
Computationally efficient, exact, covariate-adjusted genetic 
principal component analysis by leveraging individual marker 
summary statistics from large biobanks

Jack M. Wolf†,
Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN 
55057, USA

Martha Barnard†,
Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN 
55057, USA

Xueting Xia,
Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409, USA

Nathan Ryder,
Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA

Jason Westra,
Department of Math, Computer Science, and Statistics, Dordt University, Sioux Center, IA 51250, 
USA

Nathan Tintle*

Department of Math, Computer Science, and Statistics, Dordt University, Sioux Center, IA 51250, 
USA

Abstract

The popularization of biobanks provides an unprecedented amount of genetic and phenotypic 

information that can be used to research the relationship between genetics and human health. 

Despite the opportunities these datasets provide, they also pose many problems associated with 

computational time and costs, data size and transfer, and privacy and security. The publishing of 

summary statistics from these biobanks, and the use of them in a variety of downstream statistical 

analyses, alleviates many of these logistical problems. However, major questions remain about 

how to use summary statistics in all but the simplest downstream applications. Here, we present a 

novel approach to utilize basic summary statistics (estimates from single marker regressions on 

single phenotypes) to evaluate more complex phenotypes using multivariate methods. In particular, 

we present a covariate-adjusted method for conducting principal component analysis (PCA) 

utilizing only biobank summary statistics. We validate exact formulas for this method, as well as 
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provide a framework of estimation when specific summary statistics are not available, through 

simulation. We apply our method to a real data set of fatty acid and genomic data.
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1. Introduction

The availability of large amounts of disease, environmental, and genomic data provide 

researchers with unprecedented opportunities to explore the effect of genetic variants on 

phenotypes related to human health and, consequently, change the way we think about and 

treat diseases. Of specific interest are complex diseases with widespread impacts on societal 

wellbeing and that have largely unique etiology for each individual (e.g., cardiovascular 

disease, cancer, mental health). The wealth of individual level data in biobanks presents the 

potential opportunity to characterize the genetic architecture of complex diseases that could, 

in turn, allow for the personalization of treatments. While this expanse of health and genetic 

information provides exciting possibilities, there are still many concerns associated with 

using this large amount of data.1 The size of these datasets presents issues with computation 

costs, processing time, and data sharing. The confidential nature of genetic and phenotypic 

data also raises concerns regarding data privacy and security while transporting and using 

the data.2,3

Currently, various organizations (such as GeneAtlas with the UK Biobank) publish summary 

statistics, such as results from simple linear regressions (e.g., effect size estimates and 

standard errors), between all combinations of phenotypes and genotypes in biobank data on 

hundreds of thousands of individuals.4,5 The use of these summary statistics alleviates many 

of the issues associated with privacy and security, as there is no individually identifiable 

information being shared. In addition, the use of summary statistics greatly diminishes the 

size of the analysis dataset, making the transport of data simpler and more efficient. Finally, 

the fact that the biobank runs these simple, but computationally intensive, analyses 

diminishes the computational cost and time of analyses for individual research groups.

While the use of summary statistics in downstream analyses alleviate many of the problems 

associated with the use of large datasets, they limit researchers in the complexity of the 

analysis they can run. Biobanks often provide summary statistics that describe the 

relationship between genotypes and a single, simple phenotype, but many researchers are 

interested in complex combinations of phenotypes that more accurately describe clinically or 

biologically relevant traits. These same issues arise in the performance of meta-analysis, 

since meta-analysis can only investigate phenotypes as complex as the summary statistics 

that each individual cohort provides. However, more complex phenotypes are important to 

explore in genome wide association studies (GWAS), as analyzing combinations of 

phenotypes can help explore various genetic mechanisms behind specific traits of interest, 

such as pleiotropy between correlated phenotypes.6 The flexibility to explore complex 

phenotypes is especially important in a meta-analysis, as the statistical power of the analysis 
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of simple phenotypes might prompt unanticipated research questions. To continue to 

circumvent the computational and privacy problems in biobanks and meta-analyses and 

answer biologically relevant research questions, we need a way to explore complex traits 

(phenotypes) through these simple summary statistics.

