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Abstract

Quantifying cell-type proportions and their corresponding gene expression profiles in tissue

samples would enhance understanding of the contributions of individual cell types to the

physiological states of the tissue. Current approaches that address tissue heterogeneity

have drawbacks. Experimental techniques, such as fluorescence-activated cell sorting, and

single cell RNA sequencing are expensive. Computational approaches that use expression

data from heterogeneous samples are promising, but most of the current methods estimate

either cell-type proportions or cell-type-specific expression profiles by requiring the other

as input. Although such partial deconvolution methods have been successfully applied to

tumor samples, the additional input required may be unavailable. We introduce a novel

complete deconvolution method, CDSeq, that uses only RNA-Seq data from bulk tissue

samples to simultaneously estimate both cell-type proportions and cell-type-specific expres-

sion profiles. Using several synthetic and real experimental datasets with known cell-type

composition and cell-type-specific expression profiles, we compared CDSeq’s complete

deconvolution performance with seven other established deconvolution methods. Complete

deconvolution using CDSeq represents a substantial technical advance over partial decon-

volution approaches and will be useful for studying cell mixtures in tissue samples. CDSeq

is available at GitHub repository (MATLAB and Octave code): https://github.com/kkang7/

CDSeq.

Author summary

Understanding the cellular composition of bulk tissues is critical to investigate the under-

lying mechanisms of many biological processes. Single cell sequencing is a promising

technique, however, it is expensive and the analysis of single cell data is non-trivial. There-

fore, tissue samples are still routinely processed in bulk. To estimate cell-type composition

using bulk gene expression data, computational deconvolution methods are needed.

Many deconvolution methods have been proposed, however, they often estimate only cell
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type proportions using a reference cell type gene expression profile, which in many cases

may not be available. We present a novel complete deconvolution method that uses only

bulk gene expression data to simultaneously estimate cell-type-specific gene expression

profiles and sample-specific cell-type proportions. We showed that, using multiple RNA-

Seq and microarray datasets where the cell-type composition was previously known, our

method could accurately determine the cell-type composition. By providing a method

that requires a single input to determine both cell-type proportion and cell-type-specific

expression profiles, we expect that our method will be beneficial to biologists and facilitate

the research and identification of mechanisms underlying many biological processes.

This is a PLOS Computational BiologyMethods paper.

Introduction

The measured expression of a gene in a bulk sample reflects the expression of that gene in

every cell in the sample. Consequently, the measured gene expression profile (GEP) of a tissue

sample is commonly regarded as a weighted average of the GEPs of the different component

cell types [1, 2].

The heterogeneous nature of bulk tissue samples complicates the interpretation of bulk

measurements such as RNA-Seq. Often researchers are interested in understanding whether

an experimental treatment targets one particular cell type in a heterogeneous tissue or in inves-

tigating possible sources of variation among samples [3]. For example, the composition of

tumor-infiltrating lymphocytes impacts tumor growth and patients’ clinical outcomes [4–9].

With expression measurements on bulk tissue, it is often difficult to distinguish between low

expression in a highly abundant cell type and high expression in less abundant cell type [3].

Consequently, understanding the cell-type composition of each sample and the GEP of each

constituent cell type becomes important. “Deconvolution” is a generic term for a procedure

that estimates the proportion of each cell type in a bulk sample together with their correspond-

ing cell-type-specific GEPs [10, 11]. Deconvolution can be approached experimentally using

flow cytometry or single cell RNA sequencing. For solid tissues, these techniques require iso-

lating individual cells, thereby presenting laboratory challenges as well as potentially sacrificing

a systems perspective. Single cell RNA sequencing is also expensive and requires challenging

data handling and analysis [12, 13].

Deconvolution can also be approached computationally using GEP profiles from collec-

tions of bulk tissue samples [11, 14]. Many deconvolution methods have been developed in the

past decade. The pioneering work of Venet et al. [15] employed an algorithm based on matrix

factorization to deconvolve a matrix of GEPs (each normalized to sum to 1) into a product of

two matrices, one containing the cell-type proportions for each sample and the other contain-

ing the GEPs for each cell type. The constraints required for each matrix in the product (pro-

portions must be nonnegative and sum to 1 across cell types; expression levels must obey the

same constraints across genes) impose technical challenges on matrix factorization in this con-

text. Deconvolution methods that are based on nonnegative matrix factorization (NMF) may

not be guaranteed to find cell-type-specific components [16, 17]. Consequently, most existing

methods only perform partial deconvolution: either the algorithms require cell-type propor-

tions as input to estimate cell-type-specific GEPs [1, 17–20] or vice versa [21–29]. These meth-

ods generally use regression techniques and some also use marker genes [3, 30, 31] to estimate

the unknowns of interest. Such deconvolution approaches have shown important findings
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[7, 31], however they could suffer if the needed information is unavailable or if the fidelity of

reference GEP profiles or cell-type proportions is questionable.

