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Abstract

Mechanistic description of the transition from aerobic to anaerobic metabolism is necessary for diagnostic and predictive
modeling of fixed nitrogen loss in anoxic marine zones (AMZs). In a metabolic model where diverse oxygen- and nitrogen-
cycling microbial metabolisms are described by underlying redox chemical reactions, we predict a transition from strictly
aerobic to predominantly anaerobic regimes as the outcome of ecological interactions along an oxygen gradient, obviating
the need for prescribed critical oxygen concentrations. Competing aerobic and anaerobic metabolisms can coexist in anoxic
conditions whether these metabolisms represent obligate or facultative populations. In the coexistence regime, relative rates
of aerobic and anaerobic activity are determined by the ratio of oxygen to electron donor supply. The model simulates key
characteristics of AMZs, such as the accumulation of nitrite and the sustainability of anammox at higher oxygen
concentrations than denitrification, and articulates how microbial biomass concentrations relate to associated water column
transformation rates as a function of redox stoichiometry and energetics. Incorporating the metabolic model into an idealized
two-dimensional ocean circulation results in a simulated AMZ, in which a secondary chlorophyll maximum emerges from
oxygen-limited grazing, and where vertical mixing and dispersal in the oxycline also contribute to metabolic co-occurrence.
The modeling approach is mechanistic yet computationally economical and suitable for global change applications.

Introduction microbes utilize inorganic nitrogen species, producing

nitrogen gas (N,) and the potent greenhouse gas nitrous

Oxygen reaches low concentrations in aquatic environ-
ments where aerobic organisms consume oxygen quickly
relative to the rate of its supply [1-3]. As oxygen con-
centrations decline, the viable biological community
generally consists of smaller organisms, and only micro-
organisms can efficiently utilize oxygen at the lowest
(nanomolar or lower) concentrations [4, 5]. When oxygen
is sufficiently depleted, metabolically diverse micro-
organisms use alternative electron acceptors for anaerobic
respiration. In pelagic anoxic marine zones (AMZs),
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oxide (N,O) [1, 4-6]. The interpretation and prediction of
how these rates of fixed N loss change with warming-
induced deoxygenation require appropriate descriptions of
the transition from aerobic to anaerobic activity [7-9].
Observations suggest that this transition is not a sharp one.
Rather, aerobic and anaerobic metabolisms seem to co-occur
in AMZs [10-16]. Metagenomics and metatranscriptomics
suggest widespread aerobic metabolic potential and activity
throughout AMZs [13, 17]. The consumption of oxygen
produced by phytoplankton at the secondary chlorophyll
maximum indicates that aerobic metabolism is active in
anoxic or nearly anoxic conditions [18, 19]. This co-occurring
aerobic and anaerobic activity must be accounted for when
predicting N loss as a function of organic matter respiration
[17], since neglecting the portion of organic matter that is
oxidized aerobically within AMZs overestimates N loss.
Explanations for co-occurrences typically invoke varia-
tions in ambient oxygen concentrations in time or space, such
as from lateral intrusions of oxygen from equatorial jets or
anoxic niches inside particles [17, 20-25]. Mixing and par-
ticle sinking can also supply immigrant cells that are adapted
to different environments and that continue to metabolize
upon their arrival [26-28]. However, as intervals in time and
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space separating sustainable aerobic and anaerobic activity
become small, stable coexistence best describes community
activity. Stable coexistence is supported by evidence that
aerobic respiration is viable at low (nanomolar) oxygen
concentrations [18, 29], and that community metabolism
responds to rapid (as short as hourly) fluctuations in oxygen
availability [30].

The energy that drives most metabolisms in pelagic AMZs
originates directly or indirectly from primary production in the
sunlit layer. Therefore, we can consider the supply of two
substrates—oxygen and organic matter—as the dominant
control on AMZ formation [31, 32]. To understand the che-
mical transformations in AMZs that impact the climate system,
we must consider a diversity of N-cycling metabolisms. Two
anaerobic metabolisms are responsible for the bulk of fixed N
loss in the ocean: heterotrophic denitrification (NO3 or NO;
+ organic matter—N,0 + N,) and chemoautotrophic anaero-
bic ammonia oxidation (anammox; NO; —|—NHI—>N03_ +
Ny) [6]. Since NO; (as well as NO3') accumulates in AMZs,
we can assume that heterotrophic denitrification is limited by
organic matter and that anammox is limited by NH; . Thus,
when NO; is abundant, we may describe the transition from
aerobic to anaerobic activity as the outcome of two competi-
tions: the competition of denitrification against aerobic het-
erotrophy for organic matter, and the competition of anammox
against aerobic ammonia oxidation for NH; . The control of
oxygen on these two outcomes seems to be distinct. Incubation
experiments have demonstrated that anammox tolerates higher
oxygen concentrations than denitrification [30]. This is con-
sistent with observations in the Bay of Bengal, where ana-
mmox, but not denitrification, was measured at intermediate
oxygen concentrations (10-200 nM) [33].

However, understanding the transitions of this complex
network of metabolisms along an oxygen gradient
remains incomplete. Though observations and model
estimates of NO, production and consumption rates
reveal excessive NO; supply [16, 34-36], reasons for the
differing rates remain unclear. Accumulation to con-
centrations beyond those limiting any metabolism distin-
guishes this secondary NO; maximum from the primary
NO, maximum, which may constitute the limiting sub-
sistence concentration for aerobic NO, oxidizing micro-
organisms [37]. Also, why is anammox a viable
metabolism at higher oxygen concentrations than deni-
trification [30]? One explanation for inhibition of anae-
robic metabolism is the oxygen sensitivity of specific
enzymes [30]. An alternative perspective is that microbial
community function forms, and is formed by, the che-
mical potential of the environment, and that specific
enzymatic machinery has consequently evolved over time
in response to this chemical potential. Thus, chemical
potential may explain the energetic favorability of meta-
bolism at a more fundamental level.

