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Abstract

Loci discovered by genome-wide association studies (GWAS) predominantly map outside protein-
coding genes. The interpretation of the functional consequences of non-coding variants can be
greatly enhanced by catalogues of regulatory genomic regions in cell lines and primary tissues.
However, robust and readily applicable methods to systematically evaluate the contribution of
these regions to genetic variation implicated in diseases or quantitative traits are still lacking. Here
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we propose a hovel approach that leverages GWAS findings with regulatory or functional
annotations to classify features relevant to a phenotype of interest. Within our framework, we
account for major sources of confounding that current methods do not offer. We further assess
enrichment for 29 GWAS traits within ENCODE and Roadmap derived regulatory regions. We
characterize unique enrichment patterns for traits and annotations, driving novel biological
insights. The method is implemented in standalone software and an R package to facilitate its
application by the research community.

Introduction

Genome-wide association studies (GWAS) in humans have discovered susceptibility variants
for complex diseases and biomedical quantitative traits, with over 75,000 associations found
to date 12, representing a large investment in resources, time and organization by the
worldwide research community. The majority (~90%) of implicated variants are classified as
intronic or intergenic 3 and thus cannot be readily assigned to an underlying cellular or
molecular mechanism. This has prompted a number of efforts to annotate the putative
functional consequences of variants in cell-specific contexts from experimentally derived
regulatory regions (e.g. regions marked by histone modifications, transcription factor
binding 3-%), principally as a means to inform and accelerate functional validation.

The robust identification of the combinations of annotations for these regulatory regions
(henceforth referred to generically as ‘regulatory annotations”) and cell types that are
biologically most informative for a given disease or quantitative trait of interest (henceforth
referred generically to as 'phenotype’) requires that one can confidently distinguish
correlations driven by biology from those arising by chance. Regulatory annotations may
cover a large proportion of the genome, and thus many disease-associated variants will map
within them by chance. In addition, the heterogeneous distribution of genetic variants and
functional regions in the genome may result in their non-random association with genomic
features such as genes 78, which in turn may drive spurious correlations that confound
correct interpretation of these correlation patterns.

Functional enrichment methods assess the relative contribution of regulatory annotations to a
phenotype of interest. In their simplest implementation, they estimate enrichment of
association p-values (or z-scores) based on comparisons of the full set of genome-wide
association (GWA) variants 13, or on subsets of highly associated variants (e.g. genome-
wide significant variants) 14-16, These approaches have identified many biologically
plausible patterns of enrichment and can be broadly used for ranking the relative
contribution of features. For instance, variants associated with lipid traits and Crohn’s
disease are enriched in open chromatin derived from liver and immune cells, respectively 13,
reflecting biological functions. However, there is currently little confidence in interpreting
unexpected enrichments, because of various statistical concerns. First, overly simplistic
models that do not account for known confounders such as local linkage disequilibrium
(LD) and local gene density can lead to spurious enrichment patterns 14. Second, tests based
on subsets of variants typically probe a limited number of genomic features, whereas
evidence of enrichment occurs well below genome-wide significance 1112, Due to the large
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number of annotations now available, a third problem has emerged of prioritizing the most
informative set from a large number of often correlated functional annotations.
Methodological improvements are thus needed to increase the accuracy of inference, and to
realize the full potential of those costly experiments in focused analysis.

Here we present a novel statistical approach that leverages GWAS findings with functional
(i.e. regulatory or protein-coding) annotations to find features relevant to a phenotype of
interest. This method accounts for LD, matched genotyping variants and local gene density
with the application of logistic regression to derive statistical significance. We name our
method GARFIEL D, which stands for GWAS Analysis of Regulatory or Functional
Information Enrichment with LD correction. We use GARFIELD to analyze the enrichment
patterns of publicly available GWAS summary statistics using regulatory maps from the
ENCODE 3 and Roadmap Epigenomics ° projects. We describe expected and novel
enrichments that illustrate the molecular and cellular basis of well-studied traits, which we
expect to help drive novel biological insights and enhance efforts to prioritize variants for
focused functional exploration. Finally, we developed new software to facilitate the
application of our approach by the research community, and tools for effective visualization
of enrichment results that scale to thousands of potential functional elements.