There is limited knowledge of how we can use published summary statistics for these more 

complex analyses. Ultimately, we wish to know whether we can make inferences about the 

relationship between genotypes and the combined phenotype y = f(y1, y2, …, ym) if we 

know the relationships between the genotypes with the individual phenotypes y1, y2,…, ym. 

Recently Gasdaska et al. (2019) provided a method to summarize a regression of a linear 

combination of known phenotypes against genotypes, and other studies have provided new 

multivariate methods for exploring multiple phenotype associations with GWAS summary 

statistics.7–11 Others have explored how to investigate these multiple phenotype associations 

within the context of a meta-analysis through summary statistics.12–14 Furthermore, simple 

methods such as covariate adjustment and traditional multivariate methods can be used to 

explore multiple phenotype associations.15 Multivariate methods such as principal 

component analysis (PCA) have also been used in GWAS and meta-analysis to increase the 

power of the analysis, which allows for the exploration of rarer genetic variants.16,17

While these individual methods are mathematically intuitive or have the ability to explore 

correlated phenotypes, we have not found a method that focuses on doing both. Previous 

studies have provided various complicated, yet effective techniques, but these techniques 

cannot be intuitively applied to a wide variety of GWAS situations. Therefore, we bridge the 

gap between existing methods by providing a simple, mathematically intuitive method 

which allows the exploration of multiple phenotype associations than can be used in the 

context of both a single GWAS or a meta-analysis. We present a method that provides 

formulas for the slopes, intercept, and standard error for a PCA of phenotypes of interest, 

while allowing for a user-specified set of covariates utilizing only widely available biobank 

summary statistics. We will first demonstrate our method of covariate adjustment for any 

number of covariates and phenotypes, and then demonstrate a method for performing PCA 

with summary statistics. We will validate these methods through simulation as well as a real 

data application of our methods to fatty acid and genotype data from the Framingham Heart 

Study.

2. Methods

2.1. Notation

Throughout this paper, we use the matrix Y to denote an n × m matrix of observations of m 
phenotypes across n subjects. The column vector yh represents n observations on the hth 

phenotype where h ∈ {1, 2, …, m}. That is, yh = [yh1 · · ·yhn]′. Similarly, we will use the 

matrix X to denote an n × (p + 1) design matrix of n observations on p covariates, for p > 1. 

We will use the matrix Xk to reference a n × 2 design matrix with only 1 covariate, xk, for 

any k ∈ {1, 2, …, p}. For each simple linear regression model fit for yh ~ xk, we use the 

notation yh = Xkβhk, where βhk is a 2 × 1 vector of model coefficients. We will use bhk to 

reference the “slope” coefficient, or the second element of the vector βhk. For each multiple 
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linear regression model fit for yh ~ X we use the notation yh = Xβh, where βh is a (p + 1) × 1 

vector of model coefficients.

We will frequently use the following formulas in the paper. For any response vector y where 

y = Xβ + ε:

β = X′X −1X′y (1)

var(β) = σ2 X′X −1, (2)

where σ2 is isthe sum of squared residuals divided by degrees of freedom.

2.2. Assumptions

We assume we have the following summary statistics: slope and intercept estimates for 

simple linear regressions of each phenotype as a function of the genotype, minor allele 

frequency and variance of the genotypes (which can be estimated via minor allele frequency 

if necessary), and covariance matrix of the phenotypes. While having a known covariance 

matrix of the phenotypes makes the following methods exact calculations, we will also 

demonstrate the accuracy of our methods using the following estimation used in Gasdaska et 

al. (2019)7 and similar to those proposed in Zhu et al. (2015)14 and Kim et al. (2015).18 For 

h, j ∈ {1, 2, …, m},

cov yh, y j = cor yh, y j var yh var y j ≈ cor bh, b j var yh var y j , (3)

where bh and bj are vectors of slope coefficients from simple linear regressions of yh against 

every genotype, and yj against every genotype, respectively.

