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Abstract

In diffusion MRI, the advent of high angular resolution diffusion imaging (HARDI) and

HARDI with compressed sensing (HARDI+CS) has led to clinically practical signal acquisi-

tion techniques which allow for the assessment of white matter architecture in routine patient

studies. However, the reconstruction and visualization of fiber pathways by tractography

has not yet been established as a standard methodology which can easily be applied. This

is due to various algorithmic problems, such as a lack of robustness, error propagation and

the necessity of fine-tuning parameters depending on the clinical question. In the framework

of a clinical study of glioma patients, we compare two different whole-brain tracking methods

to a local connectivity mapping approach which has recently shown promising results in an

adaptation to diffusion MRI. The ability of the three methods to correctly depict fiber affection

is analyzed by comparing visualization results to representations of local diffusion profiles

provided by orientation distribution functions (ODFs). Our results suggest that methods

beyond fiber tractography, which visualize local connectedness rather than global connec-

tivity, should be evaluated further for pre-surgical assessment of fiber affection.

1. Introduction

Due to improvements in diffusion-weighted magnetic resonance imaging (DW-MRI), the

acquisition of high angular resolution (HARDI) datasets has become possible within clinically

tolerable time frames. This has triggered the development of various signal processing and

fiber reconstruction techniques which overcome the limitations of the single diffusion tensor

model. Measured local diffusion profiles can be represented by, e.g., orientation distribution

functions (ODFs) [1–3] or fiber orientation distribution functions (FODs) [4,5]. In these func-

tional representations, anisotropy directions are found by detecting local maxima, allowing

the reconstruction of fiber pathways by deterministic or probabilistic tractography algorithms.

Additionally, local diffusion metrics, such as fractional anisotropy (FA), generalized fractional

anisotropy (GFA) or mean diffusivity (MD), can be computed and depicted. Apart from color-
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coded FA maps, three-dimensional representations of streamlines or streamtubes are the most

common visualization media used to assess fiber architecture in clinical routine.

In the preoperative assessment of white matter affection and condition near cerebral glio-

mas, the reconstruction and visualization of fiber pathways can help to safely maximize the

extent of resection while preserving function [6,7]. The major challenges are the frequent

absence of a clear normal parenchyma / tumor interface, as well as the difficulties in evaluating

white matter affection in areas of peritumoral edema [8]. For this reason, the scientific litera-

ture focusses on the visualization and evaluation of white matter tracts near glioma and perile-

sional edema. In an evaluation study of six patients with gliomas near language-related fibers,

Kuhnt et al. demonstrate the benefit of the HARDI with compressed sensing (HARDI+CS)

approach over DTI [9], particularly in regions of complex fiber pathways with disrupted aniso-

tropic diffusion. Only needing to acquire 30 gradient directions underlines the clinical practi-

cality of their approach. Similar results were obtained in a study of eight patients with gliomas

in the temporal lobe in proximity to the optic radiation (OR) [10].

Using high-definition fiber tractography (HDFT), Abhinav et al. evaluate perilesional white

matter (WM) tracts in case examples of patients with glioblastoma multiforme [11]. Address-

ing the limitations of diffusion tensor imaging (DTI), the authors use diffusion spectrum imag-

ing (DSI) for data acquisition, and generalized q-sampling imaging (GQI) for fiber orientation

estimation. Their approach is capable of depicting perilesional pathways even in edematous

zones around high-grade gliomas. However, they state that tractography studies have repro-

ducibility issues due to their reliance on the operator’s specialized knowledge with regard to

defining regions of interest (ROIs) and the segmentation of visualized tracts. Intraoperative

electrical stimulation (IES) can be used to analyze the accuracy and sensitivity of fiber tracking

algorithms. Bucci et al. use this method to evaluate DW-MRI tractography of corticospinal

tracts in brain tumors with DTI and q-ball models, using deterministic and probabilistic meth-

ods [12]. The distances between subcortical stimulation sites and the corresponding tractogra-

phy results are measured. Their results found that probabilistic tractography based on the q-

ball model has the best sensitivity (79%), compared to deterministic q-ball (50%), probabilistic

DTI (36%) and deterministic DTI (10%). A different approach for evaluating WM tracking is

presented by Mormina et al. in a study on the qualitative and quantitative analysis of probabi-

listic, constrained spherical deconvolution tractography [13]. The authors examine DW-MRI

data (60 gradient directions) from twenty patients with frontoparietal high-grade glioma, con-

sidering WM tract alterations of the corticospinal tract as well as the arcuate fasciculus (AF).

They perform tract quantification using diffusion tensor parameters (FA, MD, linear+planar+-

spherical coefficients). They demonstrate that edema-affected and infiltrated tracts have lower