Our goal was to develop a complete deconvolution method using only bulk RNA-Seq data

by estimating cell-type proportions and cell-type-specific GEPs simultaneously. The underly-

ing model was based on latent Dirichlet allocation (LDA) [32], a probabilistic model designed

for natural language processing. LDA was designed to use text corpora as input and extract

essential structure, namely, the topics that constitute the content of documents in the corpus.

The problem of deriving abstract yet meaningful topics from a corpus of documents shares a

fundamental similarity with the problem of extracting cell-type-specific information from

bulk RNA-Seq data. The original LDA model cannot, however, fully capture the complexity

of bulk RNA-Seq data. Although some existing methods are based on the LDA model [26, 27,

33], those methods were designed for partial deconvolution and require cell-type-specific

GEPs as input. We refer to our method as CDSeq (Complete Deconvolution for Sequencing

data). We assessed CDSeq’s performance using several synthetic and real experimental datasets

with known cell-type composition and cell-type-specific GEPs and compared it with seven

other deconvolution methods.

Materials and methods

Overview of CDSeq

Using only bulk RNA-Seq expression data for multiple samples as input, CDSeq provides esti-

mates of both cell-type-specific GEPs and sample-specific cell-type proportions simultaneously

(Fig 1). Our model extends the LDA model in the following ways: first, the random variable

that models cell-type-specific GEPs depends on gene length [34]; second, the probability of

having a read from a cell type depends on both the proportion of that cell type present in a

sample and the typical amount of RNA produced by cells of that type [24, 35]. This second

extension accommodates the possibility that different cell types produce different amounts of

RNA, a circumstance that could bias estimates of cell-type proportions.

To describe our model and the statistical inference scheme, we first introduce the notation.

LetM denote the number of samples and T denote the number of cell types comprising each

heterogeneous sample. We model the vector containing the cell-type-specific proportions for

sample i, denoted θi = (θi,1, � � �, θi,T) 2 ST, where ST denotes a (T − 1)-simplex, as a Dirichlet

random variable with hyperparameter a ¼ ða1; � � � ; aTÞ 2 RTþ. Next, let G denote the number

of genes in the reference genome to which reads are mapped. We denote the GEP of pure

cell type t, a vector of gene expression values for the entire genome normalized to sum to 1, as

ϕt = (ϕt,1, � � �, ϕt,G) 2 SG, where SG denotes a (G − 1)-simplex and model it as a Dirichlet ran-

dom variable with hyperparameter b ¼ ðb1; � � � ; bGÞ 2 RGþ. With T cell types in allM samples,

the matrices θ = [θ1, � � �, θM] and ϕ = [ϕ1, � � �, ϕT] encapsulate all the features that we seek to

estimate from the data based on our model.

We denote the true GEP of heterogeneous sample i byFi = (Fi,1,Fi,2, Fi,G) 2 SG. Fi is a

weighted average of the pure cell-type GEPs with weights given by the sample-specific cell-

type proportions, namely, Fi ¼
XT

t¼1

yi;t�t. This random variable controls the rate of generating

RNA copies from genes.

We do not observe the true Fi directly but instead observe reads from each sample and we

can obtain the read assignments to genes. Assume that the length of every sequenced read,

denotedm, is the same. Let categorical random variable ri,j denote read j from sample i (after

mapped to a gene, the possible outcomes of ri,j depend on the gene and its length), and let

A novel complete deconvolution method for dissecting heterogeneous samples

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007510 December 2, 2019 3 / 18

https://doi.org/10.1371/journal.pcbi.1007510


Fig 1. Schematic of the CDSeq approach. Heterogeneous samples consist of different cell types. The bulk RNA-Seq profile represents a weighted average of the

expression profiles of the constituent cell types. CDSeq takes as input the bulk RNA-Seq data for a collection of samples and performs complete deconvolution that

outputs estimates of both the cell-type-specific expression profiles and the cell-type proportions for each sample. This Figure depicts a simple scenario of six biological

samples comprising four cell types, each with gene expression measurements on eight genes.

