics of transition and output probabilities of the nPHMM. 

These higher-order parameters may vary with changes in sensorimotor capacity (due to 

maturation, exposure to neurotoxins, etc.) or with learning. It may be argued that, whereas 

molecular theories of stable instrumental performance inform how transition and output 

7There is, however, one situation in which this is not true. A large positive difference between c and d in the PHMM (Figure 9) implies 
prevalent dwelling in D early in the IFI and prevalent dwelling in V late in the IFI This means that the mean IRT is not constant over 
the IFI, but is 1/q (D-generated) early in the IFI and 1/w (V-generated) late in the IFI. Note also that Markov models in which c is 
sufficiently higher than d appear to account for behavior elicited by the periodic delivery of food (Figure 4; d is zero, so it is not 
shown). Alone, however, this progressive change in mean IRT cannot account for FI performance (Daniels and Sanabria, 2017a).
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probabilities oscillate under constant conditions (e.g., Killeen and Sitomer, 2003), theories 

of learning inform the higher-order parameters that support such stability (e.g., Wagner and 

Brandon, 2001).

In summary, the nPHMM provides a unified computational framework for investigating the 

temporal organization of behavior at various levels of complexity, from drinking elicited by 

periodic food to complex schedule control and cognition (counting, timing, learning). The 

model is built upon simpler models, such as the 3-state model (Figure 3B), which are largely 

nested within the nPHMM. The strength of the model, however, is also the source of its main 

weakness: to be comprehensive, the model relies on dynamic transition and output 

probabilities, but says little about what governs those dynamic processes. Moreover, the 

nPHMM hints at the utility of a hierarchical architecture to account for higher-order 

processes but does not specify such architecture. The hierarchical structure of the behavior 

systems framework, along with theoretically-motivated empirical data, may guide these and 

other developments in the computational formulation proposed here.

13. Further Developments

The nPHMM is proposed as a computational implementation of the behavior systems 

approach. This model is a framework for the development of more precise, computational 

accounts of behavior and cognition. It formulates a bare-bones Markov structure, but it does 

not specify transition or outcome probabilities, or how those probabilities change as the 

system operates in an environment. The former are likely to vary between organisms, tasks, 

and developmental stages (e.g., Hill et al., 2012b); the latter are the substance of learning 

and performance theories.

Although the development of the nPHMM relied on empirical findings from food-seeking 

behavior, its applicability may extend beyond the predatory subsystem. To the extent that the 

behavior systems approach has been applied successfully to defensive (Fanselow and Lester, 

1988; Perusini and Fanselow, 2015) and reproductive (Akins and Cusato, 2015; Domjan, 

1994; Domjan and Gutiérrez, 2019) behavior, the nPHMM may also be useful in those 

contexts. Within the defensive motivational subsystem, for example, a constant probability 

of foot shock may reveal the parameters that govern the transition between pre- and post-

encounter modes and the expression of the latter as freezing behavior. Within the 

reproductive subsystem, a constant probability of a mate may reveal analogous parameters 

related to social general and focal search, and the expression of the latter as precopulatory 

behavior. These examples suggest that a substantial amount of information is lost when 

dependent measures such as freezing and precopulatory behavior are aggregated into counts 

or total times (cf. Figure 2). Moreover, in trial-based Pavlovian learning, typical high-

probability unconditioned stimuli likely obscure the structure of pauses and bouts by raising 

behavior close to a performance ceiling. Killeen et al. (2009) have shown that such ceiling 

may be avoided with low-probability unconditioned stimuli. Considering also that the events 

to which motivational subsystems are attuned (a predator, a prey, a mate) are significant but 

relatively rare and uncertain, it seems reasonable that laboratory assessments of these 

subsystems should be conducted with low-probability unconditioned stimuli.
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The architecture of the model does not need to be limited to three hidden states. As shown in 

the analysis of predatory general search behavior (Figure 4A), D may be further divided into 

two Markov states corresponding to post-food focal search and general search modes. These 

states may be empirically disentangled, for example, based on observed head entries, which 

have a higher probability in post-food focal search than in general search. Also, the 

hierarchical structure of the behavior systems framework suggests a larger architecture, 

within which particular subsystems may be represented as nested nPHMMs. For instance, 

the detection of a predator during foraging may immediately transition the system from the 

predatory V state to its defensive analogue. Research on risky foraging under controlled 

conditions (e.g., Kim et al., 2016) may shed light on the nature of the transition between 

subsystems.