2.3. Covariate Adjustment

2.3.1. Single Phenotype—Suppose that we have fit models for yh ~ x1, yh ~ x2, …, yh 

~ xp and wish to describe the linear model yh ~ X, or yh = Xβ + ε.

To solve for β, we turn to Equation 1. Now,

X′X =

n ∑i = 1
n x1i ⋯ ∑i = 1

n xpi

∑i = 1
n x1i ∑i = 1

n x1i
2 ⋯ ∑i = 1

n x1xpi

⋮ ⋮ ⋱ ⋮

∑i = 1
n xpi ∑i = 1

n xpx1i ⋯ ∑i = 1
n xpi

2

, (4)

Where
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∑
i = 1

n
xki = xkn,

∑
i = 1

n
xkixli = cov xk, xl (n − 1) + xkxln

for any k, l ∈ {1, 2, …, p}. For a single phenotype multiplied by a constant ch, chyh,

X′chyh = ch

∑i = 1
n yhi

∑i = 1
n x1iyhi

⋮

∑i = 1
n xpiyhi

, (5)

Where

∑
i = 1

n
yhi = yhn,

∑
i = 1

n
xkiyhi = bhkvar xk (n − 1) + xkyhn .

To calculate β we solve for these matrices and apply them to Equation 1.

We can manipulate Equation 2 to solve for the standard error of our coefficients. By 

substitution, we have:

var(β) = σ2 X′X −1 =
ch

2yh′yh − β′X′chyh
n − (p + 1) X′X −1 . (6)

To compute this matrix we use our calculated β, X′X, and X′chyh. Then,

ch
2yh′ yh = ch

2 ∑
i = 1

n
yhi
2 = ch

2 var yh (n − 1) + yh
2n .

Using these matrices we can compute the matrix var (β). To calculate SE (β j) we take the 

square root of the jth diagonal entry of var (β)

2.3.2. Linear Combination of Phenotypes—Suppose we want to analyze a linear 

combination of all phenotypes in the matrix Y while adjusting for covariates.

We still will use Equation 1 to calculate our slope vector. β. To do so, we can still calculate 

X′X through Equation 4. However, to calculate X′y for a linear combination of phenotypes 

y = c1y1 + c2y2 + ⋯ + cmym,
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X′y =

c1∑i = 1
n y1i + c2∑i = 1

n y2i + ⋯ + cm∑i = 1
n ymi

c1∑i = 1
n x1iy1i + c2∑i = 1

n x1iy2i + ⋯ + cm∑i = 1
n x1iymi

⋮
c1∑i = 1

n xpiy1i + c2∑i = 1
n xpiy2i + ⋯ + cm∑i = 1

n xpiymi

, (7)

Where

c1 ∑
i = 1

n
y1i + c2 ∑

i = 1

n
y2i + ⋯ + cm ∑

i = 1

n
ymi = n c1y1 + c2y2 + ⋯ + cmym ,

c1 ∑
i = 1

n
xky1i + c2 ∑

i = 1

n
xky2i + ⋯ + cm ∑

i = 1

n
xkymi = c1b1k + c2b1k + ⋯ + cmbmk var xk (n − 1)

+nxk c1y1 + c2y2 + ⋯ + cmym .

Note that if we already have summary statistics for covariate-adjusted models (β1, β2, …, βm

for y1 X, y2 X, …, ym X), Equation 1 simplifies to the following:

β = c1β1 + c2β2 + ⋯ + cmβm . (8)

To calculate standard errors for this linear combination, we have

var(β) = y′y − β′X′y
n − (p + 1) X′X −1 . (9)

We can then evaluate Equation 9 using Xy calculated from Equation 7, β calculated from 

Equation 1, and

y′y = ∑
h = 1

m
∑
j = 1

m
chc j cov yh, y j (n − 1) + yhy jn (10)

for h, j ∈ {1,2, …, m}.

