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Abstract

The human gastrointestinal tract is home to a thriving community of microbes including the fungal 

‘mycobiota’. Although sequencing methodology has enumerated diverse fungal genera within this 

niche, discerning persistent symbiotic residents from contaminants and purely environmental 

transients remains a challenge. Recent advances in culturomics and sequencing employing 

metagenomics, metatranscriptomics and longitudinal studies have begun to reveal a human 

symbiont ‘core mycobiome’ that may contribute to human health and disease. Trans-kingdom 

interactions between the bacterial microbiota and evolution within the niche have defined C. 
albicans as a true symbiont, setting a bar for defining other fungi. Additionally, elegant 

investigations of mammalian antifungal immunity have examined mononuclear phagocytes, 

neutrophils, antigen-specific recognition by T cells and other mechanisms important for local and 

systemic effects on the host, providing further evidence supporting gut persistence. In this review 

we discuss current research aimed at investigating the symbiotic mycobiota and propose four 

criteria aiding in the differentiation of fungal symbionts from environmental transients.

Introduction

The barrier surfaces of the human body serve as habitats to a variety of fungal organisms 

collectively known as the human ‘mycobiota’. The intestinal mycobiota has been linked to 

maintenance of healthy homeostasis and prevention of systemic infection [1–4]. Dysbiosis 

of the human mycobiota and expansion of Candida spp., fungal species highly represented in 

the healthy gastrointestinal tract, have been identified as signatures of inflammatory bowel 

disease (IBD) and several other inflammatory and non-inflammatory diseases [5–9]. Patients 

with genetic polymorphisms in receptors involved in fungal recognition[9] display increased 
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intestinal disease severity, while a deficiency in CX3CR1, a fractalkine receptor flagging a 

population of mononuclear phagocytes, is associated with decreased IgG responses to fungi 

in patients with Crohn’s Disease[10]. Moreover, overgrowth of opportunistic pathogens, 

such as C. albicans or C. parapsilosis, has been linked to an increased risk of translocation 

and systemic infection in patients with compromised immune function [11]. The growing 

consensus on the importance of the intestinal mycobiota has prompted the investigation of 

which fungi are capable of surviving, residing and replicating in the gastrointestinal tract and 

thereby maximally able to influence the host over a prolonged period.

The mycobiota poses unique challenges in terms of identifying and validating constituents of 

this intestinal community. In contrast to bacteria, fungi are found in relatively low 

abundance in the gut, but are common in various food sources and the environment (cheese, 

beer, bread, wine, airborne spores, etc.). While the development of deep sequencing 

approaches have provided researchers with utmost opportunities to investigate the fungal 

variety making up the gastrointestinal (GI) “mycobiome”, the combination of low fungal 

DNA abundance in the gut and high dietary/environmental abundance provides data sets 

susceptible to serendipitous contamination from sources outside of the body and from other 

bodily surfaces (i.e. face, hands, sweat etc.). In addition to outnumbering fungal organisms, 

many members of the bacterial community are dependent on the anaerobic environment 

provided by the gut, greatly increasing their probability of persisting within the intestines. 

Fungi which are typically either facultative anaerobes or able to withstand hypoxic 

environments lack this certainty. These discrepancies between bacterial and fungal 

communities highlight the urgent need for more specific mycobiota-tailored criteria to 

differentiate resident fungi, referred here as fungal symbionts (Box 1) from transient 

passengers and contaminants.

We propose the use of four primary lenses for examining suspect fungal symbionts : 1) 

Detection by both, sequencing and culturomics, 2) Activation of host immune responses, 3) 

Ability to populate and evolve in the gastrointestinal niche through fungal adaptation, and 4) 

Evidence of trans-kingdom interactions between bacteria and fungi. (Figure 1) Herein we 

review these strategies for studying distinct members of the mycobiota, focusing on the last 

two years of efforts to define the fungal symbiotic relationships in the mammalian gut.