https://doi.org/10.1371/journal.pcbi.1007510.g001
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categorical random variable gi,j 2 {1, � � �, G} denote the gene or transcript assignment of read

ri,j. Both fri;jg
M;Ni
i¼1;j¼1

and fgi;jg
M;Ni
i¼1;j¼1

are observed for every heterogeneous sample, where Ni
denotes the number of reads from sample i. In transcript k, the number of positions in which a

read can start is ~‘k ¼ ‘k � mþ 1 where ℓk is the length of transcript k. The adjusted length ~‘k

is called the effective length of transcript k, then ri,j has ~‘gi;j possibilities [34]. If the reads are

mapped to genes instead of to transcript isoforms, then we need to consider the effective length

of gene, denoted by ℓg, which is total length of all the transcripts comprising the gene after pro-

jection into genomic coordinates. All the analyses reported here were done on the gene level.

Different cell types may generate different amounts of RNA owing to their varying sizes,

therefore we employ a Poisson random variable with parameter ηt to model the number of

reads generated from cell type t. Let η = (η1, � � �, ηT). Parameter η can be estimated from RNA-

Seq read counts from pure cell types using the unweighted sample mean, a maximum likeli-

hood unbiased estimator. CDSeq uses the user-specified η to adjust RNA proportions to cell

proportions. If such information is not provided, CDSeq will assign each element of η the

same value, indicating no differences in cell sizes (θ then represents RNA proportions, not cell

proportions).

Finally, to complete specification of our model, we need to be able to assign reads in the het-

erogeneous sample to individual cell types; thus, we introduce a latent categorical random vari-

able ci,j 2 {1, � � �, T} that is the cell type indicator of read ri,j. Our model specifies that RNA-Seq

reads from bulk tissues are generated as follows:

1. Generate gene expression profiles for different cell types, i.e., ϕt� Dir(β) for cell type t,
t = 1, � � �, T, and �t 2 R

G
.

2. Choose θi� Dir(α) which denotes the mixture proportion of different cell types in the sam-

ple i, i = 1, � � �,M, and yi 2 R
T .

3. For each of the Ni RNA-Seq reads in sample i, where Ni denotes the total reads of sample i

a. Choose a cell type ci;j � Categoricalð~y iÞ, where j = 1, � � �, Ni, ci;j 2 R, ~y i / yi � Z (adjust-

ing cell proportion θ to RNA proportion ~y) and “�” denotes element-wise product.

b. Choose a gene gi;j � Categoricalð~�ci;jÞ, where j = 1, � � �, Ni, gi;j 2 R, ~�ci;j / �ci;j �
~‘ (adjust-

ing gene expression �ci;j by considering the effective gene length) and ~�ci;j ; �ci;j ;
~‘ 2 RG. ~‘

denotes the effective lengths of genes and “�” denotes element-wise product.

c. Generate a read sequence ri,j by uniformly choosing one of the ~‘gi;j positions in gene gi,j.

To this end, a graphical model of CDSeq is presented in Fig 2 depicting the stochastic pro-

cess of generating RNA-Seq data. Details on parameter estimation and method for determin-

ing the optimal number of cell types in the data are provided in S1 Methods.

The cell types delineated by CDSeq are mathematical entities that must be matched to cor-

responding biological cell types. To match the CDSeq cell types to actual cell types requires a

list of reference cell-type-specific GEPs and metric of similarity (for example, Pearson’s corre-

lation coefficient or Kullback-Leibler divergence) (S1 Methods). Depending on the applica-

tion, many reference profiles are available, e.g., the LM22 [25] for immune cell subsets. We

employed the Munkres algorithm [36] in CDSeq for cell type association when a list of refer-

ence GEPs is provided. An alternative way to identify CDSeq-estimated cell types, without

using a reference GEP profile, is to evaluate enrichment scores of marker gene sets similar to

scRNA-Seq analysis [9].
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Computational complexity and a data dilution strategy to speed up the

algorithm

In CDSeq, the Gibbs sampler iteratively assigns a cell type to each read using a binary search

with a time complexity of Oð logTÞ, where T is the number of cell types. Assume the number

of total reads is R, then the time complexity of the Gibbs sampler is OðR logTÞ. If needed, we

have also provided a way to speed up the CDSeq using a data dilution strategy (S1 Methods).

Specifically, one could divide all the read counts by a positive constant—dilution factor. We

systematically tested the effect of the dilution factor on the accuracy of estimation using both

synthetic and experimental mixture data. For our 32 experimental mixtures with� 20k genes

using a dilution factor of 10, it took CDSeq about 2 hours to finish on an iMac (3.5 GHz Intel

Core i7 with 32GB memory).