2.4. Principal Component Analysis

Assume that Y is centered. That is, that yh = 0 for all h ∈ {1, 2, …, m}. Then, if λj is the jth 

highest eigen-value of cov(Y), with associated eigen-vector ϕ j1⋯ϕ jh ′ it follows that 

ϕ j1y1 + ⋯ + ϕ jhyh is the jth principal component score of Y. So, the previously discussed 

methods can be applied to calculate the coefficients and standard errors of the model

ϕ jhy1 + ⋯ + ϕ jhyh = Xβ + ε .
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2.4.1. Standardizing and Centering—If the summary statistics do not center Y, we 

can post-hoc transform the summary statistics to center Y (and optionally standardize Y). If 

yh has mean μh, standard deviation σh, and yh = Xβh+εh, then regression coefficients 

describing a centered yh with the same covariates can be found by subtracting μh from the 

intercept and leaving all other coefficients unchanged. Standard errors remain unchanged 

with centering. Further, if we wish to standardize yh, regression coefficients can be found by 

subtracting μh from the intercept, and then diving all coefficients by σ. Standard errors for 

the standardized response’s coefficients are equivalent to their unstandardized standard 

errors divided by σh
2.

2.5. Simulation

We simulated genomes across 2,000 subjects 1,000 times. Each genome consisted of 

100,000 SNPs with minor allele frequencies generated from a beta distribution. Each subject 

had 5 phenotypes: age, sex, y1, y2, and y3. Subjects’ ages and sexes were generated from 

Poisson and Bernoulli distributions, respectively. We generated our primary response 

phenotypes (y1, y2, and y3) to be associated with the first 10 SNPs, age, and sex. As a result 

of this specification, we saw average correlations of 0.30 between y1 and y2, −0.08 between 

y1 and y3, and 0.07 between y2 and y3 across all simulations.

2.5.1. Post-Hoc Covariate Adjustment Simulation—To address our post-hoc 

covariate adjustment, we first calculated slope coefficients and standard errors for the 

regression y1 ~ SNP + age + sex and compared them to these values calculated using our 

methods with simple linear regression summary statistics. We calculated these values both 

using the true covariance matrix of our phenotypes, and using Equation 3 to approximate the 

phenotype covariance matrix.

2.5.2. Principal Component Analysis Simulation—To address our PCA method, 

we calculated the principal component weights on y1, y2, and y3 and calculated slope 

coefficients and standard errors for the regression of the first principal component against 

SNP, age, and sex. We compared these values to those calculated using our methods with 

known summary statistics of yh ~ SNP + age + sex for h ∈ {1, 2, 3}. We calculated these 

values both using the true covariance matrix of our phenotypes, and using Equation 3 to 

approximate the phenotype covariance matrix.

2.6. Real Data Example

Previous genome wide association studies explored associations between SNPs and red 

blood cell fatty acid (RBC FA) levels indicative of various health measures such as 

cardiovascular health and inflammation using data from The Framingham Heart Study.19–21 

We applied our method to unrelated individuals in the Generation 3 and Offspring cohorts 

with a sample size of 1,454 with data on 408,595 SNPs after quality control. We investigated 

the Omega-3 and Omega-6 fatty acids. The production of Omega-3s and Omega-6s are 

highly related and therefore it is useful to determine how genotypes are associated with each 

of these groups, rather than each fatty acid individually. We did this by performing 

regressions on the principal components of the 4 Omega-3 and the 3 Omega-6 fatty acids. 
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We performed both our posthoc covariate adjustment and PCA methods on the summary 

statistics of single marker tests for each fatty acid and covariate, and compared the results to 

models run in the traditional framework. We ran the models with two different sets of 

covariates: one set included the covariates age, sex, and cohort, while the other also included 