Detection-Sequencing and Culturomics

Just as detectives wear gloves to protect the crime scene, mycobiome researchers also pay 

close attention to their choice of methods, aiming to accurately elucidate a microscopic 

reality in the fungal world hidden inside the mammalian GI tract. High throughput 

sequencing (HTS) for the gastrointestinal mycobiome has become a mainstay and the first 

step toward studying fungal symbiosis in the gut. The most common HTS method is 

amplicon sequencing of the Internal Transcribed Spacer region 1 or 2 (ITS1/2)(Table 1). The 

convenience of amplicon sequencing results from the amplification of fungal DNA the 

identification of fungi in microbial communities residing the GI tract that are naturally 

dominated by bacteria. However, several caveats of this approach have also been 

demonstrated, such as primer bias, amplification preference and choice of optimally curated 

database for fungal identification [12–14]. Reverse transcriptomic sequencing of rRNA has 
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been proposed to decrease the primer bias but has thus far been shown more suitable for 

bacterial identification [15]. In contrast, shotgun metagenomic sequencing omits targeted 

PCR amplification, thus improving result fidelity [16]. An intrinsic disadvantage to this 

approach is that fungal sequences can be buried by the overwhelming abundance of fecal 

bacterial DNA [17]. The present hope is that this issue is partially resolved as the cost-to-

sequencing depth ratio decreases over time, and databases record more complete fungal 

genomes. Alternatively, metatranscriptomic analysis has been performed on environmental 

mycobiomes and has the advantage of identifying living, actively-transcribing organisms. 

However, the current classification of fungal metatranscriptomic contigs is chiefly reliable 

only at the phylum level [18].

To eliminate the possibility of identifying fungal nucleic acids from dead or non-

proliferating cells, culturomics is still used as the gold standard for identifying live fungi 

when they are culturable [19]. Fungal isolation is traditionally coupled with morphological 

analysis and whole genome sequencing but recently these methodologies have been 

supplemented with mass spectrometry. Matrix-assisted laser desorption ionization time-of-

flight mass spectrometry (MALDI-TOF MS) has been applied for yeast identification in 

both academic settings as well as for clinical isolates [20]. Better curated databases in the 

future will improve the power and accuracy of this rapid identification method, allowing for 

further expansion of fidelity to strain-level identification [21]. Further development of 

culturomic approaches that capture a vast majority of fungal species found in GI tract will 

further advance the field of gut mycology, mirroring success recently achieved for intestinal 

bacteria [22].

Recent efforts are aiming to broadly define the human intestinal fungal communities with 

established sequencing platforms. Nash and colleagues studied the fecal mycobiome of 317 

healthy donors from the Human Microbiome Project and characterized a high prevalence of 

the genera Saccharomyces, Malassezia and Candida, with the highest abundance represented 

by the species S. cerevisiae, M. restricta and C. albicans, respectively [17]. The authors 

applied amplicon sequencing of the ITS2 region and verified their results via sequencing 

18S rRNA gene and shotgun metagenomics. Despite the generally large variability in 

mycobiomes, these taxa were commonly identified both across individuals and 

longitudinally within individuals. Previously published work by Hoffman and colleagues 

sequenced ITS1 of 98 individuals. They identified many fungal taxa in common, with the 

top three being Saccharomyces, Candida, and Cladosporium [23]. In addition to these 

identified most prevalent taxa, both studies respectively reported another 177 and 63 fungal 

genera. These findings suggest a ‘core mycobiome’ across populations of healthy humans, 

with a highly diverse remainder of less represented fungi. The latter diversity arises either 

from environmental/dietary transient variability or from rare fungal symbionts (a less 

plausible possibility).

Candida species, including C. albicans, are generally accepted as true gut symbiotic fungi. 