Here, we explore the coexistences and competitive exclu-
sions among the diverse O,- and N-cycling metabolisms that
emerge when metabolisms are related more directly to che-
mical potential. Ideally, a model of microbial metabolism
would anticipate biogeochemical function by estimating the
activity of microorganisms from first principles—as a func-
tion of underlying chemical and physical constraints—
allowing for universal applicability. We work towards this
ideal by constructing a microbial ecosystem model where
metabolic functional types are described by underlying redox
chemistry, by theoretically and empirically determined effi-
ciencies, and by parameterizations of resource uptake
grounded in cell physiology. Unlike models that rely on
imposed oxygen inhibition concentrations and other AMZ-
specific measured parameters [38, 39], this allows for a self-
consistent model that has no information about AMZ meta-
bolic biogeography as input, and can then be compared with
observations. Moreover, resolving interactions of metabolic
functional types obviates the need for prescribed oxygen
thresholds and allows for the emergence of stable coexistence
of competing metabolisms.

Specifically, we use Resource Ratio Theory [40] to first
develop and demonstrate a theory for sustained coexistence
with an idealized example of aerobic and anaerobic hetero-
trophic populations competing for organic matter. We con-
sider this competition as either actual competitive
interactions between two distinct obligate aerobic and
anaerobic populations or an internal cellular process of a
facultatively anaerobic population that switches its electron
acceptor to maximize its growth rate in a dynamic envir-
onment. Second, we develop a redox-based parameterization
of a set of diverse microbial metabolisms crucial to AMZ O,
and N cycling, and examine the outcome of their interactions
in a simplified system (a virtual chemostat). Finally, since
physical processes as well as biological processes shape
AMZs, we incorporate the metabolic model into a two-
dimensional (2D) circulation that captures the essential
physical features giving rise to AMZ formation. The model,
expanded to include phytoplankton and zooplankton func-
tional types, represents a fully dynamic microbial ecosystem
spanning oxic to anoxic states. In the idealized AMZ,
coexistence is sustained in the oxycline from vertical mixing
as well as at an emergent secondary chlorophyll maximum.

Materials and methods
Theory: stable coexistence despite competition
Metabolic model

We develop a theoretical model of two metabolisms. Each
requires two resources: electron donor S and electron acceptor
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X. An equation for the growth rate u; (t™') of a population
associated with each metabolism i can be formulated from the
specific rate of uptake V (mol resource mol biomass ' t~1) of
each required resource and the yield y (mol biomass mol
resource ') associated with each resource. Using Leibig’s
Law of the minimum, the limiting growth rate is

M = min[yS;VSi(Si)’yX;VXi(Xi)]v (l)

where uptake is a function of the resource concentration and
may be represented with a saturating (Michaelis—Menten)
form or as limited by diffusive supply, for example. The
two metabolisms may also be considered as occurring
(“competing”) within one facultative population that can
use multiple electron acceptors.

We can anticipate the outcome of a competitive interac-
tion between the two populations by comparing the
population-specific subsistence concentrations of that
resource [40]. Here we derive and compare the expressions
for the subsistence concentrations of organic matter for
populations carrying out aerobic and anaerobic heterotrophy.
We describe organic matter uptake with a Michaelis—Menten
form with specific maximum uptake rate V,,,.on and half-
saturation constant Ky, and then combine the organic
matter-limited growth rate (youVop) with a steady
state balance in which growth rate equals the specific loss
rate L (t™!), which may represent mortality, maintenance
costs, consumption by grazers, or viral lysis. Solving for the
organic matter concentration OM~ gives

Kom.Li
OM; = — O
YoM; VmaxoM; i

(2)

The kinetic parameters for organic matter uptake are
uncertain and should vary with substrate and with
population, but if we assume that uptake kinetics for the
same substrate may be optimized similarly for different
organisms adapted to similar conditions (which must be the
case for a facultatively aerobic population), and if we
assume that specific loss rates are also similar (such as if the
populations are subject to the same predation rate), the
subsistence organic matter concentrations differ predomi-
nantly by the yield you, in the denominator. Free energies of
reactions predict that O, is a superior electron acceptor to
NO5 across a wide range of activities [41, 42], and thus that
the aerobic organic matter yield (you,) is greater than the
anaerobic (you, ) for the same electron donor. With you, >
Yom,, the aerobic subsistence concentration is lower than
the anaerobic subsistence concentration (OMp;<OMy;) and
an aerobic population can competitively exclude the
anaerobic population when both are limited by the same
organic substrate. This simply anticipates the dominance of
aerobic metabolism in the oxygenated biosphere.
Analogously, the aerobic population becomes oxygen-
limited once O, is depleted to its subsistence concentration
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of oxygen, O [43, Table 2]. If DIN supply is reduced, the
anaerobic population would also become limited by its
electron acceptor at NO5 ™ (or NO, ™).

The threshold for stable aerobic and anaerobic coexistence

Following previous work [40, 44, 45], we derive an
expression that determines whether the simulated aerobic
heterotroph competitively excludes the anaerobic hetero-
troph or whether the two coexist as a function of the relative
supply rates of organic matter (OM;,) and oxygen (Oy;,) in a
chemostat where growth rate u; equals dilution rate D. In
Appendix 1, we provide the details of the derivation, which
considers the condition allowing both aerobically and
anaerobically sustained biomass in the steady state balances
for organic matter and oxygen (Eqs. (T3) and (T4) in
Table 1). We call this threshold ¢:

_ D0 —-03)
= biom, —oms)" (3)

where 7 is the ratio of oxygen to organic matter demand of
the aerobic heterotrophic metabolism: r = yOMoyazl (mol O,
utilized per mol OM utilized; Eq. (All)). If ¢>1, more
oxygen is supplied than is required to aerobically consume
all of the organic matter supplied, and the anaerobic
metabolism can be competitively excluded. If ¢ = 1, oxygen
and organic matter are supplied in the exact ratio demanded
by the aerobic metabolism. If ¢ <1, more organic matter
is supplied than can be processed aerobically, and the
excess organic matter can be metabolized anaerobically.
Thus, ¢ =1 is the threshold below which aerobic and
anaerobic metabolism can stably coexist. The aerobic
metabolism is never competitively excluded (as long as
oxygen remains an energetically favorable electron
acceptor).