the other fatty acid group as covariates. Look to cited studies for more information regarding 

the results of past fatty acid GWAS and the Framingham cohort.19–21

3. Results

3.1. Simulation Results

3.1.1. Post-Hoc Covariates Adjustment—Our method to describe covariate adjusted 

models proved to be exact to rounding errors when we assumed the true phenotype 

covariance matrix. We had mean slope error −1.68 × 10−18 with mean intra-genomic 

variance 3.78 × 10−33 (max intra-genomic variance 1.52 × 10−32). Our standard error 

estimate had mean error 1.67 × 10−20 with mean intra-genomic variance 9.01 × 10−33 (max 

intra-genomic variance 5.62 × 10−32).

When estimating the phenotype covariance matrix, our approximation still performed well. 

Our estimate of the slope had mean error 1.87 × 10−9 with mean intra-genomic variance 2.99 

× 10−9 (max intra-genomic variance 4.12 × 10−8). The standard error estimate had mean 

error 5.25 × 10−8 and mean intra-genomic variance 7.77 × 10−13 (max intra-genomic 

variance 1.96 × 10−11).

3.1.2. Principal Component Analysis—Our method to describe models that 

incorporated principal components proved to be exact to rounding errors when we assumed 

the true phenotype covariance matrix. Our slope estimate had mean error −2.48×10−19 with 

mean intra-genomic variance 2.64×10−33 (max intra-genomic variance 3.25 × 10−32). Our 

slope standard error estimate had mean error −3.30 × 10−19 with mean intra-genomic 

variance 5.66 × 10−35 (max intra-genomic variance (2.84 × 10−34).

When approximating the covariance of y1, y2, and y3, our estimate still performed well. 

Across all 1,000 genotypes, our slope estimate had a mean error of 2.00 × 10−7 with mean 

intra-genomic variance 5.11 × 10−7 (max intra-genomic variance 1.75 × 10−5). Our standard 

error estimate had a mean error of 8.85 × 10−7 with mean intra-genomic variance 2.70 × 

10−10 (max intra-genomic variance 7.91 × 10−9). Figure 1 displays the accuracy of our 

method on the first simulated genome.

3.2. Real Data Example Results

3.2.1. Method Accuracy—Our method approximated the results of models fit on raw 

subject-level data with high accuracy and low variance. Table 1 displays our method’s 

accuracy for all responses with and without adjustment for fatty acid covariates. These 

models show more variation than in simulation due to deviations from Hardy-Weinberg 

equilibrium (HWE) and missing data that affected values such as the means of the 

phenotypes. At a significance threshold of 2 × 10−7, our method reached the same 

conclusions as models fit on the raw data for every SNP. We display the accuracy of our 
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model for the first principal component of Omega-3 fatty acids, adjusting for age, sex, and 

cohort in Figure 2.

3.2.2. Analysis of Hits—The post-hoc covariate adjustment on both individual fatty 

acids and PCA for the Omega-3 and Omega-6 fatty acids hit genes that have been found in 

previous GWAS on fatty acids such as FADS1, ELOVL2, and LPCAT3.19–21 Using principal 

components and covariate adjustment we found a novel gene that has not yet been found 

associated with fatty acids before: PTPRM, and another (AGPAT4) that was only identified 

with a fatty acid ratio before on this sample.19 Table 2 displays all SNPs found significant 

with any individual Omega-3 or Omega-6 fatty acid, or the first, second, or third principal 

components of either Omega-3 or Omega-6 fatty acids.

4. Discussion

We have developed exact methods for describing the relationship between phenotypes and 

genotypes for covariate adjusted linear combinations of any number of phenotypes 

(including post-hoc covariate adjustment) as well as for PCA using summary statistics. We 

have supplied the mathematical frameworks for these methods and validated them through a 

simulation and a real data example of both post-hoc covariate analysis and PCA, as well as 

the combination of the two.