A quasi-unsupervised learning strategy

CDSeq is an unsupervised learning method that aims at discovering the latent pattern from

data without any labeling or prior knowledge. The GEPs of the cell types identified by CDSeq

may not closely match any available pure cell line GEPs. This issue may arise because highly

correlated GEPs of multiple cell types or subtypes complicates the deconvolution problem and

renders CDSeq less able to definitively separate cell types. For example, this issue is escalated

in the problem of deep deconvolution. Deep deconvolution refers to the problem of using a

whole blood or peripheral blood mononuclear cell (PBMC) sample to estimate the proportions

and gene expression profiles of a greater number of cell subtypes, going further down into the

hematopoietic tree [11]. To mitigate this kind of problem, we developed a quasi-unsupervised

learning strategy. The idea is to provide CDSeq some guidance that leads the algorithm to

more biologically meaningful latent information. The guidance consists of appending a set

GEPs of pure cell lines to the original input GEPs of heterogeneous samples. The choice of

GEPs appended should reflect pure cell lines that are believed to constitute the samples.

To apply the quasi-unsupervised approach, one could simply append a set of pure cell line

GEPs to the GEPs of the bulk samples for the same genes. Each appended pure cell line GEP is

Fig 2. Graphical representation of CDSeq probabilistic model. The light blue nodes, α, β, denote the hyperparameters that are assumed to be known. The dark blue

nodes, ℓ, gij, rij, denote the values of observable random variables (either measured in the study or established in previous studies) whereas the white nodes, η, F, θ, cij,
are unobservable random variables that need to be inferred from data. The outer box represents samples whereM is the sample size, and the inner box denotes the

RNA-Seq data of a sample whereN is the total number of reads from the sample (see S1 Methods for details).

https://doi.org/10.1371/journal.pcbi.1007510.g002
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treated as a “bulk” sample by CDSeq. For example, let XG×M denote bulk RNA-Seq data for G
genes andM samples, to append a set ofW pure cell line GEPs, say, ~XG�W , one would need to

create YG�ðMþWÞ ¼ ½XG�M; ~XG�W �, a data matrix with G rows (genes) andM +W columns (sam-

ples), as the input for CDSeq. We showed that, using this quasi-unsupervised strategy, CDSeq

provided more informative estimates than those obtained using the fully unsupervised mode

(Results). We call this learning strategy “quasi-unsupervised” because, although we do not

incorporate any labeling information within CDSeq algorithm itself, we do inject strong sig-

nals about likely relevant cell types into the input data. In short, CDSeq is not explicitly aware

of such labeling information (pure cell line GEPs appended to input) and treats them the same

as other input samples unlike traditional semi-supervised methods where the labeling informa-

tion is explicitly taken into account by the algorithms.

Comparisons with other deconvolution methods

We compared CDSeq to seven competing deconvolution methods using their default settings

when applicable (Table 1). We present detailed comparisons with csSAM and CIBERSORT in

the main text and full comparisons in S1–S8 Figs. For the purpose of comparison, we used

reads per kilobase per million mapped reads (RPKM) [37] normalization as input for RNA-

Seq data. Using our experimental mixtures, we also showed that the RPKM-normalized RNA-

Seq data fit well with the linearity assumption employed by deconvolution methods (S10 Fig).

Details on the linearity assumption are given in S1 Methods.

Synthetic and experimental mixtures and gene expression profiling

We generated 40 synthetic samples (S1 Table) and 32 experimental mixtures measured using

RNA-Seq (S2 Table) for benchmarking CDSeq. The details of data generation procedure are

given in S1 Methods.

Results

Performance on synthetic data

We first benchmarked CDSeq on synthetic mixtures with known compositions that we created

numerically from publicly available GEPs from Cold Spring Harbor Laboratory. In this synthetic

numerical experiment, we amplified the potential bias between RNA proportions and cell-type

proportions by artificially increasing the RNA amount of certain cell types before mixing them

Table 1. Deconvolution methods for comparison.

Deconvolution methods Estimate proportions Estimate GEPs Reference Dataset�

CDSeq ✓ ✓ ①-⑥
CIBERSORT ✓ [25] ①-⑥

DeconRNAseq ✓ [22] ①-⑥
UNDO ✓ [29] ①-②
csSAM ✓ [1] ①-③

DSA ✓ [20] ①-③
deconf ✓ ✓ [16] ①-⑥
ssKL ✓ ✓ [17] ①-⑥

� Dataset:① Synthetic mixtures (S1 Table);② Experimental mixtures (S2 Table);③Mixtures of liver, lung and brain [1];④ Leukocyte subtypes(LM22) [25];⑤
Lymphoma samples [25];⑥ PBMC samples [25].

https://doi.org/10.1371/journal.pcbi.1007510.t001
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together to generate the synthetic samples. We generated 40 synthetic samples where each sam-

ple was a combination of six different cell types in different proportions (S1 Table).