C. albicans is frequently sequenced and isolated from feces of healthy humans. However, the 

symbiotic status of S. cerevisiae and M. restricta are still debated, mainly due to their 

abundance in food sources and skin mycobiota, respectively [24,25]. Recent studies have 

gone as far as to challenge the origin of fecal C. albicans, suggesting that it arises from the 
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oral mycobiota or food sources [26,27]. As these questions remain unanswered, another 

direction of evaluating symbiosis is to study the sources of fungi found within the GI tract. 

Boix-Amorós and colleagues have conducted two studies on breast milk mycobiomes 

[28,29]. By combining 28S rRNA sequencing with culturomics, they first identified 

Candida, Saccharomyces and Malassezia as the most prevalent genera. They further 

expanded the study to healthy volunteers spanning across four countries. Despite different 

environmental and dietary factors, Malassezia maintained an average of 40% abundance 

across four cohorts. While these studies do not answer the question whether Malassezia is a 

true gut symbiont, they do reveal a feasible route for transient early-life inoculation of the 

infant gut through mother breast skin-derived Malassezia during breastfeeding [30]. Indeed, 

transient Malassezia presence in infant fecal samples have been detected by ITS sequencing 

until 4 months of age whereupon it is overtaken by mycobiota members belonging to the 

Saccharomycetales order with the development of stable intestinal microbiota later in life 

[30].

In summary, mycobiome studies shortlist core fungal taxa that are strongly suspected gut 

residents. However, mycobiome detection does not readily prove or disprove their symbiotic 

nature. Further studies on fungal interactions with the host and bacteria are needed to add 

confidence in making this distinction (Fig 1).

Immune Response- Antifungal Immunity

For symbiotic fungi to persist and proliferate in the gut, they face the challenge of 

interacting with the host immune system. Hence, discovery of bidirectional interactions 

between fungi and the host immune system can serve as supportive evidence for symbiosis. 

On one hand, the host immune system monitors fungal expansion and penetration. On the 

other hand, symbiotic fungi may modulate the tone of immune responses locally or even 

distally [1,31]. In instances when direct exposure would endanger fungal persistence, fungal 

cell wall rearrangement strategies have been reported, although “in situ” evidence is still 

scarce [32]. Most studies on intestinal immunity to mycobiota have been carried out on C. 
albicans, the most prevalent fungal pathobiont in the human gut. The specific immune 

system responses to C. albicans and some other fungi involve innate pattern recognition 

receptors (PRRs), CARD9/Syk signaling pathways and Th17 adaptive immunity, which have 

been previously reviewed [33,34]. In recent years, new discoveries on C. albicans and other 

potential fungal gut symbionts have added to our understanding of this dynamic, two-way 

relationship.

It was recently described that CX3CR1+ mononuclear phagocytes (MNPs) express several 

fungal-recognizing C-type lectin receptors, including dectin-1, dectin-2 and mincle. These 

phagocytes mediate fungal recognition and antigen-specific Th17 response to C. albicans in 

the mouse colon during the steady state and are crucial for control of C. albicans during 

intestinal disease [10]. A further study showed the importance of CX3CR1+ MNPs in 

mediating the effect of gut fungal dysbiosis on house dust mite (HDM)-induced allergic 

airway disease (AAD), providing an explanation as to how intestinal fungal dysbiosis 

aggravates lung allergy [1]. Intestinal fungal colonization of mycobiota-free altered 

Schaedler flora-colonized mice aggravated AAD without altering bacterial composition, 
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suggesting the enhanced allergic responses are dependent on direct interaction with fungal 

constituents of the gut [1].

Focusing on adaptive antifungal immunity, Bacher and colleagues [31] found that among 30 

mycobiota members, C. albicans was the strongest inducer of CD4+ memory Th17 cells in 

humans, suggesting an “immunological imprint” of this fungal symbiont. C .albicans 
induces Th17 responses in the mouse gut upon intestinal colonization independently of the 

preexisting gut mycobiome composition [10,35,36]. Th17 cells induced by intestinal C. 
albicans colonization exert also a systemic effect by protecting mice against systemic C. 
albicans and Staphylococcus aureus infections[37].