FA values, but still preserve enough directional information for tracking algorithms to success-

fully track through edematous regions. However, tractography stopping criteria must be tuned

regionally to, e.g., avoid false positive tracts outside edematous regions. For arcuate fasciculus

reconstruction in the setting of peritumoral edema, other tractography algorithms have been

used. In two-tensor, unscented Kalman filter (UKF) tractography, a diffusion model is fitted to

the data during fiber tracking, taking advantage of information gained from the previous step

along the fiber [14]. In [15], this method is used for surgical planning on 10 patients with left-

sided tumors in the vicinity of the language-related cortex. Fiber tractography is carried out by

single-tensor streamline and two-tensor UKF tractography on a diffusion-weighted dataset

with 31 gradient directions. It is shown that two-tensor UKF is able to reconstruct the AF

more fully than single-tensor tractography. In a study of two patients, Liao et al. focus on the

performance of two-tensor UKF tractography in edema and analyze the sensitivity of tracking

parameters in these regions [14]. It turns out that varying the fractional anisotropy threshold

and including the free water model has a less positive effect than lowering the GFA threshold.
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However, FA and GFA thresholds must be individually tuned to each patient dataset. More-

over, the authors claim that whole-brain seeding or seed placement in larger regions outside

the edema are the best seeding strategies. A whole-brain seeding strategy combined with UKF

tractography can also be used to perform automated white matter fiber tract identification in

patients with brain tumors [16]. In this study, a data-driven white matter parcellation is per-

formed on data from healthy controls, and a fiber cluster atlas is generated using groupwise

registration and spectral clustering. After key fiber tract clusters are identified in the atlas, fiber

tracts from patient datasets can be identified automatically using tractography-based registra-

tion to the atlas. The results indicate that 80% of fiber clusters are identified in all 18 patients

of the study. However, a major issue in tractography is the generation of false positive and false

negative fibers. Furthermore, tractography still remains difficult in the vicinity of edema. In

such cases, correlation with functional MRT-data can help to obtain additional, patient specific

information [16]. In [17], Stadlbauer et al. examine changes in the fiber integrity, diffusivity

and metabolism of the pyramidal tract adjacent to gliomas. They use quantitative diffusion

tensor fiber tracking and MR spectroscopic imaging (MRSI) to examine the potential of com-

bining both methods. Mean diffusivity, fractional anisotropy and the number of fibers per

voxel (FpV) are calculated for the pyramidal tracts of the ipsilateral and contralateral hemi-

spheres, and various metabolic concentrations are determined. As a result, quantitative DT

fiber tracking shows changes in diffusivity for the pyramidal tracts of patients with sensorimo-

tor deficits. Additionally, the use of proton MRSI can reveal whether changes in diffusivity are

caused by tumor infiltration or peritumoral edema.

In an attempt to estimate the value of different tractography methods for the preoperative

assessment of glioma near the motor cortex, Pujol et al. organized the “DTI Challenge”, with

eight international teams applying their approaches to data from four glioma patients in order

to reconstruct the pyramidal tracts [18]. The quantitative and qualitative evaluation results

show a great variability between the methods. None of the approaches is able to reliably trace

through edematous regions and at the same time prevent false positive tracts, e.g., in surgical

cavities. As well as the frequent absence of a clear normal parenchyma / tumor interface, the

dynamic interactions between neoplastic invasiveness and brain plasticity are major challenges

for visualization approaches. Nevertheless, in both high-grade and low-grade gliomas, white

matter tractography-based surgery is currently recognized as a valuable tool which balances

the trade-off between preserving function and maximizing resection [19–23]. However, there

is currently no standardized algorithmic approach for preoperative glioma assessment.

Tractography provides global connectivity depiction, but suffers from the need to individu-

ally tune parameters to patient datasets and even anatomic regions of interest. Other problems

include a dependency on user interaction, e.g., for seed placement and defining inclusion/

exclusion regions, a lack of robustness against noise, and error propagation during tracking.

These lead to false positive and false negative tracts in the vicinity of pathological white matter

[8,18]. Other visualization approaches use glyphs such as ellipsoids [24], ODF glyphs [25] or

superquadric glyphs [26] to depict local diffusion characteristics, but fail to reveal global con-

nectivity features of fiber pathways. For this reason, they have not entered into clinical routine

application. Höller et al. proposed a local connectivity approach (A-Glyph LIC) as a robust

fiber visualization technique which does not require user interaction and parameter tuning

[27]. A-Glyph LIC is an extension of the line integral convolution (LIC) algorithm, a texture-

based technique for flow field visualization originally introduced by Cabral et al. [28]. By

applying a multiple-kernel LIC strategy together with the usage of anisotropic glyph samples

as input patterns, the authors were able to provide color-coded LIC maps as slice images,

depicting even branching and crossing fiber pathways with good contrast [29]. In an evalua-

tion study on juvenile patients, they demonstrated the good performance of their method on
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different fiber pathologies, namely tumor displacement, fiber infiltration, demyelination and

selective involvement of fiber tracts [27].

This paper presents a clinical evaluation study of the preoperative assessment of glioma-

affected white matter with DW-MRI. We use HARDI datasets acquired from patients through

routine protocols by usage of a clinical scanner, and compare deterministic and probabilistic

tractography to a non-tractographic approach, namely A-Glyph LIC. We focus on the correct

visualization of diffusion characteristics by the slice output images generated by the three dif-

ferent algorithms. In order to avoid user dependencies, whole-brain tracking with automatic

seed placement is used, as proposed by [14].