The nPHMM motivates new strategies to detect state transitions. For instance, a bout-like 

organization of instrumental lever pressing is typically inferred from tandem VI FR 

performance; such inference relies on the distribution of IRTs and on Monte Carlo 

simulations (Brackney and Sanabria, 2015). Daniels and Sanabria (2017b) have shown that 

key aspects of such bout-like organization may be readily visible when the components of 

the VI FR schedule are programmed in separate levers. Their data suggests that, whereas 

presses on the VI lever express transitions between D and V, presses on the FR lever are the 

observable output of V combined with disengaged responses. Instead of using Monte Carlo 

techniques to infer bout-length distribution, Daniels and Sanabria (2017b) were able to 

report on observed bouts, expressed as FR runs. Similar strategies may be developed to more 

precisely estimate transition and output probabilities, and to better visualize the effect of 

various experimental conditions on these parameters.

The key insights derived from the behavior systems framework emerge from establishing 

common ground between behavioral ecology and experimental psychology. By couching 

these insights as a Markov model, a large amount of statistical and computational work in 

fields as disparate as marketing (Netzer et al., 2017), keystroke biometrics (Monaco and 

Tappert, 2018), and population ecology (Bartolucci and Pennoni, 2007) are enlisted in the 

service of behavioral research. Such work includes established methods for the estimation of 

model structure and parameters (e.g., Zucchini et al., 2016). Moreover, the bout-like 

organization of behavior that emerges from the nPHMM has been linked to computational 

accounts of choice, such as reinforcement learning (Yamada and Kanemura, 2019). 

Therefore, the proposed Markov model is likely to bring to bear computational models in 

other domains to complement ecological explanations of behavior.

Finally, the nPHMM may also provide guidance to research on the neurobiology of 

behavior. The neural correlates of states and transitions may be identified and manipulated 

using neurophysiological techniques with fairly high spatial and temporal resolution during 

model-informed behavioral tasks. To the extent that the nPHMM explains relatively complex 

natural behavior, the identification of the neural correlates of the nPHMM would provide a 

comprehensive account of the neural substrate of that behavior.
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14. Conclusions

Computational models have contributed substantially to our understanding of behavior and 

cognition, grounding and complementing qualitative accounts (e.g., Arantes et al., 2013). 

This paper aimed at examining whether such contribution could be extended to some aspects 

of the behavior systems framework. As a first step toward this aim, the analysis focused on 

the temporal organization of behavior that the behavior systems framework entails. This 

analysis sought to formulate the simplest model that adhered to the behavior systems 

approach and to relevant empirical data.

A key tactic in this process was the acknowledgement that measuring behavior involves 

attending only to a subset of the behavioral repertoire of an animal, such as contacting an 

object or licking. If appropriately selected, that subset may reflect primarily a target 

behavioral mode, but it may also be expressed in other behavioral modes. Temporal 

regularities of carefully selected discrete and overt behavior may aid in revealing the 

underlying structure of the behavioral modes that govern that behavior.

Relatively simple instantiations of the Markov model accounted for aggregated behavioral 

data obtained from periodic feeding. Past research has demonstrated that the disaggregation 

of those data reveals key processes that govern motivated behavior (Brackney et al., 2017, 

2011; Brackney and Sanabria, 2015; Daniels and Sanabria, 2017b, 2017a; Yamada and 

Kanemura, 2019). Those processes and their behavioral expression are consistent with the 

behavior systems framework, but they cannot be characterized by the simplest Markov 

models. To account for detailed behavioral data, these models must incorporate (a) the 

distinction between observable measures and hidden processes, (b) the possibility that 

observable measures affect hidden processes, and (c) the notion that the parameters that 

govern those hidden processes may be dynamic. The result of incorporating these 

characteristics to address the limitations of simpler models is a nonstationary partially 

hidden Markov model, nPHMM, with only three hidden states: one for the target behavioral 

mode (V: post-food focal search, general search, pre-food focal search, etc.), one for the 

behavioral modes that precede it (D), and one for the behavioral modes that follow it (C).

The proposed nPHMM is an algorithmic embodiment of a few concepts that are central to 

the behavior systems framework: that adaptive actions are organized in nested sequences of 

behavioral states, that motivation involves transitioning between these states, and that 

learning involves adjustments to their organization. Such embodiment points at novel 

research questions about the larger structure of motivated behavior, the mechanisms that 

support transitioning between subsystems, the factors that govern the length of conditioned 

dwelling in a behavioral state, among many others. A well-developed stock of analytical 

techniques is available to support further empirical research that may answer these 

questions.
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Highlights

• Motivated behavior comprises sequences of actions organized within nested 

states

• This organization is represented as a nonstationary partially hidden Markov 

model

• The model balances parsimony, fidelity to the behavior systems approach and 

to data

• The Markov model formulates quantitative, verifiable behavioral predictions

• Refinements in model architecture, applicability, and methodology are 

identified
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Figure 1. 
Hierarchical representation of a portion of the predatory subsystem of the rat, adapted from 

Timberlake (2001).
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Figure 2. 
(A) Proportion of trials in which rats contacted a ball bearing during each quarter of a 48-s 

inter-food interval (IFI). Adapted from Silva and Timberlake (1998b; Figure 3, group BB). 