In an AMZ, where organic matter supplies nearly all
chemical energy, ¢ can broadly delineate the locations of
anaerobic activity. However, the incoming and outgoing
fluxes of oxygen and organic matter cannot be easily
decomposed as in the chemostat (where the incoming flux
Fo,in = DOy;,), and so we use an approximate form of ¢.
When it is feasible for both oxygen and organic matter
substrates to be depleted to low concentrations relative to
supply, one can neglect the outgoing fluxes (i.e., Fo,our =
DO; ~ 0 and Fop,, = D(OM*) = 0), but the sinking of
particulate organic matter makes some of the organic matter
unavailable to the microbial community at a given depth.
In this context, a more useful approximation to Eq. (3)
takes into account the divergence of the organic matter flux
(V -OM = FOM,»,, — FOM(,L,,) as
Foun 1, (@)

¢ocean = m
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Table 1 Equations for the model 4By
with two metabolic functional %= Bolug -D) (TDH
types—aerobic heterotroph (By) biomass synthesis
and anaerobic heterotroph (By)
—in a virtual chemostat % = By(uy -D) (T2)
biomass synthesis
1
4G = D(OM;, —OM) — ——puoBo — ——puyBy (T3)
v YoM, Yomy
supply
organic matter consumption
@F = D(03i,—0,) — KoBo (T4)
SN—— 0,
supply
oxygen consumption
1 1
%:D(Nin_N)+ ( -1 M0B0+ ( _1>”NBN_ 7’uNBN (TS)
S—~— YoM, Yomy N
supply N——

remineralization

denitrification

Growth rates of the two populations (#p and uy) are calculated with Eq. (1). To correctly estimate the
consumption of both limiting and nonlimiting substrates, uptake is written in terms of the growth rate as
V= yj‘1 u for substrate j. For organic substrate, (1 — y;)V; is partitioned towards respiration (remineraliza-
tion) rather than biomass synthesis. Biomass B, organic matter OM, and dissolved inorganic nitrogen (N) are
resolved in concentrations of nitrogen

Here, OM represents the sum of both dissolved and sinking
(particulate) organic matter supply, though we would expect
the sinking portion to contribute to the majority of the
outgoing flux. Ratio r is similar to the “respiratory
quotient,” or the amount of CO, produced per mol O,
consumed [46], although it additionally reflects the amount
of organic matter assimilated into biomass. The value of r
appropriate for the ocean is a function of an average
heterotrophic growth efficiency given the complex soup of
organic substrates (Eq. (A11), Fig. Al). It converges to the
value of the respiratory quotient for the observed low
efficiencies [46], and decreases if the average efficiency
increases substantially (such as could happen with “fresh”
organic matter input following a bloom). A decrease in r
increases ¢, in which case less O, supply is required to
maintain strictly aerobic activity. Using this balance,
locations where ¢,..., < 1 can be identified as energetically
favorable for anaerobic metabolisms. In other words,
anaerobic activity is sustainable once oxygen supply is
low enough that the ratio of available oxygen to organic
matter is lower than the ratio of demand.

Redox-based description of metabolic functional
types

A minimum set of microbial metabolisms (in addition to
oxygenic photoautotrophy) mediates the climatically relevant
N-cycling in and around anoxic zones [1, 6]. For each
metabolism, we relate the main N-based substrates and
excretion products to biomass B in units of N as: aerobic
heterotrophy (OM + Oy— B0 + NH; ), heterotrophic nitrate
reduction to nitrite (OM + NO3 —=Bpeno, + NH; + NO5),
heterotrophic denitrification of nitrite (OM + NO, = Bpewo,
+ NH; + Ny), heterotrophic dissimilatory nitrate (or nitrite)

reduction to ammonium (DNRA: OM + NO3 = Bpupnga +
NH; ), chemoautotrophic aerobic ammonia oxidation (NH;
+ O,—=B4p0 + NO; ), chemoautotrophic aerobic nitrite oxi-
dation (NO; + Oy—Bynoo +NO3), and chemoautotrophic
anammox (NH; + NO; —»B,,, + NO; + N,).

Following established methodology [47], we describe
these metabolisms as metabolic functional types by com-
bining electron-normalized half-reactions to form the cata-
bolic and anabolic full reactions for each (Appendix 2).
Electron fraction f then partitions the electron flow towards
biomass synthesis vs. respiration for energy. This results in
a whole-organism stoichiometry that quantifies the amount
of each substrate required to provide the electrons and
elements for synthesis of one unit of N-based biomass (ex:
112 mol NH; per mol B, for acrobic ammonia oxidation;
Fig. 1). We consider this amount of required substrate in
terms of a substrate-specific yield (ex: ywm,,,,, = 11271,
and so we can represent each metabolism in general form as

1 1 1 1
7Sred,i + 7Xox.,i - Bi + < - 1>S0x,i + 7Xred‘ia
X, Ys; VX

i i

(5)

where S (mol N L’l) is an electron donor substrate and X
(mol N L™ is the electron acceptor in reduced (S,.4, Xyeq)
or oxidized (S,,, X,,) form, and B (mol N L") is the
biomass of type i. See Appendix 2 for a detailed description
of each metabolism and Fig. 1 and Table Al for the
resulting stoichiometries and yields.