In estimating cell-type proportions, CDSeq outperformed CIBERSORT, showing smaller

differences between the true and estimated proportions for each cell type and, consequently,

smaller root mean square error (RMSE) (Fig 3 and S1 Fig). The RMSE of CDSeq was overall

77% lower than that of CIBERSORT.

In estimating GEPs, performances of CDSeq and csSAM were comparable. However,

CDSeq still outperformed csSAM with 64% lower RMSE values than csSAM (Fig 3 and S1

Fig). Notice that RMSE is not calculated on log scale because some of the gene expression val-

ues are zeros. In addition, CDSeq outperformed all other seven competing deconvolution

methods as shown in Fig 4. CDSeq in general requires more running time than competing

methods. For the synthetic mixtures, CDSeq took about 2 hours and CIBERSORT took about

3 hours whereas the remaining tools took seconds to complete.

Performance on mixture of RNAs extracted from cultured cells

Our second performance evaluation used data from a designed experiment that created 32 mix-

ture samples using known RNA proportions isolated from four pure cell lines (S1 Methods).

CDSeq predicted both the cell proportions and GEPs well (Fig 5). CDSeq generally outper-

formed all competitors as indicated by smaller total RMSE (Fig 6); For example, CDSeq

Fig 3. Deconvolution of synthetic mixtures. We ran CDSeq with six cell types, α = 5, β = 0.5, and 700 MCMC runs. (A) Difference (“residual”)

between estimated and true cell-type proportion plotted against true proportion for CDSeq (green) and CIBERSORT (red). Each plotted point

represents the value for a single sample. (B) Radar plot of RMSE for estimates of sample-specific cell-type proportions. CDSeq (green);

CIBERSORT (red). (C) Difference (“residual”) between estimated and true log2 gene expression level (log2(RPKM)) plotted against true log2

gene expression level for CDseq (green) and csSAM (red). Each plotted point represents a single gene, 22498 genes total. (D) Radar plot of

RMSE for gene expression levels (RPKM). CDSeq (green); csSAM (red).

https://doi.org/10.1371/journal.pcbi.1007510.g003
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had 17% smaller RMSE than CIBERSORT for estimating cell-type proportions and 16%

smaller RMSE than csSAM for estimating GEPs (S2 Fig).

Dissecting mixtures of liver, lung, and brain cells

We evaluated CDSeq using the experimental data set designed for csSAM [1]. The microarray

data set consists of 11 mixtures (each with 3 replicates) of liver, brain and lung cells with vary-

ing known RNA proportions. We showed that CDSeq outperformed all competing methods in

estimating both cell-type-specific GEPs and sample-specific proportions of cell types (Fig 7

and S3 Fig). For example, the RMSE of the CDSeq-estimated cell proportion was 44% lower

than the corresponding CIBERSORT RMSE, and the RMSE of CDSeq-estimated GEPs was

similar to the corresponding csSAM RMSE.

Evaluation using leukocyte subtypes

To test the performance of CDSeq on some extreme cases, we applied CDSeq to a set of GEPs

from pure cell lines. We chose LM22 designed by Newman et al. [25], which comprises 22

human hematopoietic cell phenotypes. Thus, the GEPs of some of the cell lines are highly cor-

related with each other. CDSeq successfully uncovered the 22 cell types. CDSeq’s estimates of

cell-type proportions, which should be 100% for these pure cell lines, generally exceeded 90%.

Overall, CDSeq performed comparably with CIBERSORT, deconRNAseq, and ssKL in esti-

mating sample-specific cell-type proportions (S4 Fig), even though CIBERSORT and deconR-

NAseq require the GEPs of leukocyte subtypes as input (deconf performed much worse, in

comparison to CDSeq). For cell-type-specific GEPs estimation, CDSeq performed comparably

with deconf and ssKL (S4 Fig).