Method Overview

The analysis workflow implemented in GARFIELD is summarized in Figure 1 and Online
Methods. The method requires four inputs: (i) a set of genome-wide genetic variant
association p-values with a phenotype of interest; (ii) genome-wide genomic coordinates for
regulatory annotations of interest; (iii) lists of LD tags for each variant (r2 = 0.01 and r2 >
0.8 within 1-MB windows) from a reference population of interest (e.g. Caucasian) and (iv)
the distance of each variant to the nearest transcription start site (TSS). Given these inputs,
the method first uses a greedy procedure to extract a set of independent variants from the
genome-wide genetic variants, using LD (r2 = 0.01) and distance information (‘LD pruning
step’). Second, it annotates each variant with a regulatory annotation if either the variant, or
a correlated variant (r2 = 0.8), overlaps the feature (‘LD tagging annotation step’). Third, it
calculates odds ratios (OR) and enrichment p-values at different GWAS p-value thresholds
(denoted as “T’) for each annotation using a logistic regression model with “feature
matching’ (Online Methods) on variants by distance to the nearest TSS and number of LD
proxies (r2 = 0.8) (used as categorical covariates). This pruning strategy is conservative, as a
potential loss of the true causal variant at a small fraction of the loci due to pruning will be
offset by the analysis of genome-wide enrichment patterns. We thus believe this is a
conservative but sound approach for identifying annotations that harbor more GWAS
variants (at a given threshold T) than expected by chance. To correct for multiple testing on
the number of different annotations, we further estimate the effective number of independent
annotations by using the eigenvalues of the correlation matrix of the binary annotation
overlap matrix from Figure 1 (adapted from Galwey et al. 17) (Online Methods) and then
apply a Bonferroni correction at the 95% significance level. This takes into account the
tissue-selective components of regulatory data, namely that closely related cell types and
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tissues are more similar to each other than different ones. Our single annotation approach
can be viewed as an extension of Maurano et al. 11 (see also Supplementary Table 1) with
two critical improvements. First, we account for the effect of local variant correlations by
restricting enrichment calculations to sets of independent variants (LD pruning step).
Second, we employ a testing procedure that accounts for systematic differences in gene
distance and number of proxies in the variant set.

Additionally, we implement a heuristic procedure to combine the biological signal contained
in correlated annotations, which allows us to identify conditionally independent sets of
regulatory annotations underpinning the enrichment signals. To reduce the computational
burden of searching through all possible combinations of available annotations, we first
obtain enrichment p-values for all annotations separately, using the default single-annotation
GARFIELD model. We then rank all statistically significant annotations by their enrichment
p-value and iteratively add each such annotation to the model if it significantly improves the
model fit compared to the model not including the annotation (analysis of deviance using a
chi-squared test).

We compared GARFIELD to five widely used alternative methods (LDSC 10, fgwas 13,
GoShifter 14, GREGOR 16 and GPA 9), while noting that benchmarking of methods is
typically best done by investigators independent of the method developers. To estimate the
false positive rate (FPR), we used 21 real disease or quantitative trait GWASs with the
required summary statistics for all methods and greater than five independent genetic
variants at the T < 108 threshold (Online Methods). We assessed the enrichment of each
trait against 1,000 peak region annotations, simulated to match observed peak lengths and
between peak distances for DNasel hypersensitive sites (DHS) in HepG2 cells (ENCODE).
We compared GARFIELD to the five alternative methods and to a naive model, where
enrichment ORs are calculated without accounting for LD or other features. FPRs were
estimated by the observed proportion of significantly enriched annotations per phenotype
(Online Methods). At the 5% significance level, methods not modelling LD produced
significantly inflated FPRs (0.15 and 0.33 on average for Naive and GPA, respectively)
(Figure 2a). GARFIELD, fgwas, LDSC and GoShifter preserved the FPR for all traits, while
GREGOR vyielded more false positive results than expected (average FPR 0.09). Further
assessment of GARFIELD for a set of 29 traits showed that FPRs are also preserved when
lowering the threshold from T < 108 to T < 10~ (Supplementary Figure 1a).

To assess the value of feature matching in significance testing, we employed GARFIELD
with and without feature correction to 424 open chromatin annotations in 29 phenotypes at
the T < 1078 threshold. As expected, we found that feature matching controls for biases in
enrichment analysis by significantly reducing the number of observed enrichments
(Wilcoxon signed rank test proportion median = 0.46, p-value = 1.4 x 10"4) (Figure 2b). We
further explored the relative contribution of each feature by comparing the number of
significant enrichments detected in a feature-corrected model compared to the uncorrected
model. We found median proportion reduction estimates of enrichments of 0.34 (p-value =
1.4 x 10"4) and 0.10 (p-value = 1.1 x 10-3) for the number of LD proxies and TSS distance,
respectively (Supplementary Figure 1b-c). Estimates were concordant between GWAS p-
value thresholds (Supplementary Figure 1d). These tests suggest that LD proxy number is
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the single most important confounder, although not sufficient to correct for individually
when compared to the model correcting for both features together.

Enrichment in open chromatin regions

To assess the relative enrichment of phenotype-genotype associations in different cell types,
we first applied GARFIELD to a generic regulatory annotation denoting open chromatin
(DNasel hypersensitive sites) in 424 cell lines and primary cell types from ENCODE 3 and
Roadmap Epigenomics ° (Supplementary Table 2). We considered five diseases and 24
quantitative traits with publicly available GWAS summary statistics. For each trait-
annotation pair we derived enrichment estimates at eight GWAS P-value thresholds (T <
1071 to T < 10°8). At the most stringent cut-off (T < 10°8), there were a median of 21
independent variants per trait after LD pruning (range 0-117, Table 1 and Supplementary
Table 3), while at a more permissive threshold (T < 10-°) there were a median of 76 variants
per trait (range 11-619).