Researchers have expanded similar studies to minor components of gastrointestinal 

mycobiota identified by deep sequencing. Intestinal delivery of three fugal species, A. 
amstelorami, E. nigrum and W. mellicola, exacerbate HDM-induced allergic airway disease 

[38]. Oral gavage of M. restricta resulted in exacerbated DSS-induced colitis in mice in a 

CARD9-dependent manner[39]. M. restricta also augmented Th1 and Th17 responses 

induced by acute DSS exposure in the mouse colon. However whether these minor 

components of the mycobiota can naturally colonize the gut and whether can they can prime 

intestinal immunity in the absence of inflammation remains to be determined.

The extensive new studies on mucosal immunity to gut-residing C. albicans, together with 

other characteristics discussed later in this review, have begun to provide strong evidence 

supporting this organism’s true symbiotic nature. Increasing findings pertaining to immune 

responses against S. cerevisiae, M. restricta, W. mellicola, A. amstelodami, E. nigrum and 

other Candida and non-Candida species do not by themselves assure their symbiotic status 

(Figure 1), but at least demonstrate scenarios where they promote persistent influences upon 

the host.

Fungal Adaption- Evolution towards Persistence

The mammalian gastrointestinal tract presents a balance of challenges and benefits for 

potential fungal residents. This intestinal niche, from proximal duodenum to distal colon, 

represents an increasingly hypoxic, hypercarbic, anemic and hypoglycemic residence. 

Additional stressors include the innate and adaptive immune systems (vide supra) and a 

diverse bacterial clientele (vide infra). Occupants able to navigate these challenges are 

rewarded with a warm, moist and dark environment equipped with a natural defense from 

eukaryote-targeting pathogens (i.e. the host immune system). As such, potential long-term 

clientele of the gut would be anticipated to adapt to residence, providing another clue useful 

in identifying true symbiotic fungi.

Many fungi are opportunistic pathogens, intrinsically harboring the cellular machinery 

necessary for host invasion and infection which poses a liability to gut symbiosis. 

Elucidating the mechanisms by which these fungi achieve an evolutionary equilibrium 

conducive to symbiosis is a recently burgeoning field of mycobiota research. In this regard, 

Bennett and coworkers [4] have revealed a novel mechanism by which C. albicans evolves to 

compete in the GI tract through utilization of hyphal-regulating transcription factors EFG1 
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and WOR1 via genetic mutation and epigenetic regulation, respectively. Authors reported 

human isolates displayed a high percentage (11%) of disruptive efg1 mutations resulting in 

efg1+/− and efg1−/− genotypes uniquely able to switch to a gray colony state in vitro and 

exhibiting a competitive advantage in the mouse GI tract. This work aligns well with several 

observations of loss of efg1 functionality often linked with hypercompetitive phenotypes in 

systemic and gastrointestinal candidiasis [40–42], although conclusions as to regulation of 

WOR1 must be viewed in the context of gut-focused research showing that expression of 

this transcription factor can bypass the heterozygosity in the mating locus in vivo [42].

A more systematic study relying on a C. albicans gene disruption library published by the 

Noble lab [32] revealed a series of transcription factors (EFG1, BRG1, TEC1) targeting 

morphogenesis and virulence whose gene disruption increased gastrointestinal colonization 

competitive fitness in vivo. Intriguingly, these transcription factors all influence UME6, a 

master regulator of hyphal programing. Functional deletion of UME6 resulted in reduced 

filamentation in vitro, restoration of competitive fitness and, surprisingly, no change to in 
vivo morphology by FISH-assisted microscopy analysis of gastrointestinal contents. Further 

nanostring, RNAseq and mutational analyses identified two UME6-regulated proteins, SAP6 