Redox chemistry links the yields to electron fraction f,
which we constrain using a combination of theoretical and
empirical analysis (Appendix 2 and Table Al). For the
chemoautotrophic metabolisms, after comparing ana-
mmox stoichiometry with previous analysis of aerobic
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Fig. 1 Estimates of the stoichiometries of substrate demand (yield y’l)
and excreted products relative to synthesis of biomass B for the
metabolic functional types (three aerobic in shades of blue, and four
anaerobic in shades of red): aerobic heterotrophy (Bg.0), ammonia
oxidation (Bspp), nitrite oxidation (Bygp), dissimilatory reduction

B Bpeo
mm Baoo
Byoo
B Bretpnra
mmm Bueno,
Byeno,
Boune

B NHf NO; NO; N,

of nitrate to ammonium (Bp.pyra), nitrate-reducing heterotrophy
(BHemvo, ), denitrifying heterotrophy (Bgemo,), and anaerobic ammonia
oxidation (anammox; B,,,). Currency for generic organic matter sub-

strate OM and biomass B is moles of N

Table 2 The interaction matrix of the metabolic functional types (blue: aerobic metabolisms, red: anaerobic metabolisms)

0, oM

NH; NO; NO; or

No
DIC
N.O

Brieio

BlietbNRAyo,

Biieinos

Bretno,
Bana

Lighter colored squares indicate required substrates, and are overlaid with the associated subsistence (R*) concentration calculated with loss rate L
as the virtual chemostat dilution rate (D = 0.05 per day). Darker colored squares indicate waste metabolic products. For each column, all organisms
requiring that substrate (all lighter colored squares in the column) can potentially compete with one another, while each pair of dark and light
colors indicates the potential for a syntrophic (cross-feeding) interaction. DIC consumption and production is also noted. Yields and uptake kinetic

parameters are listed in Tables Al and A2

nitrification [37, 47, 48], we assigned the same value of
f=0.03 to anammox as well as to the nitrifiers to most
robustly test the competition between them (Appendix 2).
The resulting stoichiometry suggests that anammox is less
efficient than aerobic NH; oxidation with respect to NH;,
requiring about 150 vs. 110 mol NH; per mol biomass N,
but more efficient than aerobic NO, oxidation with
respect to NO; , requiring about 220 vs. 330 mol NO; per
mol biomass N. For all heterotrophs, we describe growth
on an average pool of marine organic matter, and so we
assigned an average marine bacterial growth efficiency to
the aerobic heterotroph (yom,,, = 0.14) [46], which cor-
responds to f~0.1 (Appendix 2). Informed by free ener-
gies as above, we assigned a slightly lower organic matter
yield to all three anaerobic heterotrophs (10% lower). We
assigned them equal organic matter yields because we do
not here consider the further characteristics that determine
the outcome of interactions among anaerobic hetero-
trophic metabolisms [49, 50]. With this simplification,
differences in the amount of electron acceptor required by
each anaerobic heterotroph in Fig. 1 reflect only the
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stoichiometries of the electron-normalized redox reac-
tions. We vary these values in an ensemble of model
solutions (Appendix 3).

Table 2 represents a matrix of all possible interactions in
the model. Since the complex network prevents any simple
prediction of the outcome of the interactions, the diagnostic
framework provided by subsistence (R") concentrations is a
useful way to interpret model solutions. We list the R"
concentrations for each metabolism and substrate calculated
with the yields, uptake parameters, and the chemostat
dilution rate. For all functional types, we assume one uptake
parameterization for organic matter, another for DIN, and a
third for oxygen (Table A2). This essentially assumes a
similar cell size and proteome allocation for all populations,
and that differences in uptake kinetics do not determine the
outcome of any competition. This assumption is justified if
populations competing for the same substrate in the same
environment have similarly optimized their enzyme allo-
cation, and that tradeoffs exist between traits, such as sub-
strate affinity, maximum growth rate, and defense strategies.
However, the framework does allow for the possibility of
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(and interpretation of) alternative outcomes if differences in
these parameters do consistently distinguish populations
carrying out competing metabolisms in ways that change
their relative subsistence concentrations.

Results

The transition from competitive exclusion to stable
coexistence

We first examine the competition of aerobic and anaerobic
metabolism in a simulated chemostat to make two points:
(1) that the theoretical prediction of the metabolic shift is
borne out and (2) that the same shift is predicted whether
associated with a reorganization of community metabolism
by balancing the populations of obligate types, or by
facultative readjustment of individual metabolisms. We
examine two parallel models, one with distinct (obligate)
aerobic and anaerobic populations, and a second with a
facultative population.

The set of ordinary differential equations in Table 1
describes the biomass B of the populations associated with
the distinct metabolisms, as well as organic matter, oxygen,
and DIN. In the parallel simulation with the facultative
population, one bulk biomass By, carries out whichever
metabolism yields a higher growth rate at each time step
(Upae = Max(up,uy)). We assume abundant DIN avail-
ability (V;, =30uM) as in the mesopelagic ocean, giving
solutions independent of DIN.

We examine the equilibrium solutions to the equations
for a varying ratio of oxygen to organic matter supply by
varying the incoming oxygen concentration (Fig. 2). In the
model with the two obligate types, the anaerobic type is
competitively excluded at a high supply ratio (abundant
oxygen) without a prescribed oxygen inhibition because its
organic matter subsistence concentration is higher than that
of the aerobe (OMy>OM). When the supply ratio
decreases below threshold ¢ (black vertical line), the
aerobic metabolism becomes limited by oxygen and is only
able to oxidize a fraction of the available organic matter,
and the anaerobic metabolism is sustained.