2. Material and methods

In this clinical study of six glioma patients, who are described in Table 1, the outcome of local

connectivity mapping by usage of the A-Glyph LIC algorithm and the results from determin-

istic and probabilistic whole-brain tractography were compared to diffusion properties, repre-

sented by ODF glyphs. High resolution T1 and T2 data, as well as HARDI datasets with 64

gradient directions, were acquired with a 3T clinical scanner. After correction of eddy current-

induced distortions and subject movements as well as noise filtering, the diffusion-weighted

datasets were used to calculate local diffusion profiles as ODFs. Corresponding slice images

were computed from the volume datasets generated by the A-Glyph-LIC and the whole-brain

tractography approaches, while high-resolution slices of visualized ODF glyphs served as a ref-

erence. Two to six regions of interest (ROIs) were selected for each patient. All slices and ROIs

were selected by a neuroradiologist with long-term experience in DW-MRI. The focus was on

glioma-affected regions in the white matter, particularly on peritumoral edema and tumor

infiltrated tracts. In these regions judgement of fiber integrity is of vital interest in surgery

planning, to balance the trade-off between preserving function and maximizing resection.

Data acquisition

Six patients suffering from low- or high-grade glioma were selected for this study. Their

images were acquired as part of ongoing research studies, approved by the ethics committee of

the medical faculty of the Eberhard Karls University of Tübingen. Informed written consent

was obtained from the patients.

All patient datasets were acquired with a 3T MRI scanner (Siemens Skyra, Siemens Healthi-

neers, Erlangen, Germany) at the University Hospital Tübingen. Table 2 gives an overview of

the acquisition protocols used.

Data preprocessing

All datasets went through the same preprocessing procedures. First, using the FMRIB Software

Library (FSL, Analysis Group, FMRIB, Oxford, UK), a brain mask was generated by applying

Table 1. List of patients used for the study and their pathologies and symptoms.

Gender, age Pathology Symptoms

Patient A Female, 54 years Glioblastoma in the right frontal lobe Headache, concentration deficits

Patient B Female, 22 years Cavernoma in the white matter of the right parietal lobe Seizures

Patient C Female, 34 years Diffuse astrocytoma WHO II of the left frontal lobe Symptomatic epilepsy

Patient D Male, 57 years Left parietal glioblastoma Aphasia

Patient E Female, 58 years Metastasis of adenocarcinoma in the left basal ganglia Seizures

Patient F Male, 76 years Glioblastoma in the right precentral gyrus Seizures

https://doi.org/10.1371/journal.pone.0226153.t001
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an automatically determined FA threshold [30, 31]. The MRtrix software package (Brain

Research Institute, Melbourne, Australia) masking algorithm was used for the probabilistic

tractography approach. All brain masks were visually inspected and any errors, e.g., holes,

which may occur especially in edematous regions or inside gliomas, were manually corrected.

FSL was used to correct eddy current-induced distortions and patient movements during

acquisition, using a mutual information-based, retrospective motion correction scheme [32].

When acquired under clinical conditions, DW-MRI datasets often suffer from a low signal-

to-noise ratio (SNR) and are thus subject to misinterpretations and visualization errors [33].

Therefore, we applied a noise filtering procedure to the original diffusion data using the over-

complete local principal component analysis (OLPCA) approach described by Manjón et al.

[34]. For this we used a Matlab implementation (MathWorks Inc., Natick, Massachusetts,

USA) made available by the author [35]. Denoising the data is most effective in regions with a

low SNR and allows, amongst other things, the stable computation of constant solid angle

ODFs (CSA-ODFs), which tend to degenerate in regions of low signal and high noise. Fig 1

illustrates the effect of denoising the diffusion data on an axial slice image from patient B.

When computed from noisy data (Fig 1A), particularly in the zoomed regions, the CSA-ODFs

are degenerated and show a high level of anisotropy, which is in contrast to the underlying sig-

nal intensities of the B0-image and the gradient-specific diffusion images. After data denoising,

the CSA-ODFs have reasonable sizes and show low anisotropy (Fig 1B), consistent with the

results of computing the ODFs with the method of Descoteaux et al. [2].

ODF computation

The orientation distribution function is a model-free functional representation of the local dif-

fusion profile. ODF reconstruction can be performed by applying a Funk-Radon transform

(FRT), using either spherical radial basis functions (sRBF) [1] or spherical harmonics [2,36].

In order to sharpen the profiles, a normalization step is necessary, which in the presence of

artifacts and outliers is not always straightforward. Alternatively, the constant solid angle

(CSA) ODF can be computed with the method proposed by Aganj et al. [3]. This includes an

intrinsic normalization and leads to ODFs with realistic sharpness, allowing easy detection of

anisotropic diffusion directions. Even more sharpness is provided by the fiber orientation dis-

tribution (FOD), which is based on the constrained spherical deconvolution (CSD) algorithm

[4,5]. This applies signal deconvolution with a kernel, modeling a single coherently-orientated

fiber bundle. This kernel can be estimated from the individual HARDI dataset by manual or

automatic procedures, but introduces modeling assumptions. It has been demonstrated that

by the CSD approach a high angular resolution may be provided, allowing fiber directions to

be extracted, even in regions with acute-angled fiber crossings. However, by usage of a single-

fiber model, modeling assumptions are introduced. As an alternative, the CSA approach to

ODF computation is completely model-free and also leads to quite sharp diffusion profiles [3]

Table 2. Overview of the clinical acquisition protocols.