We found statistically significant enrichments (p < 2.6 x 10-4; Online methods,
Supplementary Note) for the majority of traits considered, highlighting clear differences in
enrichment patterns between traits (Supplementary Table 4). As clearly visible from
enrichment wheel plots, some traits displayed relatively ubiquitous enrichment (e.g. height,
Figure 3a), while others showed relatively narrow enrichment (e.g. ulcerative colitis, Figure
3b, see also Supplementary Figure 2). Blood cells were overall the most enriched tissue type
in hematological traits and autoimmune diseases, but provided little to no enrichment for
glycemic, blood pressure and anthropometric traits (except height which was enriched in
nearly all tissues). As predicted, incorporating sub-threshold associations (T < 10)
increased the resolution of enrichment patterns across traits (Table 1). For instance, at T <
1078 there were no annotations enriched for waist-to-hip ratio (WHR), while at T < 10
there were 19 significant enrichments, 18 of which coming from muscle or fetal muscle
tissue. For HbA1C and fasting glucose again there were no enrichments at T < 10°8, while at
T < 105 we uncovered links to blood, fetal stomach and fetal intestine tissues. Additionally,
for low density lipoprotein (LDL) cholesterol we found a single enrichment in colon at T <
1078, while the permissive threshold allowed us to detect much larger number of relevant
annotations (75), including liver, blood and fetal intestine cell types. Overall, 89% of the
enrichments at the T < 108 threshold were also identified at T < 10> (between-threshold
logyg enrichment p-value correlation = 0.85) (Supplementary Figure 3) showing high degree
of agreement between thresholds.

The observed enrichments reflect current understanding of key cellular types for disease,
augmented with novel observations. In the former category were enrichments of lipid traits
in blood, liver, fetal intestine and fetal thymus cell types; of hematological traits in blood,
and of autoimmune diseases (ulcerative colitis, Crohn’s disease, inflammatory bowel disease
(1BD)) in blood and fetal intestine 11:13.18 potentially interesting examples of the latter
category include the enrichment of Caco-2 (a well-established gut epithelia cellular model)
elements for LDL cholesterol, the enrichment of (fetal) muscle and placenta cell type
elements in high density lipoprotein (HDL) cholesterol and foetal intestine in Hemoglobin
(HGB). For each trait, we also employed GARFIELD’s heuristic multiple annotation
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approach illustrated earlier to further prioritize a parsimonious set of non-correlated cell
types from those with significant enrichment. Only a small proportion of enriched
annotations detected under univariate settings were retained in the multiple annotation model
(proportion median = 17%, range 2-100%; median number of annotations retained = 2,
range 1-8; Table 1 and Supplementary Figure 4). For instance, in height we narrow down the
annotations from 364 to 7 (2%). These findings are suggestive of a high degree in
redundancy between annotations, while also highlighting that in the majority of cases
biological enrichments are driven by more than a single annotation. For instance, for HDL
cholesterol we obtain conditionally independent signals coming from blood and liver cell

types.

Next, we sought to evaluate GARFIELD against alternative enrichment methods when
considering empirical phenotypes and DHS data. We performed enrichment analysis for
each of the 21 traits from the simulation study in each of the 424 cell types using each of the
five methods (GARFIELD, GoShifter, fgwas, GREGOR and LDSC) shown previously to
preserve (or nearly preserve) FPR in simulations (Online Methods; Supplementary Table 5).
GREGOR vyielded the largest number of enrichments (median = 24, max = 398), followed by
GARFIELD (median = 10, max = 364). Fgwas and LDSC yielded intermediate levels of
enrichment (median = 5, max = 327; median = 5, max = 144, respectively), while GoShifter
was very conservative (median = 0, max = 5). Stratification of the enrichments to groups
according to the number of methods supporting them further showed that GREGOR
identified the largest number of enrichments found by at least one other method.
GARFIELD closely followed GREGOR, whereas fgwas, LDSC and GoShifter showed
much lower between-method concordance rates. GREGOR also identified the largest
number of method-specific enrichments, however, the inflated FPR indicates that more
enrichments are discovered at the cost of also reporting more false positives, making utility
of GREGOR alone less desirable in practice (Figure 4a). In the absence of a truth set, the
observation that GARFIELD captures a large proportion of enrichments consistent with
other methods, while preserving the FPR, provides an indirect assessment of the robustness
of our approach. Overall, enrichments of blood cell traits with blood cell regulatory
annotations tended to be highly consistent between most methods (supported by GARFIELD
for 7 traits; GREGOR in 8; fgwas and LDSC in 5 and GoShifter in 1; Figure 4b), as
expected given their clear biological relevance. Likewise, we observed highly consistent
results for height in the majority of cell types; schizophrenia (SCZ) in blood and fetal brain;
HDL cholesterol in liver, blood and fetal placenta (supported by GARFIELD, GREGOR and
fgwas); triglycerides in blood (GARFIELD, GREGOR, fgwas and LDSC); mean
corpuscular volume (MCV) in fetal stomach, fetal spleen and fetal thymus, mean
corpuscular hemoglobin (MCH) in fetal intestine, fetal stomach and fetal spleen, all of
which were supported by at least three methods.