Throughout this domain of coexistence, oxygen is
maintained at the subsistence concentration of the aerobe
(O5; Fig. 2a). Organic matter is maintained at the higher
subsistence concentration of the anaerobe (OMj;; Fig. 2b),
which is qualitatively consistent with observations of
decreased attenuation of the particulate organic matter flux
in low oxygen environments (i.e., reduced particulate con-
sumption) [51, 52]. The ratio of aerobic to anaerobic bio-
mass and associated respiration rates decreases
proportionally with the relative decrease in oxygen supply
(Fig. 2c, d). This pattern is consistent with observations of
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a. Oxygen
1000 T
2
~ 10 - =0,
g 0.1 O2 with facultative pop.
= 0.001 Tt
i
b. Organic matter
0.08 ; oM
i = = OM™* aerobe
P e B B OM * anaerobe
% 0.06 ’ __________ OM with facultative pop.
I
i
0.04 ‘
015 C. Biomass
: : —— Aerobic
; —— Anaerobic
z 01 i - - Total
Exclusion| Coexistence Facultative
=0.05 [
I
0
d. Respiration rates
400 —_— O2 consumption
- —— Denitrification
o 200 Facultative O2 consumption
% Facultative denitrification

0
102 10" 10° 10" 1072
O, : OM supply (mol/mol)

Fig. 2 Steady state solutions for two metabolisms—aerobic and
anaerobic heterotrophy—in a virtual chemostat for a varying ratio of
O, to organic matter (OM; mol N) supply. Two parallel simulations are
illustrated: one with discrete aerobic and anaerobic heterotrophic
metabolic functional type populations, and one with a single faculta-
tively anaerobic population. Respiration rates for the facultative
population indicate the time-averaged use of O, and DIN. The vertical
dashed black line indicates ¢ =1, the threshold at which anaerobic
metabolism becomes sustainable

aerobic and anaerobic bacterial biomass competing for
sulfide at varying oxygen to sulfide ratios [53].

The solution with the facultative population shows nearly
identical results (lighter colored lines in Fig. 2). The oxygen
concentration wavers slightly due to the synchronous
switching from aerobic to anaerobic growth, and the organic
matter concentration is between OMy, and OMj{, for the
period at which the facultative population utilizes both
oxygen and DIN at similar fractions over time.

The model shows that: (1) anaerobic sustainability is a
predictable function of the relative supply of oxygen and an
electron donor such as organic matter, (2) the ratio of
aerobic to anaerobic activity reflects this relative supply, (3)
aerobic activity can be sustained at O; where O, is supplied,
such as through photosynthesis or physical transport, and
(4) a facultative population model gives a nearly equivalent
biogeochemical outcome to a model with two obligate
populations at steady state.

SPRINGER NATURE
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Fig. 3 Steady state solutions for 10% 2 T
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(OM; mol N) supply. The 11029 TRRTUT —— =1
shaded region indicates the = |¢
5th-95th percentile of the 104 s .m!u - -
ensemble of solutions. Incoming
OM concentration is 1 uM N . b
10 i — NH;
! — NO;
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NO; oxidation to NO3
NO3 reduction to NO5
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= Total O, consumption
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- Total fixed N loss

102 10? 10°
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0O, : OM supply (mol/mol)

Diverse N-cycling metabolisms in a chemostat

We next examine the equilibrium state of the interactions of
the diverse N-cycling metabolic functional types as a
function of oxygen and organic matter supply. To consider
the uncertainty in the parameterizations, we computed an
ensemble of solutions for which the parameter values dic-
tating the yields (and thus also ratio r) were sampled ran-
domly from plausible ranges of uncertainty (Equations and
detail in Appendix 3).

SPRINGER NATURE

We illustrate the model solutions without DNRA in
Fig. 3. When the DNRA functional type is included, NH;
but not NO; accumulates in the anoxic state (Fig. A3),
which is consistent with some observations, but not with the
characteristic state of AMZs [14]. We conclude that DNRA
is likely less efficient at utilizing organic matter than the
other anaerobic heterotrophic metabolisms, and that low or
sporadic rates of DNRA must be sustained by a process not
resolved in the current model, such as time-varying blooms
of organic input (see Appendix 3 for further discussion).
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Oxygenated state

At high oxygen supply (O,:0M 2 10 mol/mol in Fig. 3), the
three aerobic metabolisms coexist syntrophically. All
anaerobic metabolisms are competitively excluded, except
for some simulations in the ensemble in which the NH;
yield of anammox is similar to or higher than that of aerobic
ammonia oxidation (Fig. 3d, e). Concentrations of NH; and
NO; are maintained at the subsistence concentrations of the
aerobic NHj -oxidizing and NO; -oxidizing populations,
respectively [37] (Fig. 3b). This simulates microbial com-
munity function in oxygenated environments below the
euphotic zone.

Anoxic state

At the lowest relative oxygen supply rates (O:0OM /S 1
mol/mol in Fig. 3), O, is depleted to O}, and all anaerobic
metabolisms are sustained. [NHI] is maintained at the
subsistence concentration of the anammox population,
while [NO; ] accumulates higher than any subsistence
concentration (Fig. 3b). The accumulation results from the
imbalance in NO; supply and demand reflecting the stoi-
chiometries of the redox reactions. Normalized by electron
transfer, 1.5 times more NOj is reduced to NO, by the
NOj -reducing population than NO, reduced by the deni-
trifying population. Anammox also consumes NO;, but not
enough to counter the imbalance since its growth is limited
by NHj . This perhaps explains the formation of the sec-
ondary NO; maximum.

As oxygen supply decreases, the rates of denitrification
and anammox converge to a constant ratio. The fraction of
anammox contribution to total fixed N loss is 29% (Fig. 3e),
which is consistent with the theoretically and empirically
observed fraction of about 30% [6, 30, 32, 54]. This fraction
remains constant across variations in yields and uptake
parameters. A lower anammox yield translates to lower
annamox-associated biomass, for example, but the water
column rate remains the same, demonstrating that bulk
water column rates are ultimately determined by organic
matter supply.