We have provided a simple, efficient method for utilizing covariates and PCA in GWAS and 

GWAS meta-analyses using only summary statistics. In a GWAS, these methods save in 

computation time, and cost, as well as the time and size of data transfers. The post-hoc 

covariate adjustment also allows researchers to explore multiple phenotype associations 

through adding phenotypes correlated with the response phenotype as covariates in a 

computationally and time efficient way. The use of our covariate and PCA method becomes 

even more time-saving in a meta-analysis, as individual cohorts do not need to rerun and 

resend more complex analyses for the meta-analysis in order to explore more complex 

phenotypes or covariate adjustments. The PCA method can also be applied to a principal 

component meta-analysis by using methods from Ried et al. (2016) to compute universal 

weights that are applied to individual cohort summary statistics.17 Our real data application 

also demonstrates that covariate adjustment and PCA can and do affect the SNPs found in 

GWAS results and thus might lead to the exploration of new gene associations, and 

identified a novel gene.

Even though our method is a useful tool to flexibly explore biologically meaningful 

phenotypes, we suggest that future work continue to explore leveraging summary statistics 

to explain other complex phenotypes. For example, multiplied phenotypes can explain both 

logical and and or statements as: “y1 and y2” = y1·y2 and “y1 or y2” = y1+y2−y1·y2. These 

logical statements help describe how many diseases are clinically diagnosed, and thus would 

aid in explaining the relationship between genetics and these diseases. Future work can also 

explore how to expand these methods into linear mixed-effects models in order to 

incorporate kinship matrices and account for relatedness in these models. We are also 

currently working on an R package that will perform the calculations for these methods to 

help their implementation.
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We also must acknowledgement some limitations of our method. Throughout our 

mathematical framework we assume that the genotypes follow HWE. Assuming HWE 

means that knowing the minor allele frequency of a genotype gives exact calculations for 

values such as the mean and variance of the genotype. In practice, not all genotypes included 

in a GWAS analysis exactly follow HWE, and thus future work should explore the 

robustness of this in assumption in practice, though we anticipate minimal impact in 

downstream analysis. Our real data analysis shows a representative application of the 

method; however, future work should continue to explore practical issues involved in the 

implementation of the method on real data. Detailed results not shown demonstrate that this 

method is minimally impacted by non-differential genotype errors in biobanks.

Use of summary statistics to share both biobank data and individual cohort analyses within a 

meta-analysis alleviate many issues with privacy, data size and transfer, as well as 

computational cost and time, while the data itself presents an unprecedented opportunity to 

explore human health and genetically complex phenotypes. Our method provides exact 

formulas along with estimation techniques for using these summary statistics for covariate-

adjusted linear models and multivariate methods, that in turn can help explain the biological 

mechanisms between phenotypes of interest. We have continued the work of previous 

methodological advances by leveraging these summary statistics to investigate the 

relationship between genetics and diseases. Future work will explore additional methods of 

combining phenotypes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors of this work were partially supported by a grant from the NIH (2R15HG00691502) and Dordt 
University.

References

1. Huppertz B. and Holzinger A, Interactive Knowledge Discovery and Data Mining in Biomedical 
Informatics: State-of-the-Art and Future Challenges (Springer Berlin Heidelberg, Berlin, 
Heidelberg, 2014), Berlin, Heidelberg, ch. Biobanks A Source of Large Biological Data Sets: Open 
Problems and Future Challenges, pp. 317–330.

2. Heatherly R, Privacy and security within biobanking: The role of information technology, The 
Journal of law, medicine & ethics : a journal of the American Society of Law, Medicine & Ethics 
44, 156 (2016).

3. Jones E, Sheehan N, Masca N, Wallace S, Murtagh M. and Burton PR, DataSHIELD-shared 
individual-level analysis without sharing the data: A biostatistical perspective, Norsk epidemiologi, 
Vol. 21 4 2012.

4. Sudlow C. et al., UK biobank: an open access resource for identifying the causes of a wide range of 
complex diseases of middle and old age, PLoS medicine 12, e1001779 (3 2015).