Finally, we compared the average CPU time used per method, trait and annotation based on
the analysis of 21 traits and 424 annotations. GARFIELD was faster than all other methods
with an average of 0.64 mins needed, compared to 2.32 mins for GoShifter, 6.70 mins for
LDSC, 16 mins for fgwas and 0.96 mins for GREGOR (Online Methods). It has to be noted
however that LDSC is fast to run but had a substantial computational burden of generating
the necessary input files for our custom data (Supplementary Table 6).
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Enrichment in promoter and enhancer marks

In light of the current knowledge of relevant links between cell types and complex traits
based on promoter and enhancer activity, we also sought to evaluate GARFIELD against
alternative enrichment methods when considering empirical phenotypes and marks of active
enhancer (H3K27ac) and active promoter (H3K4me3) activity in 127 cell types, similarly to
DHS comparisons presented earlier.

We found statistically significant enrichments (p < 5 x 104; Online methods) that confirm
known biology for both H3K27ac and H3K4me3 (Supplementary Table 5). Namely, height
was enriched in the majority of tissues for both regulatory marks; SCZ showed
predominantly enriched in central nervous system (CNS) tissue; blood cell traits were
enriched in HSC/Blood/Immune cell types and lipids traits in liver tissues for both marks.
Overall results also show fewer and more specific enrichments in H3K27ac in comparison to
H3K4me3 (mean 17, range [0-72]; and mean 20, range [0-106] number of enrichments,
respectively) consistent with higher cell type specificity found in active enhancers versus
active promoter regions.

Enrichment in genomic segmentations

We additionally sought to compare the relative enrichment of different types of functional
genomic marks, using ChromHMM 12 data on genomic segmentations for 127 cell types
(Supplementary Table 7). For each segmentation state and cell type, we analyzed our 29
phenotypes at two different GWAS p-value thresholds (T < 10" and T < 10°8). Overall,
when considering only significantly enriched trait-annotation pairs (p < 3.3 x 10;
Supplementary Table 8), we found higher levels of enrichment for promoters (median OR =
3.4, range [2.0-10.9] for T < 10~°) and enhancers (median OR = 3.8, range [1.9-68.0])
compared to transcribed regions (median OR = 2.6, range [1.8-13.8]), and depletion in
quiescent regions (Figure 5a) (similar patterns were obtained for T < 108, Supplementary
Figure 5). Given that transcriptional states mainly mark active genes, it is unsurprising to see
the contrast of enrichment in transcriptional regions compared to the depletion in quiescent
regions. Interestingly the enhancer states consistently had stronger enrichments than
transcribed regions, an observation in agreement with enrichments of hematological traits in
cell-matched regulatory states from the BLUEPRINT project 19. To confirm these patterns,
while controlling for the effect of annotation density on the number of enrichments found,
we sought to compare only ORs for cell types enriched in both transcribed and enhancer pair
states (and promoter and transcribed states). Similarly to our previous observations, results
showed on average greater ORs for enrichment for enhancers when compared to transcribed
regions (Figure 5b) (with a similar but weaker effect for promoters), which provides further
evidence that our observation is not due to difference in power for enrichment detection
between annotations of different density but due to their biological relevance to the studied
traits.

When considering cell-type specificity, again the trait height was the most ubiquitously
enriched phenotype. In general, we found the largest ORs for anthropometric traits in active
enhancers in adipose and skeletal muscle tissues; glycemic traits in active enhancers in
pancreatic islets, poised promoters in pancreatic islets and stomach mucosa and transcription
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regulation in blood,; lipid traits in active enhancers in liver, transcription enhancers in blood
and fetal intestine tissue; autoimmune diseases and blood traits in active enhancers in tissues
including blood and thymus; psychiatric disorder in transcription and bivalent promoters in
fetal brain. As expected, incorporating sub-threshold associations again greatly increased the
resolution of enrichment patterns across different traits (Table 1). For example, we found no
significant enrichment at T < 1078 for the glycemic indices p-cell activity index (HOMA-B),
glycated hemoglobin (HbA1C) and fasting glucose (FG), whereas at T < 10> HOMA-B was
predominantly enriched in active enhancers in pancreatic islets and ES-13 cells, HbA1C in
active enhancers in psoas muscle and fasting glucose in poised promoters in pancreatic islets
and stomach mucosa.

Finally, we assessed the extent to which traits shared significantly enriched annotations, by
comparing the number of cell types per segmentation state that were found to be
significantly enriched (or depleted) for a single trait compared to multiple traits (Figure 5¢
and Supplementary Figure 5). Our results confirmed patterns of higher cell type specificity
for enhancer states, with a median of 67% of cell types in enhancer states that were unique
to a single trait compared to only 45% for promoter regions at T<10™ (76% and 50% at
T<108, respectively). This confirms enhancer states as prime regions of interest 1° when
seeking to investigate gene function underlying complex trait and disease associations.

Software implementation

Many GWA studies seek to explore functional enrichment patterns, but often rely on
customized, in-house pipelines. We implemented GARFIELD as a standalone tool in C++ in
order to facilitate use by the research community (Online Methods). The software allows for
enrichment analysis of any user-provided trait with variant GWAS p-values and GRCh37
genomic coordinates. We provide over 1000 GENCODE 20, ENCODE 3 and Roadmap
Epigenomics ° pre-compiled annotations, UK10K sequence LD data and TSS distance
information for a ready to use package. Furthermore, custom annotation data can be easily
accommodated when provided in a simple bed format. In addition, we have also developed a
Bioconductor package for the R statistical framework to further increase usability.