Sequence DW-MRI Sequence T1 Sequence 1 T1 Sequence 2 T2 Sequence 1 T2 Sequence 2

TR/TE [ms] 6100/85 2300/2.32 2300/3.51 3200/408 5000/387

Matrix 114x114x50 208x256x256 176x256x256 208x512x512 208x512x512

Voxel length [mm] 2.0x2.0x2.0 0.9x0.9x0.9 1.0x1.0x1.0 0.9x0.47x0.47 0.9x0.47x0.47

DWI directions 64

B-Value [s/mm2] 1000

Used for A–F A, C, D B, E, F A C

https://doi.org/10.1371/journal.pone.0226153.t002
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with a good angular resolution, resolving fiber crossings at about 45˚ [37]. Thus, it outper-

forms the ODF computation method originally proposed by Tuch [1,38], and allows fiber

directions to be determined easier. As explained above, a Matlab implementation, made avail-

able by Aganj [39], was used. From this, we were able to produce high-resolution slice images

of the CSA-ODF glyphs, corresponding to planar slices from the A-Glyph LIC and the proba-

bilistic/deterministic tractography volumes. CSA-ODF glyphs are constructed by deforming

the surface of a sphere according to ODF values distributed over a half sphere. After a direc-

tional color-coding scheme [40] is applied, the glyphs depict local anisotropy directions.

We used a spherical harmonic basis order of 4 and a regularization parameter of 0.15 to

generate the CSA-ODFs. With these parameters, ODF glyphs with sufficient sharpness and a

shape consistent with the ODF glyphs computed with the method of Descoteaux could reliably

be provided for all patient datasets. In order to provide anatomic context, we calculated the

generalized fractional anisotropy values from the CSA-ODFs [1] and used planar GFA-slice

images as a background for the ODF glyph visualizations.

Local connectivity mapping by line integral convolution with anisotropic

glyph samples (A-Glyph LIC)

Different to tractography, local connectivity mapping approaches visualize fiber connectivity

by analysis of diffusion profiles in a voxel’s immediate neighborhood. The A-Glyph LIC

approach used here is an extension of the line integral convolution algorithm originally intro-

duced by Cabral et al. [28]. The basic principles and steps of the A-Glyph LIC method have

already been described by Höller et al. in [29]. Therefore, we give only a short summary of the

algorithm’s most important steps here. First, a high-resolution input pattern is generated with

a voxel size of 0.1 mm. The input pattern is filled with multi-cylindrical glyph samples, which

Fig 1. Effect of denoising DW-MRI data from patient B on CSA-ODFs. To provide anatomic context, GFA slice

images are used as the background for the CSA-ODF glyphs. Images (a) and (b) both show the same slice, calculated

with Matlab. The marked and enlarged areas show the tumor region inside the right hemisphere. (a) CSA-ODFs

calculated from noisy DW-MRI data. (b) CSA-ODFs calculated after application of the OLPCA noise reduction

scheme. Noise reduction was applied to the entire DW-MRI dataset but is most effective in regions with a low SNR,

such as the marked and enlarged tumor region.

https://doi.org/10.1371/journal.pone.0226153.g001
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are placed along very short streamlines, tracked locally within the interpolated diffusion data.

Local tracking distances are of the order of the voxel size of the original diffusion dataset. The

seeds are placed randomly throughout the whole high-resolution dataset. Instead of FODs, as

in Höller’s method, we use CSA-ODFs to encode local anisotropy characteristics by scaling the

cylindrical glyphs with the length of the CSA-ODF maxima. Thus, the high-resolution aniso-

tropic glyph pattern generated consists of cylindrical glyphs which indicate local anisotropy

directions as well as extent. In the next step, the pattern is used as an input for the multiple ker-

nel LIC algorithm. This algorithm smooths the input-pattern along a kernel, following the

global maxima of the CSA-ODFs as well as the second local CSA-ODF maxima, which is

found using a Newton-Raphson gradient ascent algorithm. The two-dimensional smoothing

kernel allows the depiction of crossing and branching fibers. The kernel is generated by track-

ing locally over very few steps of the order of the resolution of the original diffusion dataset,

which is about 2 mm. The resulting 3D LIC volume is directionally color-coded and visualized

by planar slice images of 1 mm thickness. To incorporate additional anisotropy information,

the pixel lightness of A-Glyph LIC slice images is scaled by the GFA value calculated from the

CSA-ODFs. Additionally, the LIC slices are fused with T1 or T2 images to provide anatomic

context. We used the fiberViewMR software package (Stralsund University, Stralsund, Ger-

many) [41] for A-Glyph LIC processing.

Probabilistic streamline tractography

Deterministic tracking approaches often suffer from false negative fiber reconstructions, miss-

ing fiber structures which are highly relevant for surgery planning. Probabilistic approaches

may improve tracking through regions of low anisotropy or with less distinct directions. These

areas are of vital interest in preoperative glioma assessment. For this reason, probabilistic

streamline tractography was used as a promising and established reference method. The

MRtrix software package (Brain Research Institute, Melbourne, Australia) used, implements

probabilistic tracking on the basis of a first-order integration over FODs (iFOD1). This track-

ing algorithm is referred to as “SD_PROB” in [42]. To avoid depending on the user’s skills in

seed region definition and to allow reproducibility, a whole-brain tracking was applied with

seeds generated at random by uniform sampling of the white matter mask [42]. Following the

recommendations in [16,43], experiments with 50,000, 75,000 and 100,000 tracts to be gener-

ated were carried out. For all the diffusion datasets investigated, the most reasonable results

were achieved with 75,000 tracts. To allow tracking through low anisotropy regions, e.g.,

edema, an FOD amplitude of 0.1 was set as the tract stopping threshold. For all other parame-

ters, defaults provided by MRtrix were chosen, e.g., stepsize of 0.2 mm, minimum radius of

curvature of 1.0 mm, minimum track length of 10 mm, and maximum track length of 200

mm. From the resulting streamline volumes, slice images were generated by clipping to slabs

of 1.0 mm thickness, corresponding to A-Glyph LIC slices in orientation and position. As an

anatomic reference, the tractography slices were fused with T1 slice images.