The aerobic heterotroph remains the only active aerobic
metabolism in the anoxic state. Once its growth is oxy-
gen-limited, it competes against the nitrifiers for oxygen.
The nitrifiers are excluded because they demand more O,
for growth (lower yo,) and thus have a higher O; (Fig. 3a,
blue dashed lines). This higher O, demand reflects the
energetic cost of C fixation for chemoautotrophy com-
pared with the average heterotroph. However, in real
environments, the heterogeneity of organic matter and
diversity of the heterotrophic community should result in
a diversity of populations each associated with a distinct
O3, and the portion of the community with higher O} may

be excluded at higher oxygen supply than the nitrifiers.
These results do suggest, however, that a subset of aerobic
heterotrophs can subsist in the anoxic core of AMZs,
which is consistent with genetic and transcriptomic evi-
dence [17].

Intermediate state

In between the oxic and anoxic end-member states (Oj:
OM = 1-10 mol/mol in Fig. 3), the simple model predicts a
complex intermediate state. Oxygen supply is just low
enough to limit the growth of the nitrifiers, but not yet low
enough to limit the aerobic heterotroph, which continues to
be limited by organic matter supply. Because of this, oxy-
gen is maintained at the nitrifiers’ higher O; (Fig. 3a), and,
analogous to the heterotrophic case study in Fig. 2, their
oxygen-limited growth allows for residual reduced DIN that
then sustains anammox. This represents a distinct threshold
for the onset of anaerobic anammox, matching experimental
results [30]. In the model, anammox is a sustainable
metabolism at a higher oxygen supply than denitrification
because it competes against the chemoautotrophic nitrifiers
for DIN. Chemoautotrophic nitrification demands sig-
nificantly more O, than heterotrophy to synthesize the same
amount of biomass (Fig. 1), and so the oxygen supply that
becomes limiting for them is higher than the oxygen supply
that becomes limiting for the average heterotroph. Nitrate
reduction and denitrification do not become energetically
favorable until aerobic heterotrophy is limited by oxygen,
and anammox is NO; -limited until N, has accumulated
(Fig. 3b). Thus, the redox-based model anticipates the
adaptation of anammox clades to tolerate higher con-
centrations of oxygen to exploit available chemical
potential.

A two-dimensional idealized AMZ

The virtual chemostat model provided an organized fra-
mework for interpreting the ecology of the diverse O,- and
N-cycling metabolisms in and around AMZs in isolation
from the impacts of ocean circulation. However, physical
supply and dispersal are important characteristics of the
real system. As a final study, we included transport by
incorporating the ecological model into an idealized
circulation model.

A 2D overturning circulation qualitatively simulates the
10°S transect across the S. Pacific basin (Fig. 4). A closed
flow field with a width of 10,000 km and a depth of 2000 m
is forced with wind stress mimicking the climatological
mean (Fig. A4; see Appendix 4 for equations and detail). A
mixed layer is prescribed with an attenuating vertical dif-
fusivity coefficient, and eddy stirring is represented with a
horizontal diffusivity constant. The resulting flow field
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Fig. 4 Observations and model simulations of the 10° S transect across
the Pacific Ocean. Observations of O, (a) and NO5 (d) are from the
World Ocean Atlas 2013 climatology [65], with distance from 175°
longitude in the W. Pacific. Arrows in e indicate the idealized 2D flow
field, with intensified upwelling driven by wind-stress-induced Ekman

simulates Ekman transport, “eastern” coastal upwelling, and
dispersed downwelling in the “west” (Fig. 4e).

The six microbial metabolic functional types in Fig. 3 are
advected and diffused by the circulation, along with two
phytoplankton types and three zooplankton grazing types
that produce and consume oxygen, respectively. (Equations,
detail, and parameter values in Appendix 4 and Table A3).
Zooplankton grazers consuming phytoplankton are inhib-
ited at low oxygen concentrations. Vertical migration of
zooplankton preying on the non-photosynthetic microbes is
simulated by allowing them to consume microbial biomass
throughout the anoxic zone and accounting for their oxygen
consumption above and below [55-57]. (See Appendix 4
for detail.) Thus total zooplankton activity is reduced, but
does not cease, in the AMZ. Two pools of organic matter—
one sinking and one non-sinking—are sourced from the
mortality of all populations. Oxygen fluxes across the
air—sea interface. Fixed N lost to denitrification or anammox
is summed and distributed as a source of NOj3 equally over
the domain at all depths, simulating distant N fixation.

The solutions demonstrate how the combination of circu-
lation and surface productivity—due to intrinsic links
between intensified coastal upwelling and a lack of ventilation
below in eastern boundaries [58]—results in anoxic zone
formation (Figs. 4 and 5; complete solutions in Figs. A5 and
A6). Intensified upwelling enhances primary productivity,
which produces more sinking organic matter input to the
unventilated zone below where aerobic respiration depletes
oxygen. Figure 5 illustrates profiles through two water col-
umns: one in the oligotrophic, oxygenated zone, where only
the aerobic metabolisms are sustained (Fig. 5a—d), and one
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transport. Steady state solutions of the metabolic ecosystem model
incorporated into the flow field include: O, (b), fixed N loss from
heterotrophic denitrification and anammox (c¢), NO3 (e), and che-
moautotrophic C fixation calculated from biomass production rates
with a biomass C:N of 5 (f)

through the anoxic zone where all metabolisms are sustained
at various depths (Fig. S5e-h).