Discussion

Large-scale efforts 36 have been devoted to systematically mapping molecular traits
associated with genomic regulatory regions. They have greatly enhanced the annotation of
putative functional consequences of non-coding variants in cell-specific contexts, and have
further shown to provide links to disease association. However, current methods that aim to
evaluate the contribution of such regions to genetic variation in disease cannot always do so
robustly or are not readily applicable for systematic analysis and comparison of broad sets of
features. In particular, it has been shown that LD and gene density can confound enrichment
analysis results 14. Here we further estimated the relative effect of each of those features and
identified LD as the largest confounder. Additionally, because of their design, different
genotyping platforms (and imputation strategies) can create different biases (e.g. number of
variants, genomic location distribution). GARFIELD accounts for all those features, by
obtaining independent signals, expansion to relevant annotations using a population scale
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LD reference and feature matching, and to the best of our knowledge there is no other
method that can do so without making extremely restrictive assumptions (e.g. Pickrell et al.
13 assume at most one causal variant at a given genomic region). Furthermore, many
available approaches use variants that reach genome-wide significance from association
analysis (T < 5 x 108) although there has been evidence of enrichment occurring well below
that level 1112, To capture these effects, GARFIELD allows for parallel enrichment analyses
at multiple p-value sub-thresholds, which improves power to detect statistically significant
enrichment patterns by increasing the number of variants tested, thus enabling its application
to traits with underpowered GWA studies. Finally, we provide a flexible software platform
with effective visualization to enable researchers to carry out simultaneous enrichment
analysis for thousands of annotations at multiple association thresholds.

In our own application of GARFIELD on existing GWAS and functional datasets we
identified a broad set of largely expected or previously identified enrichments, for example
lipids traits in open chromatin in liver, hematological traits in blood and anthropometric
traits in active enhancers in adipose tissue. A number of GWAS hits do not show significant
enrichments even with established cell types when using higher thresholds, but
GARFIELD’s stepwise, stratified approach uncovers these more nuanced enrichments,
shown in the case of pancreatic islets with fasting HOMA-B. By analyzing large-scale
genome segmentation data, we assessed the relative contribution of each segmentation state
to the phenotypic traits. We discovered a larger number of enrichments coming from
transcription states as opposed to promoter and enhancer states together with a larger
number of shared cell types between traits. These findings may be biologically relevant, or
could also be a result of statistically larger power for enrichment detection for broader
region annotations. Here we show that study power differences are not responsible for larger
OR values for significant enrichments in promoter and enhancer regions when compared to
transcribed regions, highlighting them as much more relevant for trait associated variants.

Robust, usable and modular methods are critical in the modern large-scale analysis arena,
where we expect many discoveries to come from principled combinations of heterogeneous
datasets. In our hands, GARFIELD provided the greatest number of enrichments on real data
among methods with full control of FPR in simulated data and was among the fastest
methods. However, we acknowledge that as authors of this method we are not the right
group to provide unbiased benchmarking of these methods and look forward to independent
analysis of these methods. We have already deployed GARFIELD in a number of
association study settings both in house and more broadly in the community. Our aim in
developing it has been to provide the most robust statistical framework for analyzing
functional enrichments coupled with practical ease of use and visualization, and we hope the
community will continue to exploit this tool to provide more insights into disease
mechanisms.

Association Summary Statistics—http://www.broadinstitute.org/collaboration/giant/
index.php/GIANT _consortium GIANT BMI 21, height 22 and waist hip ratio adjusted for
BMI 23
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http://www.magicinvestigators.org/downloads MAGIC BMI adjusted 2hr glucose 24, HOMA
B, HOMA IR, fasting glucose, fasting insulin 25, fasting proinsulin 26 and HbA1C 27

http://www.sph.umich.edu/csg/abecasis/public/lipids2010/ Global lipid GWAS summary
statistics for LDL, HDL, TC and TG 28

http://www.ibdgenetics.org/downloads.html IBDGC data on Crohn’s disease, ulcerative
colitis and Inflammatory Bowel Disease 29

http://www.georgehretlab.org/icbp _088023401234-9812599.html ICBP data on SBP and
DBP %0

http://diagram-consortium.org/downloads.html DIAGRAM Type 2 diabetes 31 GWAS
summary statistics

http://www.med.unc.edu/pgc/ PGC data on Schizophrenia.

DHS data—http://genome.ucsc.edu/cgi-bin/hgTrackUi?
db=hg19&g=hub_4607_uniformDnase&hubUrl=http://ftp.ebi.ac.uk/pub/databases/ensembl/
encode/integration_data_jan2011/hub.txt ENCODE DNasel hypersensitive sites

http://www.genboree.org/EdaccData/Current-Release/experiment-sample/
Chromatin_Accessibility/ NIH Roadmap Epigenomics Mapping

H3K27ac, H3K4me3 and epigenome segmentation data—http://egg2.wustl.edu/
roadmap/web_portal/ Processed NarrowPeak consolidated epigenome data and 25 state
chromatin state model on imputed data for 12 marks.