(secreted aspartyl protease 6) and, to a lesser extent, HYR1 (hyphally regulated gene 1) as 

culpable in reducing gastrointestinal competition of C. albicans strains independently of 

gross morphology. SAP6 was previously shown [43] to be adept at activating the 

inflammasome in dendritic cells and macrophages, possibly targeting the fungus for 

elimination by the immune system. Additionally, SAP6 was differentially expressed in an 

independent experimental approach [3] which identified hyper-competition in FLO8 mutants 

in a murine model of gastrointestinal colonization. Combined these studies highlight the 

intriguing evolution of one fungi as it adapts to the challenges of the intestinal niche through 

diminishing its own proclivities towards a more destructive, pathogenic character. Finally, 

this emerging evolutionary adaption approach may prove invaluable when expanded to other 

fungal members of the mycobiota, providing a new lens by which to judge suspected 

symbionts (Fig. 1).

Trans-Kingdom Interactions- Bacterial Modulation of Fungi

The environmental and host immunity-mediated challenges present in the mammalian 

intestinal tract are compounded by the abundance of the facultative and obligate anaerobic 

bacteria that grossly outnumber other eukaryotic microorganisms. While transient 

microorganisms might transition through the gut without notice, true symbiotic fungi, 

persisting in the gut and competing for resources, would be expected to induce a retaliatory 

or mutalistic response from the bacterial microbiota (Fig. 1). In light of this constant 

recognition, specific trans-kingdom interactions serve as an additional means of qualifying 

possible fungal symbionts in the gastrointestinal tract.

Bacteria depend on chemical interactions with other organisms both through a suite of 

small-molecule metabolites as well as protein gene products. Their diffusible metabolites 

arise from both primary (such as fatty acids or polysaccharides) and secondary (such as 

polyketides, non-ribosomal peptides, terpenes) metabolic processes. Bacterial pathobionts of 

the GI tract have recently been shown to produce both fungal modifying compounds as well 
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as secreted enzymes. Coulthurst and coworkers [44] have recently elucidated and 

interrogated two new type VI secretion system proteins, Tfe1 and Tfe2, with antifungal 

properties against Candida albicans, C. glabrata and S. cerevisiae from Serratia marcescens. 

Interestingly, this relationship appears to run contrary to recent sequencing data in Crohn’s 

disease showing a strong positive correlation between expansion of Serratia and Candida, 

possibly implicating an underlying symbiotic relationship in vivo, an altered dynamic during 

disease-induced inflammation, or spatially distinct niches for these organisms within the 

gastrointestinal tract [45].

Obligate anaerobic bacteria predominate the mammalian gastrointestinal tract and offer a 

snapshot into the neighboring organisms fungi must tolerate to maintain their symbiotic 

status in the unique environment of the gut. From the phylum Firmicutes, the opportunistic 

pathogen C. difficile maintains its hold over the intestinal niche through its distinctive 

production of p-cresol, an antibacterial agent derived from tyrosine metabolism [46]. This 

phenol metabolite was shown [47] to inhibit the yeast-hyphae transition and biofilm 

formation in C. albicans. Moreover, in co-culture with C. albicans, C. difficile was able to 

tolerate aerobic growth conditions independently of adhesion or bi-species biofilm formation 

[47] as previously shown for the bacterium C. perfringens [48]. Interestingly, these studies 

also align with an examination of both fecal material transplants (FMT) in patients and 

mouse models of C. difficile infection correlating reduced mycobiota diversity and increased 

C. albicans abundance to poor FMT recipient outcomes [49], further implicating the 

physiological relevancy of this cross-kingdom interaction. Sellam and colleagues [50] have 

confirmed the relevance of the Firmicutes-Candida interaction as well as implicated a 

member of the phylum Bacteroidetes with their discovery of morphology-modifying and 

fungistatic properties from both Roseburia and Bacteroides spp., although the exact 

molecules at play remain unknown.