The characteristic profiles through the oxygenated zone
resulting from the metabolic model have been previously
discussed [37]. Here we highlight aspects of the modeled
anoxic zone, their parallels with observations, their
mechanisms in the model, and implications for AMZ
biogeochemistry:

AMZ formation is controlled by relative rates of oxygen and
organic matter supply

In the simulated anoxic zone, oxygen is depleted to nano-
molar concentrations or lower, with the lowest values due to
dispersal of aerobic cells into the anoxic zone. Immigrant
cells can drive down the limiting resource below the sub-
sistence concentration of a purely local population because
immigration makes up for the reduced local growth implied
by the lower resource concentration [27]. The modeled
vertical profile simulates the sharp oxycline characteristic of
pelagic anoxic zones (Fig. 5e) [4]. Modeled NOj3 has the
characteristic concave profile that indicates N loss (Fig. 5%).
The fraction of anammox contribution to total fixed N loss
increases at the periphery of the AMZ (Fig. A7), although
this intermediate state is less pronounced than in the che-
mostat model due to the mixing. Some organic matter sinks
below the anoxic zone, fueling a deep aerobic community
for an additional few hundred meters (Fig. 5g, h). The
solution state can be anticipated by calculating ¢,ccq, USing
the model flow field. The contour ¢,..., =1 (the dashed
lines in Figs. 4 and 5) delineates—to first order—the
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Fig. 5 Steady state solutions
through two water columns in
the 2D model: one in the
“western” oxygenated zone and _ 0
one in the anoxic portion of the
“eastern” upwelling zone. The
vertical dashed and dotted lines
indicate subsistence
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domain in which anaerobic metabolism is sustainable. In
Fig. A2, we plot resulting O, consumption, N loss, and O,
concentrations against the incoming supply of O, and
organic matter to each grid box, which further demonstrates
the resource ratio control.

Vertical mixing sustains anaerobic metabolisms in
oxygenated waters

In the model, significant rates of all three anaerobic meta-
bolisms are sustained at very high (tens of uM) oxygen
concentrations above the anoxic zone (Fig. 5h). Since ¢, cean
does not account for transport, the N loss outside the dashed
line ¢ycean =1 (and some of the oxygen consumption
within, as mentioned above) is a consequence of the dis-
persal of biomass. This may be a mechanism supporting the
high diversity of metabolisms in the oxycline in real AMZs
[59, 60].

Dispersal-driven anaerobic respiration remains when
including the facultative type in the 2D model: as in
Fig. 2, with respiration rates averaged over time, the
steady state solutions with facultative aerobic hetero-
trophs are indistinguishable. When obligate aerobic,
obligate anaerobic, and facultative heterotrophs are
allowed to compete in the 2D model, the facultative
population competitively excludes both obligate types
throughout the entire domain unless it is penalized for
having more metabolic capabilities. This may anticipate
why many heterotrophs, including the ubiquitous SARI11,
are facultatively anaerobic [61, 62].

104102 10° 10?
#M O, or ug L™ Chi
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A secondary chlorophyll maximum formation from O,-
limited grazing

Phytoplankton sustainability is determined by the balance
of light supply, nutrient supply, and loss rates to grazing
and other mortality. Starting from the surface, phyto-
plankton biomass increases with depth to the deep (primary)
chlorophyll maximum, where both nutrient and light supply
is optimized, then decreases as light begins to limit growth,
then increases again as O, is depleted and grazing becomes
O,-limited, and then decreases again because of light lim-
itation (indicated by the chlorophyll concentration in
Fig. 5e). This constitutes one hypothesis for the formation
of the secondary chlorophyll maximum (SCM), and further
hypothesizes that phytoplankton should experience a local
minima in their loss rate there. Changes in viral lysis rates
with depth may be a particularly likely hypothesis given the
observation that distinct cyanophage communities exist at
the SCM [63]. The model predicts simultaneous O, pro-
duction, O, consumption, and sustained anaerobic activity
at the SCM, exhibiting a “cryptic oxygen cycle” [19].

Formation of a secondary NO, maximum

As above, NO; accumulates in the modeled AMZ to con-
centrations higher than any subsistence concentration
(Fig. 5f). This broad tendency arising from the stoichio-
metry of the redox reactions may constitute a clue for why
the secondary NO, maximum forms [35]. Actual mechan-
isms may include time-varying concentrations of NO;
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[49, 50], and further differences in rate would result from
significant differences in efficiencies among the anaerobic
heterotrophic metabolisms.

Deep nitrification and carbon fixation at the AMZ periphery

Just above and below the simulated anoxic zone, significant
rates of aerobic chemoautotrophic nitrification are sustained
(Fig. 5g, h). This is consistent with observations [12, 14],
and, along with anammox, drives deep CO, fixation
(Fig. 4f). In the illustrated realization, this nitrification is
supported by local heterotrophic remineralization of organic
matter because the one pool of utilizable (labile) organic
matter remains available throughout the anoxic zone (Fig.
A6d, e).

Discussion

Theory and modeling suggest that the onset of anaerobic
metabolism in aquatic environments is best characterized as
a transition from competitive exclusion to stable coex-
istence. Even trace amounts of aerobic activity are theore-
tically stable if trace amounts of O, are supplied, suggesting
the potential for low rates of aerobic activity concurrent
with anaerobic activity in anoxic environments. Adding
stable coexistence to the list of explanations for co-
occurring aerobic and anaerobic metabolisms (which
includes particle segregation [22, 25], time-varying circu-
lation [20, 21], and dispersal (Fig. Sh)) expands the degree
to which we expect that aerobic metabolisms should be
sustained “cryptically” in anoxic zones [19]. Results sup-
port the speculation that a significant amount of organic or
reduced inorganic substrate may be metabolized aerobically
within anoxic zones [17]. This impacts predictions of fixed
nitrogen loss based on the amount of organic matter oxi-
dized in anoxic conditions, such as in biogeochemical
models that resolve organic matter fluxes.