Software—http://www.ebi.ac.uk/birney-srv/GARFIELD/ GARFIELD standalone tool;
Code availability

http://bioconductor.org/packages/release/bioc/html/garfield.html/ GARFIELD R-package

Online Methods

Association Summary Statistics Data

GWAS summary statistics from the analysis of 29 disease and quantitative phenotypes were
obtained from a number of sources (see URLS). From GIANT we downloaded large studies
on BMI 21, Height 22 and Waist hip ratio adjusted for BMI 23, From MAGIC we downloaded
data on BMI adjusted 2hr glucose 24, HOMA B, HOMA IR, Fasting glucose, Fasting insulin
25 Fasting proinsulin 26 and HbA1C 27. Global lipid GWAS summary statistics for LDL,
HDL, TC and TG we obtained from 28. Crohn’s disease, Ulcerative colitis and Inflammatory
Bowel Disease 22 data was obtained from 11BDGC. SBP and DBP 30 data was downloaded
ICBP. Type 2 diabetes 31 GWAS summary statistics were downloaded from DIAGRAM.
Schizophrenia data from 32 was further obtained and analysed. Blood trait data on HGB,
MCH, MCV, MCHC, RBC and PCV was additionally obtained from the authors of van der
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Harst et al 33 and MPV and PLT data from the authors of Gieger et. al. 34 (Supplementary
Table 3).

DNasel hypersensitive sites (hotspots) were obtained from ENCODE and the NIH Roadmap
Epigenomics Mapping (see URLS) on all available cell types. DHS data was processed
following DHSs data processing protocol described in an ENCODE study 4. Further
information on the data can be found in Supplementary Table 2.

H3K27ac and H3K4me3 data

Processed NarrowPeak consolidated epigenome data was downloaded from the Roadmap
Epigenomics portal (see URLS) for all available cell types for H3K27ac and H3K4me3
marks (98 and 127 cell types, respectively). Cell line information can be found in
Supplementary Tables 7.

Epigenome segmentation data

LD data

Data from a chromatin state model with 25 states based on imputed data for 12 marks
(H3K4mel, H3K4me2, H3K4me3, H3K9%ac, H3K27ac, H4K20mel, H3K79me2,
H3K36me3, H3K9me3, H3K27me3, H2A.Z, and DNase) across 111 Roadmap Epigenomics
15 and 16 ENCODE reference epigenomes was downloaded from the Roadmap Epigenomics
portal (see URLS). State and cell line information can be found in Supplementary Tables 9
and 7.

LD information (proxies) was calculated using PLINK 35(v1.7) and the --tag-r2 0.01 --tag-
kb 500 (and --tag-r2 0.8 --tag-kb 500) flags in order to find all proxies within a 1Mb window
around each variant at R-squared thresholds of 0.01 and 0.8. We computed these from the
UK10K 36 sequence data on 3621 samples from two population cohorts (TwinsUK and
ALSPAC) (data described elsewhere 35). Variants that were not observed in the UK10K data
were excluded from our analysis.

Data processing

Given a genome-wide distribution of p-values for association with a given disease or
quantitative trait, we perform the following pre-processing steps in order to calculate the
level of enrichment and its significance for an annotation of interest. To remove possible
biases due to linkage disequilibrium (LD) or dependence between variants we compute the
r2 between all SNPs within 1-Mb windows and consider r2 of less than 0.01 between two
variants to mean (approximate) independence. Next, from the full set of genetic variants for
each phenotype, we create an independent set of SNPs where in order to keep all possible
GWAS signals we sequentially find and retain the next most significant (lowest P-value)
variant independent of all other variants in our independence set. After LD pruning an
average of 2.2% (with range 1.9-3.4%) of genome-wide variants remained in our
independence set for enrichment analysis (Supplementary Table 3). Next, we annotate each
independent SNP and consider it as overlapping a functional element if (i) the SNP itself
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resides in such a genomic region or (ii) at least one of its proxies in LD (r2 = 0.8) and within
500 Kb with it does. We include the latter as the association of a SNP in GWAS potentially
tags the effect of other variants, which could underlie the observed association signal. The
advantage of our greedy pruning over a P-value independent pruning is that we retain larger
proportion of potentially causal variants (or tags of such SNPs). This is particularly
advantageous for GWA studies with low power and more pronounced at more stringent
pruning thresholds.

Quantifying enrichment and statistical significance

To find the enrichment of GWAS signals within a given functional annotation at a genome-
wide significance P-value threshold T, we use the following logistic regression model

logit E(y) = 1 o +Xpgq Brgs + X1aGs Pracs T Xaj Paj

where yj = 1 if SNP i has GWAS P-value < T, and y; = 0 otherwise. 1 denotes an intercept
term (a vector of 1’s) and X denotes a binary annotation covariate for annotation j. Xtss
and Xtags are categorical covariates denoting which quantile bin of distance to nearest TSS
and number of LD proxies (r?=0.8) a variant falls in (by default we use 5 quantiles for TSS
distance and 15 for number of LD proxies). These terms are added to account for possible
biases in the analysis due to the GWAS P-value distribution correlating to them, which may
also non-randomly associate with functional data. Due to the discreteness of the number of
proxies and the skewness of their distribution in the pruned data, exact quantile binning is
not always possible, in which case we create a stepwise binning in which we iteratively find
the first (Q-g)’th quantile from the remaining variants after having already created q (out of
Q) bins and removed those variants from consideration. We calculate ORs and test for their
significance at T=101, 1072, ..., 108 for all traits at each given threshold.