Deterministic streamline tractography

Deterministic tracking approaches based on HARDI datasets may lead to good results, even in

regions of crossing and branching pathways, if the underlying diffusion profiles are adequately

represented by sharp ODFs or FODs [42]. To perform deterministic streamline tractography,

a fiber assignment by continuous tracking (FACT) algorithm [44] based on CSA-ODFs was

used. This algorithm was implemented through the modular software platform OpenPDT,

which was developed by our group. In order to keep results independent from the operator’s

skill in correctly placing seeds and to avoid inter-operator variability, whole-brain
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tractography [14] was applied with seed points defined randomly in continuous space covering

the whole brain [45]. To be consistent with the probabilistic tractography, 75,000 tracts were

calculated for each patient dataset, with a step size of 0.2 mm, a minimum GFA value of 0.1

and a minimum curvature angle of 30˚/mm. Only tracts with a minimum length of 10 mm

and a maximum length of 200 mm were accepted. To compare the results of the deterministic

streamline tractography with those from the probabilistic tractography and the A-Glyph LIC

algorithm, the resulting streamline volume was clipped to slabs of equal position, thickness

and orientation. Additionally, all slices were fused with T1 slice images.

Evaluation study

This study focusses on the question of whether an LIC-based visualization method is capable

of depicting tumorous fiber affections in a way that is consistent with local diffusion profiles

represented by CSA-ODFs. In order to compare its performance with more established meth-

ods, its performance is compared to that of deterministic and probabilistic streamline tracto-

graphy algorithms. The study protocol includes a data preparation step, in which a

neuroradiologist with long-term experience in clinical MRI views multi-planar reconstruc-

tions of the acquired T1 and T2 patient datasets and interactively marks regions of interest

(ROIs) with ellipsoidal shape in the vicinity of the lesion. For each T1 or T2 image containing

a ROI, four corresponding planar slices with the same thickness, orientation and position were

generated, depicting:

a. CSA-ODF glyphs with ROI overlay fused with a GFA image,

b. directionally color-encoded A-Glyph LIC with ROI overlay fused with T1,

c. directionally color-encoded streamlines from deterministic, whole-brain tractography with

ROI overlay fused with T1, and

d. directionally color-encoded streamlines from probabilistic, whole-brain tractography with

ROI overlay fused with T1.

A total of 18 ROIs were defined and analyzed. The slice thickness of all images was set to 1.0

mm. The slice images with the CSA-ODF glyphs (a) served as a reference and the visualization

results in images b)—d) were visually inspected for consistency.

3. Results

In many clinical studies related to fiber visualization from diffusion MRI data, visualization

errors and the reliability and robustness of the algorithms used, have been the main subject of

interest. The clinical focus of the evaluation study presented in this paper, is on the affected-

ness of white matter tracts in the vicinity of brain tumors, particularly near gliomas and within

perilesional edema. With regard to erroneous visualizations, a distinction between false posi-

tive and false negative tracts is made. The most important findings are listed by Table 3.

Table 3. List of findings (false positives and negatives) and their relation to the three visualization methods.

Finding Method Region/Pathology Patient

False positive tracts det./prob. Tr. perilesional edema A

det./prob. Tr. low grade glioma C

det./prob. Tr. grade IV glioma (periphery) E

det. Tr. fiber crossing near glioblastoma F

False negative tracts prob. Tr. cavernoma (periphery) B

A-Glyph LIC fibers running orthogonal to image plane A

https://doi.org/10.1371/journal.pone.0226153.t003
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Erroneous visualizations of tracts, which are generated in regions with non-anisotropic voxels,

are classified as false positives. Non-anisotropic voxels are characterized by CSA-ODF glyphs

with a nearly perfect spherical shape. In some cases the classification of non-isotropic regions

could be confirmed by a look at corresponding T1- and T2-weighted slice images, e.g., by

delineation of necrotic areas. False negatives refer to tracts, which are not or not adequately

depicted, although there is enough anisotropy in the corresponding region. In these cases the

CSA-ODF glyphs show bulges which can be identified as distinct deviations from a spherical

shape. False positive tracts are generated by both, deterministic as well as probabilistic tracto-

graphy, in regions of perilesional edema (patient A, Fig 2), low grade glioma (patient C, Fig 5)

and the periphery of grade IV glioma (patient E, Fig 9). Deterministic tractography also shows

false positives in fiber crossings near a glioblastoma (patient F, Fig 11). False negative visualiza-

tions are produced by probabilistic tractography in the peripheral region of a cavernoma

(patient B, Fig 4) and by A-Glyph LIC in a region of pyramidal tracts running orthogonally to

the slice image plane (patient A, Fig 2).