(B) Number of licks rats made in each 2-s timestep across a 30-s IFI. Adapted from López-

Crespo et al. (2004; Figure 2, Group FT 30).
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Figure 3. 
(A) Markov-chain model with actions represented as states. (B) Three-state model with 

disengagement, D, response, R, and consumption, C, states. (C) Probability of each state per 

time-step in a 40-s IFI according to the 3-state model, with b and c fit to Silva and 

Timberlake’s (1998b) data in Figure 2 (b = .0252, c = .3374; d = f = 0). The probability of 

state n in timestep t, pt(n), was pt(D) = (1 − b)pt-1(D), pt(R) = bpt-1(D) + (1 − c)pt-1(R), and 

pt(C) = cpt-1(R) + pt-1(C), with p1(D) = 1 and p1(R) = p1(C) = 0. (D) Proportion of trials 

with ball-bearing contact (state R) in each quarter of the IFI in the Markov-chain model 

simulation using the parameters of panel C, along with the data from Silva and Timberlake 

(1998b).
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Figure 4. 
(A) Four-state Markov model with two disengagement states (D1 and D2). (B) Probability of 

each state per time-step in a 40-s IFI according to the 4-state model, with a, b, and c fit to 

Silva and Timberlake’s (1998b) data in Figure 2A (a = b = .1103, c = .5122). The probability 

of state n in timestep t, pt(n), was pt(D1) = (1 − a)pt-1(D1), pt(D2) = apt-1(D1) + (1 − 

b)pt-1(D2), pt(R) = bpt-1(D2) + (1 − c)pt-1(R), and pt(C) = cpt-1(R) + pt-1(C), with p1(D1) = 1 

and p1(D2) = p1(R) = p1(C) = 0. (D) Proportion of trials with ball-bearing contact (state R) 

in each quarter of the IFI in the Markov-chain model simulation using the parameters of 

panel C, along with the data from Silva and Timberlake (1998b).
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Figure 5. 
Number of licks as a function of time in a 30-s IFI according to the 4-state model, with a, b, 

c, and a scaling factor k fit to López-Crespo et al.’s (2004) data in Figure 2B (a = b = .4014, 

c = .4932, k = 1783 licks). The number of licks in timestep t was k[bpt-1(D2) + (1 − 

c)pt-1(R)]; the probability of each state was calculated as in Figure 4. The data from López-

Crespo et al.’s (2004) is shown again in black columns.
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Figure 6. 
Semi-log survival plot of inter-response times (IRTs) maintained by a tandem variable-

interval (VI) 120-s fixed-ratio (FR) 5 schedule of reinforcement. The data are from a typical 

rat in Brackney et al. (2011).
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Figure 7. 
(A) Visit-state model with four states, including a visit (V) state. (B) Hidden Markov model 

(HMM) with three unobservable states (circles) and one observable output (square).
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Figure 8. 
Semi-log survival plots of simulated IRTs generated by the HMM of Figure 7B. A baseline 

simulation (closed circles) was generated using transition probabilities d = .10 and b = .10, 

and output probability w = .50. Each panel shows the effect of varying one of these 

probabilities (open circles): (A) The effect of reducing d to .03, (B) the effect of increasing b 
to .15, and (C) the effect of increasing w to .90.
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Figure 9. 
Representation of instrumental behavior as a partially hidden Markov model (PHMM). The 

PHMM adds to the HMM shown in Figure 6B the modulation of transition probability c by 

the observation of a lever press, and the output probability q (disengaged lever presses).
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Figure 10. 
Effect of disengaged lever presses (output probability q) on (A) the semi-log survival plot of 

IRTs, and on (B) the semi-log distribution of bout lengths. Data in panels (A) and (B) are 

from a simulation using three sets of parameters. In all sets, d = .10, and w = .50; in panel 

(A), b = .03 (both curves), q = 0 (closed circles), and q = .10 (open circles); in panel (B), b 
= .30 and q = .10. Panel (C) shows the mean estimated distribution of food-reinforced lever-

press bouts, obtained from rats pressing 111-mm high levers in Jiménez et al. (2017). The 

lines in panels (B) and (C) are fits of geometric distribution functions.
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