Testing for significant association between an annotation and GWAS SNP status means
testing for =0 vs BAjER. If, additionally, Baj>0, this denotes enrichment, otherwise we
consider it to be a depletion. OR statistic is then calculated via the following equation

ﬁAj =logORAj.

Model selection for multiple annotations is done by (i) sorting annotations in order of
significance from single annotation model; (ii) iteratively trying to add an annotation to the
model if it significantly improved the model fit (p<0.05) given all other annotations in the
model using the following model:

logit E(y) = 1 o +Xpqq Prgg +XraGs Prags *Xa1 Par +--+Xaj Paj

And (iii) reporting the final model and tree or retained/discarded annotations.

Multiple testing

To account for multiple testing in the number of annotations used, we apply a Bonferroni
correction for the number of independent tests carried out. Due to the nature of the data,
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annotations need not be (and are not in general) independent (e.g. biological replicates of the
same cell types). Thus, correcting for all annotations by assuming independence would be
extremely stringent in practice. Instead, we estimate the effective number of independent
tests performed similarly to Galwey, 2009 17. More specifically, we take an independent
subsample of SNPs and find the eigenvalues of the correlation matrix between all considered
annotations and then find the effective number of independent test from equation 16 in
Galwey, 2009. This results in at most 194 independent annotations out of a total of 424 for
the DHS data (for the 29 phenotypes considered), to which we apply Bonferroni correction
(p~2.6x10%). Further details can be found in the Supplementary Note. Similarly, for the
segmentation data a total of 25x127=3175 annotations were used, which resulted in
p~3.3x107 after correcting for multiple testing on the effective number of independent
annotations at the 5% significance level. Finally, for the histone modification data we used a
threshold of p~4.7 x 1074,

False positive rate

To get an estimate of GARFIELD’s false positive rate, we simulated 1000 random
annotations by mimicking the peak lengths and between peak distances from the ENCODE
HepG2 DHS cell line. We then performed enrichment analysis for each annotation-trait pair
from the 1,000 simulated annotations and 29 publicly available disease or quantitative trait
GWAS studies. We estimated the false positive rate as the proportion of cell types showing
significant enrichment for a given trait and further compared GARFIELD to each of six
other tools for a subset of 21 of the traits with the necessary summary statistics for running
all other approaches.

Analysis with other software

For the method comparison analysis, we used threshold of T<108 for GARFIELD,
GREGOR and GosShifter and no threshold for fgwas and LDSC. Enrichment was defined as
p<2.6x10~* and an effect with positive direction (ORgaRrgieLp>1, Enrichment, psc>1,
Estimatefgwas>1; GREGOR and GoShifter only test for enrichment and not for depletion so
they were used without this constraint).

fgwas—We used full GWAS summary statistics (no LD pruning or tagging) against each
annotation at a time as recommended by the fgwas user manual. Enrichment was defined by
p-value<0.05 for the false positive rate estimation and p-value<2.6x10 for the real data
analysis to correct for multiple testing.

LD-score regression (LDSC)—For each annotation we prepared .Idscore files. Then for
each annotation/trait pair we run LD-score regression accounting for the baseline model. We
obtained enrichment p-values based on the resulting regression coefficients as per the
software documentation. Analysis was restricted to hapmap3 SNPs again as per the user
manual recommendation. Enrichment was defined by p-value<0.05 for the false positive rate
estimation and p-value<2.6x10 for the real data analysis to correct for multiple testing.

GoShifter—We restricted the variants to those from the 1000 genomes project due to LD
tagging in GoShifter using the same panel. For each study, we selected variants with GWAS
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P-value less than 108 and pruned them similarly to GARFIELD according to LD r2>0.01.
Testing was done using r2=0.8 for LD tagging and 10,000 permutations. Enrichment was
defined by p-value<0.05 for the false positive rate estimation and p-value < 2.6 x 10 for the
real data analysis to correct for multiple testing. The p-value of enrichment was calculated as
the proportion of permutations producing at least as extreme overlap as the observed SNP-
annotation overlap.

GREGOR—We restricted the variants to those from the 1000 genomes project due to LD
tagging in GREGOR using the same panel. For each study, we selected variants with GWAS
P-value less than 10-8 and pruned them similarly to GARFIELD according to LD r2>0.01.
Testing was done using r2=0.8 and 500 minimum neighbouring SNPs for each tested variant.
Enrichment was defined by p-value<0.05 for the false positive rate estimation and p-
value<2.6x10 for the real data analysis to correct for multiple testing.

GPA—We used full GWAS summary statistics, with no LD pruning or tagging and used a
maximum of 10,000 EM iterations. Enrichment was defined by p-value<0.05 and q;>qq for
the false positive rate estimation.

CPU time estimates

We compared total CPU usage times between different methods for the analyses of 21 traits
and 424 annotations and the respective average CPU times for a single trait/annotation pair.
Analyses for each trait/annotation were run separately (whenever possible) on a compute
cluster containing machines with the following architecture: Linux (x86-64) and 2x2.1 Ghz
16 core AMD 6378. Then cumulative run time over all traits/annotations and average run
time for a single trait/annotation pair was reported (Supplementary Table 6).