Immune cell analysis of lymphoma data with comparison to flow-

cytometry

We evaluated CDSeq against flow-cytometry measurements of leukocyte content in solid

tumors. Data comprised GEPs from 14 bulk follicular lymphoma samples and corresponding

Fig 4. Performance comparisons on synthetic mixtures. (A) RMSEs of sample-specific cell-type proportion estimations; (B) RMSEs of cell-

type-specific GEPs estimations.

https://doi.org/10.1371/journal.pcbi.1007510.g004
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flow-cytometry measurements [25]. Our goal was to estimate the proportions of B cells (naive

B cell and memory B cell) and T cells (CD8 T cell, CD4 naive T cell, CD4 memory resting T

cell, CD4 memory activated T cell, follicular helper T cell, regulatory T cell) in those 14 sam-

ples using CDSeq. We set the number of cell types to be eight (the number of all B cell and T

cell subtypes in our reference file). We carried out two approaches—fully unsupervised and

quasi-unsupervised. The quasi-unsupervised performed better than the fully unsupervised

approach for this dataset when the GEPs of constituent cell types are highly correlated (S6 and

S7 Figs). We showed that CDSeq outperformed deconf and ssKL and performed comparably

with CIBERSORT and DeconRNAseq (Fig 8 and S7 Fig), both of which require a reference

GEP set as input.

CDSeq on deep deconvolution

To assess CDSeq’s performance on deep deconvolution, we used a set of 20 PBMC samples

[25]. To evaluate performance, we also used information provided by Newman et al. [25]:

namely, flow-cytometry measurements for nine of the 22 leukocyte subtypes (the only sub-

types with flow cytometry available). That LM22-provided GEPs of about half of these nine

subtypes were highly correlated (S5 Fig) should challenge CDSeq’s ability both to find the cor-

responding GEPs of those nine subtypes in the 20 PMBC samples and to accurately estimate

Fig 5. Deconvolution of mixed RNA from cultured cell lines. We ran CDSeq with four cell types, α = 5, β = 0.5, and 700 MCMC runs. (A)

Difference (“residual”) between estimated and true cell-type proportion plotted against true proportion for CDSeq (green) and CIBERSORT

(red). Each plotted point represents the value for a single sample. (B) Radar plot of RMSE for estimates of sample-specific cell-type proportions.

CDSeq (green); CIBERSORT (red). Total RMSE summing over cell types is 17% smaller for CDseq compared to CIBERSORT. (C) Difference

(“residual”) between estimated and true log2 gene expression level (log2(RPMK)) plotted against true log2 gene expression level for CDseq

(green) and csSAM (red). Each plotted point displays the expression value of a single gene, 19653 genes in total. (D) Radar plot of RMSE for

gene expression levels. CDSeq (green); csSAM (red). Total RMSE of gene expression (summing over cell types) is 16% smaller for CDseq

compared to csSAM.

https://doi.org/10.1371/journal.pcbi.1007510.g005
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Fig 6. Performance comparisons on experimental mixtures. (A) RMSEs of sample-specific cell-type proportion estimations; (B) RMSEs of

cell-type-specific GEPs estimations.

https://doi.org/10.1371/journal.pcbi.1007510.g006

Fig 7. Deconvolution of mixed liver, lung and brain cell lines. Comparisons with CIBERSORT and csSAM on mixtures of liver, brain and

lung cells. (A) Residual of proportion estimation; (B) Radar plot of RMSE for proportion estimation; (C) Residual of GEPs estimation; (D)

Radar plot of RMSE for GEPs estimation.

https://doi.org/10.1371/journal.pcbi.1007510.g007
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their proportions. We first ran CDSeq in fully unsupervised mode and set the number of cell

types to be 22. Using the GEPs of LM22 as references, we found that CDSeq could not uncover

the nine subtypes (S8 Fig), possibly because of the highly correlated GEPs among subtypes.

To improve estimation, we turned to the quasi-unsupervised strategy when running CDSeq

by appending the 22 GEPs of LM22 to the 20 samples, 42 samples in total. Using the 0.6 corre-

lation threshold to match CDSeq-identified cell types to the corresponding 22 leukocyte sub-

types, we found that the quasi-unsupervised strategy improved CDSeq’s performance (Fig 9

and S8 Fig): one CDSeq-identified cell type matched both naive and activated B cells; another

matched both resting and activated mast cells; two CDSeq-identified cell types did not match

any of the 22 LM22 known subtypes; the remainder matched only one LM22 subtype each.

We next compared CDSeq-estimated cell-type proportions of these nine cell subtypes to

flow-cytometry measurements. However, since CDSeq could not distinguish between naive B

cells and memory B cells, we combined these two types into one overall B cell type, resulting in

eight total subtypes (Fig 9 and S8 Fig). In restricting attention to the resulting eight subtypes,

we renormalized their proportions to sum to one for comparison with corresponding flow

cytometry measured proportions.