A more detailed explanation of these findings as well as a discussion of positive results are

presented by the following paragraphs. Fig 2 shows the results from patient A, with the corre-

sponding axial slice images: (a) T1-weighted image with oval ROI (yellow) containing edema-

tous tissue and nonenhancing tumor tissue in its upper part (arrow), (b) A-Glyph LIC image,

(c) results from deterministic tractography, and (d) slice from probabilistic tractography vol-

ume. Differences can be seen between the results of the three visualization methods: whereas

the three methods correctly depict the absence of fibers in the necrotic core of the tumor in the

frontal lobe, the results differ in the region affected by edema. Both tractography methods do

not depict any fiber rarefication in the edema, while the A-Glyph LIC result suggests a notice-

able loss of anisotropy. This is supported by the CSA-ODF glyphs (Fig 3A), which exhibit an

almost spherical shape in this region, thus indicating isotropic diffusion. The A-Glyph LIC

algorithm seems to fail to depict pyramidal fibers (blue) running orthogonally to the selected

slice image plane. By zooming the ROI, these fibers are better visualized by blue dots (arrow in

Fig 3B), which in the overview image are optically obscured by the red fiber structures. In a

corresponding coronal A-Glyph LIC plane pyramidal fibers are more effectively visualized

(Fig 3C).

Fig 4 illustrates the results from patient B. The central contrast-enhancing part of the tumor

is visualized free of fibers by all three methods (Fig 4A, 4C and 4D). This is supported by the

ODF glyphs, which have an almost perfectly spherical shape in this area (arrow in Fig 4B).

However, unlike deterministic tractography and A-Glyph LIC, probabilistic tractography

shows the disruption of fibers in a circular belt surrounding the tumor (arrows in Fig 4D).

Both, deterministic as well as probabilistic tractography employ a stopping criterion of 0.1 in

terms of GFA and FOD amplitude, respectively. While ODF glyphs indicate residual anisot-

ropy, FODs in this region seem to suggest no anisotropy (see Fig 12A), which induces probabi-

listic tractography to stop. If the postulated FOD length parameter was further reduced, the

probabilistic tractography approach might also depict fibers in the immediate tumor

neighborhood.

Fig 5 also emphasizes the differences between the three methods with images from patient

C. The ODF glyphs inside the central part of the low grade glioma in the ROI are small, and

show only a small amount of anisotropy (Fig 5B). The A-Glyph LIC result reflects these find-

ings in part: some residual anisotropy is depicted (Fig 5A). With probabilistic tractography, a

larger number of fibers are visualized inside this region, but fewer than in the contralateral

region (Fig 5D). In this example, the whole-brain probabilistic tractography approach tends to

generate false positive fibers. Deterministic tractography shows a belt of circular fibers sur-

rounding the cavernous region (arrows in Fig 5C), which is not consistent with other clinical
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findings in T1 and T2 images, as well as anisotropy features, which are depicted by the ODF

glyphs.

Results from patient D show similar fiber visualizations for the three methods (Fig 6). How-

ever, the fibers within the tumor region are not consistent with what is expected from a clinical

point of view and from the T1 images. A distinct reduction of anisotropy and fiber density,

Fig 2. Axial slice from patient A: (a) T1 with ROI (yellow) which includes an edema/non-enhancing tumor (arrow),

(b) A-Glyph LIC fused with T1, (c), deterministic tractography result fused with T1, and (d) probabilistic tractography

result fused with T1.

https://doi.org/10.1371/journal.pone.0226153.g002
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anticipated in the tumor region (yellow), is not depicted by the three methods (Fig 6B, 6C and

6D). The shapes of the CSA-ODFs reveal that the visualizations are at least consistent with the

underlying diffusion data, which indicate sufficient anisotropic diffusion profiles in the region

of interest (Fig 7). In this case, the heterogeneity of the lesion seems to include the remaining

fiber tracts.

Fig 8 shows T2-weighted (Fig 8A) and T1-weighted (Fig 8B) slice images from patient E,

with a region of interest around the peripheral region of a grade IV glioma. As indicated by the

primarily spherical shape of ODF glyphs (Fig 10A), the A-Glyph LIC shows a distinct reduc-

tion in fiber density, with only a few crossing fibers remaining (Fig 9A). However, determin-

istic fiber tractography depicts a bunch of dominant fibers without crossings within the tumor

region (white arrow in Fig 9B), whereas the probabilistic tractography does not visualize any

Fig 3. (a) CSA-ODF glyphs in ROI of Fig 2 with GFA slice as background, (b) zoomed A-Glyph LIC image, and (c)

coronal A-Glyph LIC slice.

https://doi.org/10.1371/journal.pone.0226153.g003

Fig 4. Visualization results from patient B: (a) Coronal A-Glyph LIC slice with ROI (yellow), (b) ODF glyphs, (c)

corresponding slices from tractography results, (c) deterministic, and (d) probabilistic. Arrows in (d) indicate

unrealistic fiber disruptions in the vicinity of the lesion.

https://doi.org/10.1371/journal.pone.0226153.g004

Fiber visualization for preoperative glioma assessment: Tractography versus local connectivity mapping

PLOS ONE | https://doi.org/10.1371/journal.pone.0226153 December 12, 2019 11 / 22

https://doi.org/10.1371/journal.pone.0226153.g003
https://doi.org/10.1371/journal.pone.0226153.g004
https://doi.org/10.1371/journal.pone.0226153


reduced anisotropy at all (Fig 9C). This effect is obviously caused by the structure of the FODs

used by the probabilistic tractography software. Their tendency to sharpen diffusion profiles

sometimes leads to an overestimation of local anisotropy, which is seen in the present case (Fig

10B).