Segmentation OR distribution and between trait sharing

Software

From all significantly enriched cell types per trait and segmentation state, we calculated the
median OR and then plotted its distribution (on a log scale) across traits in order to estimate
the per-state OR. Additionally, we took all significantly enriched cell types for pairs of
annotations in order to remove the effect of power for annotation density and looked at the
distribution of ORs for enhancer and promoter states versus those of transcription states.
Finally, we counted the number of cell types per feature that were found to be significantly
enriched (or depleted) in a single trait or shared between multiple traits.

GARFIELD is available as a standalone tool and an R-package (see URLS). The tool
consists of two main parts: (i) pruning and annotation of the GWA study of interest and (ii)
calculating odds ratios and significance of the observed enrichment. Additionally, we
provide scripts for further prioritization of annotations by iteratively adding annotations in a
joint model if they improve the model fit (Chi-squared test).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

GARFIELD is a new approach that classifies genomic features related to phenotypes
based on integrating GWAS signals with functional annotations. GARFIELD is used to
characterize enrichment patterns for 29 traits integrated with ENCODE and Roadmap
Epigenomics annotations.
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for the first two analytical steps (LD pruning and variant functional annotation), which result
in a binary annotation overlap matrix of V pruned variants and A annotations. Middle panel:
a logistic regression approach is used for testing for enrichment at a GWAS significance P-
value threshold T while controlling for confounding features such as TSS distance and
number of LD proxies. Bottom panel: model selection procedure for multiple annotations.
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Figure 2. Method assessment.
(a) Estimated false positive rate (FPR) from 21 publicly available disease or quantitative

traits and n = 1,000 simulated independent annotations. The black horizontal line denotes the
5% FPR threshold. Error bars denote standard errors. (b) Comparison between the
proportion of significant annotations (GARFIELD enrichment p-value < 2.6 x 104 for
multiple testing correction) found from models accounting for number of proxies (N) and
distance to nearest TSS (T) respectively (x-axis), to a model not accounting for any feature
(y-axis), for each of 29 publicly available GWA studies and n = 424 DNasel hypersensitive
site annotations. Key of trait name labels is shown in Supplementary Table 3.
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Figure 3. Enrichment of genome-wide association analysis p-valuesin DNasel hypersensitive

sites (hotspots).

(a) Height (HGT) (n = 2,468,982 GWAS variants). (b) Ulcerative colitis (UC) (n =
11,113,952 GWAS variants). Radial lines show odds ratio values at eight GWAS P-value
thresholds (T) for all ENCODE and Roadmap Epigenomics DHS cell lines, sorted by tissue
on the outer circle. Dots in the inner ring of the outer circle denote significant GARFIELD
enrichment (if present) at T < 10" (outermost) to T < 108 (innermost) after multiple testing
correction for the number of effective annotations and are coloured with respect to the tissue
of the cell type they test. Font size of tissue labels reflects the number of cell types from that
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tissue. Crohn’s disease shows predominant enrichment in blood, fetal thymus and fetal
intestine tissues whereas height exhibits an overall enrichment. OR, odd’s ratio.
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after multiple testing correction. Colors correspond to the different methods and are the
same as in panel a. A grey box denotes that the enrichment did not reach significance.
Additionally, the size of each box represents the relative magnitude of the enrichment. Since
each method uses a different enrichment statistic, we have scaled each of them separately
per method and per trait (e.g. for GARFIELD we scaled the ORs for all cell types for HDL
so that 1 denotes the cell type with the highest enrichment found and 0 the lowest one). (c)
Summary of significant enrichments per tissue and per method for H3K27ac data. (d)
Summary of significant enrichments per tissue and per method for H3K4me3 data. (b-d)
Sample sizes n per trait (and trait name labels) can be found in Supplementary Table 3
denoted by the number of variants in each GWAS studly.
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Figure 5. Enrichment levels (log OR) and extent of sharing between traitsfor 25-state chromatin
segmentations of the NIH Roadmap and ENCODE projects at the T < 10> GWAS significance
threshold.

(a) Distribution of significant (log) OR values across the 29 traits considered, split by
segmentation state and coloured to highlight predicted functional elements (Supplementary
Table 9). Number of points n is shown on the x-axis below each category. (b) Distribution of
the pairwise difference between ORs from all enhancer, promoter and transcriptional
enhancers and transcriptional regulatory states tested (‘state 1”) to ORs from transcription
states for significant enrichments only (‘state 2°; e.g. measuring OR%'z,na1-OR% 1 for all
cell types ¢ and traits t for which p-value®tznna1 and p-value®ty, are both significant).
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Number of points n is shown on the x-axis below each category. Boxplots show the median
(center line); upper and lower quartiles (box limits), whiskers, furthest away point less than
1.5x interquartile range (whiskers); points in the distribution(grey points) and outliers (black
points). (c) Sharing of significantly enriched (or depleted) annotations (n=127 cell types)
across 27 phenotypes (excluding Crohn’s disease (CD) and Ulcerative colitis (UC) as
categories of IBD). The barplot displays the number of cell types where an annotation is
uniquely enriched/depleted in a trait or shared between traits.
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