For six of the eight subtypes, the CDSeq-estimated relative proportions were significantly

correlated (p< 0.05) with the flow-cytometry-based relative proportions. The correlations

with activated memory CD4 and γδ T cells were not significant (p = 0.31 and 0.07, respec-

tively). The CIBERSORT estimated relative proportions were significant correlated (p< 0.05)

with the corresponding flow-cytometry-based relative proportions for all subtypes except γδ T

cells (p = 0.19). In an overall comparison of CDSeq and CIBERSORT estimates, however, the

total RMSE of CDSeq was about 6% lower than that of CIBERSORT. On the other hand, the

estimated relative proportions by both CDSeq and CIBERSORT showed systematic bias in

Fig 8. Comparison of CDSeq using the quasi-unsupervised strategy with CIBERSOFT on deconvolution of B cells and T cells in

lymphoma samples. We ran CDSeq with 22 cell types, α = 0.5, β = 0.5, and 700 MCMC runs. We considered an anonymous CDSeq-identified

cell type to match one of the B cell (blue dots) or T cell subtypes (red dots) if the Pearson correlation of their GEPs exceeded 0.6. (A) Correlation

between estimated GEPs and true GEPs; (B) CDSeq estimated proportions versus flow cytometry; (C) CIBERSORT estimation versus flow

cytometry.

https://doi.org/10.1371/journal.pcbi.1007510.g008
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departing from equality with the flow-cytometry-based proportions. Besides the possible tech-

nical issues of flow-cytometry and the fidelity of the LM22 reference profiles, another possible

reason for this systematic bias with this microarray data is that flow cytometry reports relative

cell proportions whereas CDSeq and CIBERSORT report relative RNA proportions. Though

CDSeq is capable of reporting either RNA proportions or cell proportions from RNA-Seq raw

counts, it can report only RNA proportions with microarray data. We show CDSeq outper-

formed all other competing methods by having the smallest RMSE in S8 Fig.

Estimating the number of cell types present from the data

We have been applying CDSeq by fixing the number of cell types at the correct number, since

we know it in advance. CDSeq can, however, estimate the number of constituent cell types in

a collection of samples, if necessary, by maximizing the posterior distribution (S1 Methods).

The framework of CDSeq is built for RNA-Seq raw count data, therefore, raw count data is

required for estimating the number of cell types. Consequently, we did not apply this feature

for microarray data.

Applying this method to the synthetic data and to the data on mixed RNA described above

correctly estimated number of cell types in each case (Fig 10). In Fig 10(A), the values of log

posterior at 4 and 6 cell types are close, however, the maximum occurs at 6.

Discussion

As a complete deconvlution method, CDSeq has many advantages over existing partial decon-

volution methods, like csSAM [1] and CIBERSORT [25]. For example, CDSeq requires only

one input (expression data from mixtures) to produce two outputs (estimates of cell-type-

specific GEPs and sample-specific cell-type proportions). Partial deconvlution methods that

require cell-type-specific GEPs as input face concerns about the accuracy or appropriateness

of the reference profiles. Complete deconvolution avoids these concerns, although reference

GEPs or marker genes are still required to match cell types constructed by the algorithm with

actual biological cell types. Complete deconvlution also lowers the cost compared to methods

Fig 9. Deep deconvolution of PBMC data. We applied CDSeq using the quasi-unsupervised learning strategy and ran CDSeq with 22 cell types, α = 50, β = 20. The

black line is the linear regression line; the dashed line is the x = y line; R is the correlation coefficient; and P is the p-value for testing the null hypothesis of no correlation.

https://doi.org/10.1371/journal.pcbi.1007510.g009
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that require cell-type proportions as input, which is typically estimated by using costly anti-

bodies and flow cytometry.

In addition, our probabilistic model is conceptually more advanced than methods using

matrix decomposition [15–17] or regression techniques [1, 25] for a couple reasons. First, our

generative model explicitly considers how reads are generated and estimates cell proportions

instead of RNA proportions whereas matrix decomposition or regression-based methods are

not. Second, our model employs multinomial random variables to capture the stochastic

nature of reads and therefore inherently builds in the constraint that proportions are nonnega-

tive and sum to one on the parameters of interest; whereas matrix decomposition or regres-

sion-based methods need to impose those constraints on the parameter space explicitly, which

brings technical challenges for numerical procedures.

Our proposed model extended the original LDA model in two primary ways that would be

unnecessary in the context of natural language processing, but are crucial for RNA-Seq data.