Bacteria of the gastrointestinal tract serve a vital role in processing dietary fiber to extract 

carbon and nitrogen from sources otherwise inaccessible to the host. Fungal cell walls 

contain a complex polysaccharide coating consisting of mannan, β-glucan and chitin, 

providing an alternative source of fiber in the gastrointestinal environment. Both β-glucan 

and chitin have been found to be modified by bacteria of the microbiota through small 

molecule signaling [51] and enzymatic degradation [52], respectively. Specifically, Bacillus 
spp. were found to harbor chitinases capable of altering C. albicans morphology, inhibiting 

biofilm formation and antagonizing growth [52]. Lactic acid, a metabolite produced by 

lactobacilli in the GI tract, was also shown to promote restructuring of C. albicans cell wall 

architecture, masking β-glucan exposure in the cell wall [51]. A recent surge of interest in 

polysaccharide utilizing loci (PUL) chiefly from Bacteroidetes spp. within the mammalian 

gut has revealed discrete PUL responsible for fungal β−1,6-glucan [53] and S. cerevisiae 
mannan [54] catabolism. Although all members of the fungal kingdom contain β-(1,6 or 

1,3)glucan and chitin (polymeric 1,4-N-acetylglucosamine) within their cell wall, mannan 

serves as a means of concealing potential pathogen associated molecular pattern (PAMP) 

ligands from the host [55] and varies significantly in linkages and gross structure across 

species [56]. Thus, the further identification and evaluation of bacterial enzymes dedicated 

to the cleavage of genus/species-specific mannosyl linkages could serve to validate stable 

predator-prey interactions conserved in the native microbiota.
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Conclusions

As mycobiome sequencing technology continues to mature, we are ultimately faced with the 

question: How do we best categorize the diverse members of gastrointestinal mycobiota in 

order to separate true residents from transient passersby? Sequencing and culturomics have 

profiled the possible suspect fungi, but there is a need for additional longitudinal work 

across a variety of geographic regions and dietary conditions to delineate environmental and 

nutritional constituents from less variant members of the mycobiota. Specific interactions 

with both the host (immunity) and bacteria (microbiota) may serve as traits to gauge the role 

of fungi in the gut, but the scope of study has thus far been limited to chiefly C. albicans and 

S. cerevisiae. Expanding these investigations as well as interrogating the propensity of each 

fungal species and even of specific strains to evolve within the gastrointestinal niche offer 

the most promising strategies forward in defining a symbiotic mycobiota. In this regard, 

Candida species and C. albicans specifically may serve vital roles as not only a prototypical 

symbiont, but also as a future road map for studying important fungal constituents and 

distinguishing true fungal symbionts of the human gut.
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Box 1.

Symbiont refers to any organism persistently living in contact with another. In the context 

of this review, this term specifies fungi living and replicating within the gastrointestinal 

tract. Symbionts include all manner of non-transient relationships including: mutualism, 

parasitism and commensalism, among others. In delineating symbionts from transients, 

or passing environmental/dietary organisms, specific relationships may act as qualifiers 

justifying potential symbiont classification. The precise type of symbiosis may be altered 

between fungi and the host depending on body site, extent of colonization and immune 

integrity, as is the case for pathobionts and opportunistic pathogens which transition from 

neutral or beneficial relationship to one of a pathogenic nature.
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Highlights

• Deep-sequencing and culturomics data suggest a core fungal community 

within the human gut.

• We propose four criteria: detection, fungal adaptation, immune response and 

trans-kingdom interactions to define symbionts.

• C. albicans is a model symbiont capable of adaptation in the gastrointestinal 

niche.
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Figure 1. 
Maturing perspectives for the investigations of symbiotic members of the mycobiota. Both 

bacterial-fungal and host immunity interactions supplement the direct observations of 

species evolution, sequencing and culturomics observed in gut fungi. Together these tools 

have been used to validate C. albicans as a model intestinal symbiont.
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