5. Canela-Xandri O, Rawlik K. and Tenesa A, An atlas of genetic associations in UK biobank, bioRxiv, 
p. 176834 (1 2017).

6. Zhang W. et al., PCA-Based multiple-trait GWAS analysis: A powerful model for exploring 
pleiotropy, Animals (Basel) 8 (12 2018).

Wolf et al. Page 10

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



7. Gasdaska A, Friend D, Chen R, Westra J, Zawistowski M, Lindsey W. and Tintle N, Leveraging 
summary statistics to make inferences about complex phenotypes in large biobanks, Pac Symp 
Biocomput 24, 391 (2019). [PubMed: 30963077] 

8. Liu Z. and Lin X, Multiple phenotype association tests using summary statistics in genome-wide 
association studies, Biometrics 74, 165 (03 2018). [PubMed: 28653391] 

9. Ray D. and Boehnke M, Methods for meta-analysis of multiple traits using GWAS summary 
statistics, Genet. Epidemiol 42, 134 (03 2018). [PubMed: 29226385] 

10. Stephens M, A unified framework for association analysis with multiple related phenotypes, PLOS 
ONE 8, p. e65245 (7 2013).

11. van der Sluis S, Posthuma D. and Dolan CV, Tates: Efficient multivariate genotype-phenotype 
analysis for genome-wide association studies, PLOS Genetics 9, p. e1003235 (1 2013).

12. Vuckovic D, Gasparini P, Soranzo N. and Iotchkova V, Multimeta: an r package for meta-analyzing 
multi-phenotype genome-wide association studies, Bioinformatics (Oxford, England) 31, 2754 (8 
2015).

13. Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, Lehtimäki T, Raitakari OT, Järvelin M-
R, Salomaa V, Ala-Korpela M, Ripatti S. and Pirinen M, metacca: summary statistics-based 
multivariate meta-analysis of genome-wide association studies using canonical correlation 
analysis, Bioinformatics 32, 1981 (2 2016). [PubMed: 27153689] 

14. Zhu X. et al., Meta-analysis of correlated traits via summary statistics from GWASs with an 
application in hypertension, Am. J. Hum. Genet 96, 21 (1 2015). [PubMed: 25500260] 

15. Aschard H, Vilhjálmsson BJ, Greliche N, Morange P-E, Trégouët D-A and Kraft P, Maximizing 
the power of principal-component analysis of correlated phenotypes in genome-wide association 
studies, American journal of human genetics 94, 662 (5 2014).

16. Duan F. et al., Principal component analysis of canine hip dysplasia phenotypes and their statistical 
power for genome-wide association mapping, Journal of Applied Statistics 40, 235 (2 2013).

17. Ried JS et al., A principal component meta-analysis on multiple anthropometric traits identifies 
novel loci for body shape, Nature Communications 7, 13357 EP (11 2016), Article.

18. Kim J, Bai Y. and Pan W, An Adaptive Association Test for Multiple Phenotypes with GWAS 
summary statistics, Genet. Epidemiol 39, 651 (12 2015). [PubMed: 26493956] 

19. Kalsbeek A. et al., A genome-wide association study of red-blood cell fatty acids and ratios 
incorporating dietary covariates: Framingham heart study offspring cohort, PloS one 13, e0194882 
(4 2018).

20. Tintle NL et al., A genome-wide association study of saturated, mono-and polyunsaturated red 
blood cell fatty acids in the framingham heart offspring study, Prostaglandins, leukotrienes, and 
essential fatty acids 94, 65 (3 2015).

21. Veenstra J, Kalsbeek A, Westra J, Disselkoen C, Smith CE and Tintle N. 2017, ch. Genome-Wide 
Interaction Study of Omega-3 PUFAs and Other Fatty Acids on Inflammatory Biomarkers of 
Cardiovascular Health in the Framingham Heart Study.