In the case of glioma patient F, we see a distinct decay in diffusion anisotropy near the

crossing of callosal projections with pyramidal fibers in the right hemisphere. which is clearly

depicted by the CSA-ODF glyphs (Fig 11B). This is consistently visualized by the coronal slice

image from the A-Glyph LIC volume (arrow in Fig 11A) and slightly less distinctly by the

probabilistic tractography result (Fig 11D). Fig 11C shows the corresponding slice from deter-

ministic fiber tractography. Compared to the left hemisphere, a transformation of fiber struc-

tures near the crossing area is revealed. However, several dominant fibers are visualized (white

arrow) which cannot be explained by the diffusion profiles, represented by the CSA-ODF

glyphs.

4. Discussion and conclusion

This paper describes a clinical evaluation study of six glioma patients, comparing three funda-

mentally different fiber visualization algorithms. For all three, a whole-brain seeding strategy

was applied to avoid any dependency on the user’s skill in correctly defining seed regions and

to allow for reproducibility of the visualization results [11,14,46]. Avoiding parameter tuning,

a fixed parameter set was applied for each method, independent of the anatomic region

affected. Our results show that the three algorithms often lead to different visualizations,

Fig 5. Visualization results from patient C: (a) Coronal A-Glyph LIC slice with ROI (yellow), (b) ODF glyphs,

corresponding slices from deterministic (c) and probabilistic (d) tractography results. Arrows in (c) indicate an

unrealistic belt of fibers surrounding the core of the lesion.

https://doi.org/10.1371/journal.pone.0226153.g005
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indicating different fiber affections. Due to the small sample size, our study is far from provid-

ing a thorough clinical evaluation. Its goal was to estimate the potential of techniques apart

from tractography or simple metrics-based visualizations like FA/GFA maps, and to disclose

preliminary results from applying a connectivity mapping method to pre-operative glioma

assessment.

In the clinical cases investigated here, deterministic tractography produced strikingly

smooth fibers and suffered from problems with false positive tracts (see Figs 1C, 5C, 9B and

11C). In some cases, the method was also unable to correctly depict crossing fiber pathways

(see Fig 11C). Probabilistic tractography also tended to produce false positive fibers (see Figs

5C and 9C), which is consistent with previous studies [8,47]. This might be due to an over-

sharpness of the FODs used for anisotropy evaluation and tract direction computation. In one

Fig 6. Visualization results from patient D (transaxial slices): (a) T1 image with ROI (yellow), corresponding slices

from A-Glyph LIC (b), deterministic (c) and probabilistic (d) tractography.

https://doi.org/10.1371/journal.pone.0226153.g006
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case, there was disruption of tracts near the tumor (see Fig 4D). The constrained spherical

deconvolution approach does not lead to fully normalized FODs, but uses a model of a single-

fiber white matter population, estimated from the individual patient dataset. The automatic

definition and adaptation of this model to an individual diffusion dataset [5] may not always

lead to perfect results. In the case under consideration, the computed FODs in a circular belt

surrounding the tumor were unrealistically small (Fig 12A). Only by diminishing the mini-

mum FOD length parameter, which was used as the tractography stopping criterion, from 0.1

to 0.025 was it possible to visualize fibers in the immediate vicinity of the lesion. However, this

remedy has side-effects, producing fibers which are not expected in the central part of the

cavernoma (Fig 12B, white arrow). Using CSA-ODFs instead of FODs for probabilistic tracto-

graphy might solve this problem, but MRtrix does not include CSA-ODF computation and it

provides no import function, allowing usage of CSA-ODFs calculated with other software

Fig 7. CSA-ODF glyphs in ROI from Fig 6.

https://doi.org/10.1371/journal.pone.0226153.g007
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tools. However, MRtrix is a widely used and powerful toolset for probabilistic tractography

and therefore is suitable for a clinical study like ours.

The A-Glyph LIC approach produced results that were consistent with the local anisotropy

profiles and the findings from the morphologic MR images in most cases. Sometimes, the

method tends to disguise fibers running orthogonally to the plane (see Fig 2B). These fiber

structures could be better visualized by generating orthogonal planes or zoomed ROIs.

In patient studies with DW-MRI, not knowing the ground truth is one of the main prob-

lems confronting researchers. A possible solution, proposed by multiple authors, is checking

fiber integrity with intraoperative direct electrical stimulation (DES) [12,48], which seems to

be the gold standard for intraoperative identification of eloquent structures. However, the

method suffers from various limitations. Firstly, the estimation of fiber location from DES is

difficult and subject to a high variability, particularly when using bipolar stimulation [8].

Fig 8. Transaxial slices from patient E: (a) T2 image with ROI (yellow), (b) corresponding T1 slice.

https://doi.org/10.1371/journal.pone.0226153.g008

Fig 9. Visualization results from patient E: (a) Transaxial A-Glyph LIC slice with ROI (yellow), and corresponding

slices from deterministic (b) and probabilistic (c) tractography results.

https://doi.org/10.1371/journal.pone.0226153.g009
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Secondly, brain shift and the shift of white matter pathways near the resection cavity limits the

comparison of preoperatively reconstructed fiber tracts to intraoperatively registered stimula-

tion points [49,50]. Stadlbauer et al. propose using MR spectroscopic imaging to measure

metabolite concentrations for choline-containing compounds, creatine and N-acetylaspartate

Fig 10. CSA-ODF glyphs (a) and FOD glyphs (b) in ROI of Fig 9 from patient E.

https://doi.org/10.1371/journal.pone.0226153.g010

Fig 11. Visualization results from patient F (coronal slices) with region of interest (yellow): (a) A-Glyph LIC (b)

CSA-ODF glyphs, deterministic (c) and probabilistic (d) tractography. In (c) a bunch of dominant fibers is

visualized (arrow) which cannot be explained by the local anisotropies.

https://doi.org/10.1371/journal.pone.0226153.g011
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to rate fiber integrity [17]. Another method is the combined use of functional MRI (fMRI) and

DW-MRI to analyze white matter affection by tumor growth [51,52]. The clinical study pre-

sented in this paper does not intend to evaluate any neuroimaging method as a whole, includ-

ing data acquisition, preprocessing, computation of local diffusion profiles and visualization.