First, we built in a dependence of gene expression on gene length. Second, we accommodated

possibly different amounts of RNA per cell from cell types whose cells differ in size when esti-

mating the proportion of cells of each type in the sample. In addition, instead of specifying the

number of cell types a priori, we provided an algorithm that allows the data to guide selection

of the number of cell types. Finally, we proposed a quasi-unsupervised learning strategy that

augments the input data (GEPs from mixed samples) with additional GEPs from pure cell

lines that are anticipated to be components of the mixture.

We systematically compared the performance of CDSeq with seven competing deconvolu-

tion methods: CIBERSORT [25], DeconRNAseq [22], deconf [16], ssKL [17], UNDO [29],

DSA [20] and csSAM [1]. Our comparisons encompassed a range of data sets: synthetic mix-

tures created numerically from GEPs of pure cell lines, GEPs measured on heterogeneous

RNA samples constructed in our lab by mixing RNA extracted from pure cell lines in different

proportions, the experimental expression data that was used to evaluate csSAM, expression

data of 22 leukocyte subtypes (LM22) [25], expression data from follicular lymphoma samples

Fig 10. Estimating the number of cell types. The maximum of the log posterior provides an estimate of the number of cell types. (A) synthetic data; (B) mixed RNA

data. In each data set, the method correctly estimated the number of cell types.

https://doi.org/10.1371/journal.pcbi.1007510.g010
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[25], and expression data from samples of peripheral blood mononuclear cells (PBMC) [25].

In all these comparisons, CDSeq performed as well or better than competitors in estimating of

cell-type proportions and cell-type-specific GEPs from heterogeneous tissue samples.

CDSeq, an unsupervised data mining tool, is fully data-driven and allows simultaneous esti-

mation of both cell-type-specific GEPs and sample-specific cell mixing proportions. In some

real data analyses when constituent cell types had highly correlated GEPs, the cell types found

by CDSeq lacked a one-to-one correspondence with the known component cell lines. Our

quasi-unsupervised approach ameliorates this problem. It involves augmenting the available

GEPs from heterogeneous samples with GEPs from pure cultures of the cell types anticipated

to be constituents. We showed that this quasi-unsupervised approach can improve CDSeq’s

performance in lymphoma and deep deconvolution examples. In practice, whether or not to

apply quasi-unsupervised approach would depend on the goal of the study. If a user is inter-

ested in deep deconvolution where one would like to know the proportions of related cell

subtypes (e.g., different T subpopulations in samples), then the quasi-unsupervised approach

would be recommended. In this case, the appended pure cell line GEPs should be those of the

T cell subpopulations. Furthermore, inclusion of such cell line GEPs does not exclude identifi-

cation of cell types other than those appended pure cell lines.

To improve CDSeq’s computational efficiency, we developed a data dilution strategy that

can speed up the algorithm while retaining the accuracy of estimation (S1 Methods and S9

Fig). Furthermore, filtering out genes with low expression levels or with little sample-to-sam-

ple variation will reduce the running time and memory usage. CDSeq often manages to finish

within couple hours. Currently, CDSeq is coded in MATLAB and Octave. An R package is cur-

rently being developed for a broader accessibility.

A limitation of current CDSeq model is the impossibility of fine tuning the hyperpara-

meters to obtain optimal results without ground truth. In practice, we suggest setting α = 5,

β = 0.5. When heterogeneous samples are likely dominated by one or two cell types, setting

α< 1 may help; when cell-type-specific GEPs are likely to have relatively high correlation, set-

ting β> 1 may help—though we cannot specify a definitive threshold for high correlation.

From a practical point of view, the higher the correlations are, the fuzzier the discovered signal

would be. Another potentially helpful technique is the quasi-unsupervised strategy. Efforts at

enabling CDSeq to self-adjust hyperparameters based on given data are underway. Another

possible extension for the current model is that the fundamental multinomial model used for

gene expression imposes a certain negative correlation between expression counts at different

loci. However, it is conceivable that, because genetic pathways can be regulated as units, the

counts could be positively correlated among certain subsets of genes. The current CDSeq

model cannot handle that kind of correlation structure.

In addition, the RNA-Seq mixtures generated in this work can serve as a valuable bench-

marking dataset for other deconvolution methods.

We expect that CDSeq will prove valuable for analysis of cellular heterogeneity on bulk

RNA-Seq data. This computational method provides a practical and promising alternative to

methods that require expensive laboratory apparatus and extensive labor to isolate individual

cells from heterogeneous samples, which could also entail possible loss of a systems perspec-

tive. Application of CDSeq will aid in deciphering complex genomic data from heterogeneous

tissues.
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