Wolf et al. Page 11

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
Differences of our method’s approximations of slope, standard error of slope, and p-values 

and those achieved when fitting a model for the first principal component on the raw data. 

These figures illustrate the high accuracy of our method, even when approximating the 

covariance structure of the phenotypes.

(a) Difference of observed and predicted SNP slope coefficients on simulated data when 

approximating phenotype covariance.

(b) Difference of observed and predicted standard errors of the SNP slope coefficient on 

simulated data when approximating phenotype covariance.

(c) Difference of observed and predicted p-values of SNPs and the first principal component 

on simulated data when approximating phenotype covariance.(−log10 scale)
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Fig. 2: 
Differences of our method’s approximation of SNP slope coefficients, slope standard errors, 

and p-values on the first principal component of Omega-3 fatty acids, adjusting for age, sex, 

and cohort using data from the Framingham Heart Study. These figures show our method’s 

high accuracy.

(a) Approximated and true slopes of the first principal component of Omega-3 fatty acids on 

FHS data.

(b) Approximated and true slope standard errors of the slope of the first principal component 

of Omega-3 fatty acids on FHS data.

(c) Difference in observed and predicted p-values of the first principal component of 

Omega-3 fatty acids on FHS data.(−log10 scale)
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Table 1:

The accuracy of our method to estimate the first and second principal components of Omega-3 and Omega-6 

fatty acids. Errors were minimal with low variance in all cases. A portion of these errors can be explained by 

deviations from HWE and missing genotype data.

Response Adjustments Mean Slope 
Error

Mean % 
Slope 
Error

Variance Slope 
Error Mean SE Error Variance SE 

Error

Omega-3, PC1 Age, Sex, Cohort 1.03 × 10−7 2% 9.19 × 10−11 −1.57 × 10−7 3.66 × 10−12

Omega-3, PC2 Age, Sex, Cohort −1.67 × 10−8 2% 1.13 × 10−11 2.04 × 10−9 4.34 × 10−13

Omega-3, PC1 Age, Sex, Cohort, 
Omega-6 FA

4.95 × 10−8 4% 6.53 × 10−11 1.17 × 10−8 2.42 × 10−11

Omega-3, PC2 Age, Sex, Cohort, 
Omega-6 FA

−1.45 × 10−8 4% 1.27 × 10−11 2.50 × 10−8 4.14 × 10−13

Omega-6, PC1 Age, Sex, Cohort 1.71 × 10−7 3% 2.82 × 10−10 2.04 × 10−8 1.86 × 10−11

Omega-6, PC2 Age, Sex, Cohort 4.88 × 10−8 2% 8.07 × 10−11 −8.72 × 10−8 4.17 × 10−12

Omega-6, PC1 Age, Sex, Cohort, 
Omega-3 FA

9.96 × 10−8 2% 2.59 × 10−10 −2.18 × 10−8 8.64 × 10−12

Omega-6, PC2 Age, Sex, Cohort, 
Omega-3 FA

5.27 × 10−8 3% 7.98 × 10−11 −4.07 × 10−8 3.11 × 10−12
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Table 2:

Results of significant (p < 2 × 10−7) SNPs from Fatty Acids comparing models with and without fatty acids as 

covariates. Our method and traditional methods on the raw data found the same SNPs significant in all cases.

# of SNPs Chr Pos Gene Significant w/ out FA Covariates Significant w/ FA Covariates

11 6 10954307–11050290 ELOVL2 DPA, O3PC2 O3PC2, O3PC1

1 6 161187057 AGPAT4 O6PC3

10 11 61781986–61888710 FADS1 LA, ADA, Adrenic, O6PC1, O6PC2 O6PC1, O6PC2, O3PC1, O3PC3

5 12 6966719–7013532 LPCAT3 LA, O6PC1 O6PC1, O3PC1

2 12 7057810–7069674 None LA, O6PC1

1 18 7881144 PTPRM O3PC3
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