Instead, the study focusses on the visualization step of the process only. It pursues the objective

of analyzing how local diffusion profiles are depicted as fiber patterns by three fundamentally

different visualization methods. Visualization outcomes were verified by analyzing local diffu-

sion profiles, represented by CSA-ODFs, which are free of modeling assumptions. Addition-

ally, morphologic MRI data were used to evaluate the results. Since our clinical study is based

on a specified data acquisition and preprocessing protocol, care has to be taken to transfer our

findings to other clinical scenarios with different diffusion MRI acquisition and diffusion pro-

file computation methodologies. However, our findings are widely consistent with other stud-

ies described in the scientific literature. It confirms the superiority of probabilistic over

deterministic tractography for preoperative tumor assessment [12]. It also confirms prior find-

ings that the probabilistic approach tends to produce false positive fibers and inherently

requires parameter fine-tuning to track through tissue with different grades of affections, e.g.,

through edema [14].

The most important original aspect of our approach for glioma assessment by diffusion

MRI is its consideration of a non-tractography method for fiber visualization. In pre-surgical

diffusion MRI, most clinical studies have been dedicated to the evaluation of all kinds of trac-

tography approaches, e.g., DTI-based tractography with a single-tensor model, HARDI-based

deterministic or probabilistic tractography, or tractography with a two-tensor model. How-

ever, fiber tracking over longer distances is prone to accumulating errors, e.g., in selecting the

correct local tracking direction. Stopping criteria, such as FA or GFA thresholds, must be fine-

tuned. For example, seed and exclusion regions have to be defined to allow tracking through

edematous regions. It has been demonstrated that by applying sophisticated tractography

methods such as FOD-based probabilistic or Kalman filter tractography [13,14], good results

may be achieved in pre-operative tumor assessment. However, profound algorithmic knowl-

edge and a great deal of experience in the application of these methods, combined with the

fine-tuning of parameters, is necessary to avoid mistakes. This has hampered their clinical

practicality and prevented their widespread usage in clinical routine.

Particularly in situations where local affection of fiber pathways rather than global connec-

tivity is the center of attention, it might be useful to consider visualization methods other than

tractography. Visualization of merely local diffusion features, e.g., as color-coded FA or GFA

maps, or as ODF or FOD glyphs, makes it difficult to evaluate local connectivity, recognize

Fig 12. Coronal slices from patient B: (a) FODs and (b) results of probabilistic tractography with minimum FOD

length = 0.025, showing erroneous fibers within the cavernoma (white arrow).

https://doi.org/10.1371/journal.pone.0226153.g012
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fiber patterns and assess fiber affections. Therefore, visualization methods providing some

kind of local connectedness by aggregating information from a local neighborhood seem to be

more promising. Some applications of such techniques to diffusion MRI have been published

in the scientific literature. Apart from the A-Glyph LIC method used in this paper, further

examples are dense ellipses [53], glyph packing [54] and merging ellipsoids [55]. These have in

common that they compute some kind of local diffusion coherence measure between neigh-

boring voxels and thus are not only able to depict local diffusion profiles, but also allow for the

visualization of fiber patterns. This makes assessment of fiber affection possible. Since they do

not include far-reaching data interpretations, they are not so prone to errors and do not suffer

from the problem of error propagation. Unfortunately, most of these methods have not yet

been evaluated clinically.

One of the main advantages of tractography methods is their capability of easy 3D visualiza-

tion, for example by streamlines or streamtubes. This allows the assessment of three-dimen-

sional spatial relationships, e.g., between a white matter lesion and adjacent fiber bundles. In

our clinical study, we used two-dimensional slice images to reveal fiber structures. Slice images

are good for providing a detailed view and allow easy fusion with T1- or T2-weighted MRI

images. On the other hand, they make it hard for a neurosurgeon to perceive the three-dimen-

sional reality. Volume visualization of line integral convolution datasets suffers from the prob-

lems of occlusion and the superimposition of multiple fiber pathways, which disguise relevant

information. To tackle this problem, the scientific literature focuses on masking structures

which, in a particular clinical situation, are not of so much interest. Tax et al. propose making

fiber trajectories that are oriented along a user-specified opacity axis transparent [56]. Another

approach would be to define anatomic volumes of interest (VOIs) and make fiber structures

outside of them more transparent. Such VOIs could easily be delineated using an anatomic

brain atlas matched to the individual patient dataset [16].

Our results from comparing streamline tractography to a non-tractography approach sug-

gest that pursuing practical methods which visualize diffusion features and fiber patterns by

aggregating signal information from a local neighborhood, rather than trying to provide far-

reaching data interpretations, holds potential for further research and might open up new per-

spectives for the clinical application of DW-MRI.
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