By parameterizing diverse aerobic and anaerobic meta-
bolisms with their underlying redox chemical reactions, the
model allows for the thresholds determining the absence or
presence of each metabolism to emerge dynamically as the
consequence of ecological interactions. Avoiding prescribed
thresholds is necessary to simulate the stable coexistence of
competing metabolisms. While natural assemblages do
exhibit oxygen inhibitions [18, 30], the predictions here aim
to understand these inhibitions more fundamentally, i.e., to
anticipate why enzymes evolved particular oxygen sensi-
tivities over time.

The model suggests that to quantify the relative degree of
aerobic and anaerobic activity, the relative supply rates of
electron donor and oxygen must be known (or resolved in a
physical circulation model.) For increasing organic matter
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input, the oxygen supply required to stay above ¢ also
increases for constant r (Fig. A2). Thus, the oxygen con-
centration in the ocean alone is, at best, a good approx-
imation for locations of anaerobic activity.

Results suggest that the ratio of aerobic to anaerobic
respiration will generally decrease from the periphery to the
core of an anoxic zone. This is consistent with the obser-
vations of foraminifera in the Peruvian AMZ [64]. The
perspective here suggests that the inferred “preference” for
NOj utilization by the cells in conditions where oxygen is
rarely supplied constitutes the consequence, not the dicta-
tion, of the outcome of the metabolic competition among a
facultative population.

Though the present 2D simulation does not capture the
enhanced NO; oxidation observed in AMZs [12], we can
use the framework to hypothesize the conditions that would
allow it. NO, oxidation may be sustained at higher rates
than NH; oxidation in the AMZ periphery where sufficient
concentrations of both NO; (accumulated from NOj
reduction) and O, co-occur due to mixing. This is perhaps
more likely deeper in the anoxic zone or at its bottom
boundary where labile organic matter is depleted, inhibiting
heterotrophy and NH; oxidation. Instead, the 2D model
here resolves only one type of sinking organic matter that
remains available beneath the simulated AMZ.

Intriguingly, the intermediate state of the chemostat
model resembles some aspects of recent observations in the
Bay of Bengal [33], where anammox but not denitrification
was measured at intermediately low oxygen concentrations
(hundreds of nM). In both model and observations, ana-
mmox is NO; -limited in the intermediate state. However,
unlike the observations, the model predicts that NO3
reduction and denitrification are strictly coupled, which may
indicate that in reality that their associated organic matter
yields are not similar, that anoxic niches inside particles
contributes to their spatial segregation, or that the obser-
vations reflect a non-steady state environment and so other
characteristics are key [49, 50].

While the subsistence concentration R* governs fitness in
steady state environments, the maximum growth rate of a
population is a better measure of fitness in dynamic, time-
varying environments [65]. The steady state assumption is
valid when the rates of activity of microbial populations are
large relative to the changes in the biomass of the com-
munity, and this should characterize much of the stagnant
waters where anoxic zones form. However, a pulse of fresh
sinking organic matter into an anoxic zone may spur a
“bloom” of microbial activity that is better characterized as
a time-varying state, and the dynamics and the distinctions
among the communities relevant to this state are not
articulated here.

Here, we have provided a theoretical framework to
quantify the distinctions between yields among microbial
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metabolisms. Though we focus on yields, we explained that
the subsistence concentration R” is the appropriate metric of
fitness. Therefore, the other variables comprising R™ also
matter for the competition. We expect large variation in
uptake affinity and in loss rates due to maintenance costs,
grazing, and viral lysis in the microbial community. In
particular, we expect the traits of the functional types to
vary consistently in different conditions, as they do for
phytoplankton [65], with variation in cell size and allocation
of enzyme. While we expect huge variation to characterize
differences in realized phenotypes among any one meta-
bolic strategy, we do not however anticipate systematic
patterns of variation betrween metabolic strategies for these
traits in ways that impact the ordering of their R's. Rather,
we speculate that for any given environment, an aerobe and
an anaerobic analog competing for the same electron donor
are dealt the same supply of elements and electrons, and
have both adapted to optimize their fitness so that the only
remaining distinction is the difference in the energy
acquired by the respiration pathways (i.e., the free energy
released by the redox reactions underlying their metabo-
lisms). However, organisms “hard-wired” with phenotypes
adapted to different environments may demonstrate a dif-
ferent outcome: an anaerobe adapted to environment A, for
example, may outcompete an aerobe adapted to environ-
ment B if they are both subjected to environment A, and this
type of interaction may characterize communities with
populations supplied by dispersal from strong mixing or
other transport. Of course, these differences should not
matter for facultatively anaerobic populations.

A useful aspect of this modeling approach is the pre-
diction of concentrations of active biomass associated with
each metabolism. This biomass (mol N L’l) can be con-
verted to cellular abundance (cells L’l) with an estimate of
a cell quota Q (mol N cell™") and compared quantitively
with genes, transcripts, and other biomolecular data (e.g.,
[37]). The resulting insight into the relationship between
community composition and function is one benefit of
resolving populations explicitly in ecosystem models. For
example, though substrate supply dictates that the water
column anammox rate is about 30% of the denitrification
rate, modeled anammox biomass is about 20x lower than
denitrifying biomass in Fig. 3 because of their different
substrate yields (Fig. 1). Thus, the model articulates how
populations with relatively low abundances are responsible
for high ambient metabolic rates and thus can be as bio-
geochemically significant as populations with higher
abundances.

To conclude, we used redox chemistry and physiological
parameterizations of resource uptake to construct a self-
consistent ecosystem model that aims to deepen our
understanding of microbial ecology and biogeochemistry.
The theory predicts a dynamic transition from aerobic to

stably coexisting aerobic and anaerobic metabolism as a
function of substrate supply, and the resulting model
simulates key aspects of AMZs. The approach progresses
microbial ecological modeling towards resolving bulk
community metabolism dynamically and systematically
using underlying chemical and physical constraints, ulti-
mately improving predictions of microbial activity in
unobserved and future environments.
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