
1Scientific Reports |         (2019) 9:18937  | https://doi.org/10.1038/s41598-019-55454-7

www.nature.com/scientificreports

Using mechanistic models for the 
clinical interpretation of complex 
genomic variation
María Peña-Chilet1,2, Marina Esteban-Medina1, Matias M. Falco1,2, Kinza Rian1, 
Marta R. Hidalgo3, Carlos Loucera   1 & Joaquín Dopazo   1,2,4*

The sustained generation of genomic data in the last decade has increased the knowledge on the causal 
mutations of a large number of diseases, especially for highly penetrant Mendelian diseases, typically 
caused by a unique or a few genes. However, the discovery of causal genes in complex diseases has 
been far less successful. Many complex diseases are actually a consequence of the failure of complex 
biological modules, composed by interrelated proteins, which can happen in many different ways, 
which conferring a multigenic nature to the condition that can hardly be attributed to one or a few 
genes. We present a mechanistic model, Hipathia, implemented in a web server that allows estimating 
the effect that mutations, or changes in the expression of genes, have over the whole system of 
human signaling and the corresponding functional consequences. We show several use cases where we 
demonstrate how different the ultimate impact of mutations with similar loss-of-function potential can 
be and how the potential pathological role of a damaged gene can be inferred within the context of a 
signaling network. The use of systems biology-based approaches, such as mechanistic models, allows 
estimating the potential impact of loss-of-function mutations occurring in proteins that are part of 
complex biological interaction networks, such as signaling pathways. This holistic approach provides an 
elegant alternative to gene-centric approaches that can open new avenues in the interpretation of the 
genomic variability in complex diseases.

The extraordinarily fast increase in throughput of sequencing technologies in the last decade1,2 has fostered dif-
ferent international collaborative projects3–5 that resulted in an unprecedented increase in our knowledge of the 
mutational spectrum of diseases, especially thosewith significant morbidity and mortality and caused by highly 
penetrant (typically protein-coding) variants6,7. However, in addition to the expected pathogenic variation, 
these projects have revealed an unanticipated amount of variation at genome level in apparently normal, healthy 
individuals. Actually, putative loss-of-function (pLoF) variants, with a potential severe effect on the function of 
human protein-coding genes8 seems to be surprisingly pervasive, according to reports from different genome 
sequencing projects3,4,9. Conservative estimates suggest that there are more than 250 pLoF variants predicted to 
be highly damaging10 per sequenced genome, in protein coding regions8, as well as other non-coding regions, 
such as miRNAs11, transcription factor binding sites12 and others13. Therefore, a better understanding on the 
contribution of pLoF to disease is critical for clinical applications of genomic data14.

From a historical perspective, the application of sequential heuristic filters, in a process called prioritization, 
has demonstrated to be a useful tool for the clinical interpretation of genomic variation in rare Mendelian dis-
eases6,7. Thus, extensively used filtering criteria are: (i) the potential impact of the variant in the resulting gene 
product, estimated by different indexes that predict the potential pathologic effect of an amino acid substitution 
(e.g. Polyphen15, SIFT16, SNPeffect17, PMUT18, etc.) that can be combined with allelic frequency, conservation, 
etc. (e.g. PROVEAN19, PupaSNP20, CONDEL21, VAAST22, MutationTaster23, etc.); (ii) variant population frequen-
cies, given that variants with a relatively high frequency in the population are unlikely to be causative of many 
hereditary disorders (obtained from different repositories such as the 1000 genomes3, the Exome Aggregation 
Consortium24, the gnomAD25, or also from local population repositories, which have demonstrated to be useful 
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for this purpose26); (iii) evolutionary conservation (e.g. PhyloP27, GERP28, etc.); (iv) compendiums of different cri-
teria, such as CADD29 or, more recently, based on artificial intelligence30. These filters can also be used in combi-
nation with knowledge on functional labels31, syndromes and phenotypes32, or diseases33–35, previously associated 
to the most likely candidate genes, as implemented in tools such as Phen-Gen36, eXtasy37, PhenIX38, Exomiser39, 
etc. Different computer applications, such as Annovar40, the Variant Effect Predictor41 or the CellBase42, collect 
all this information that is subsequently used by different web interfaces that allow carry out this prioritization 
interactively, likeOVA43, BiERapp44, QueryOR45 or Mutation Distiller46, etc.

Despite success of gene centric clinical interpretation of variation in finding disease genes in single gene 
Mendelian disorders7,47,48, the application of these concepts to complex diseases has produced more modest 
results49. Contrarily to the case of RDs, complex diseases are characterized by phenotypic heterogeneity, that is, 
patients with similar presentations often have different underlying disease mechanisms, and incomplete pene-
trance, as a consequence of its multigenic nature and the significant role of the environment50–52. However, the 
most widely used tools for the interpretation of genetic variation all focus on monogenic genetic models or, on 
oligogenic ones as much.

As a matter of fact, complex, multigenic diseases can be better understood as failures of functional mod-
ules caused by different combinations of perturbed gene activities rather than by the failure of a unique gene53. 
Actually, the idea of cell functionality as a result of the complex interactions between their molecular components 
is not new54 and was proposed almost two decades ago in the context of systems biology55. These interacting 
components define operational entities or modules to which different elementary functions can be attributed. 
This modularity, extensively described in numerous reports56,57, suggests that causative genes for the same disease 
often reside in the same biological module, which can be a protein complex or any type of biological network58,59. 
Currently, a detailed recapitulation of the knowledge on biological networks that account for cell functionality, 
metabolism and other cell processes is available in different pathway repositories such as the Kyoto Encyclopedia 
of Genes and Genomes (KEGG)60, Reactome61, Pathway Commons62, Wikipathways63 and others, including path-
ways with specific, curated descriptions of disease mechanisms64. Since pathways describe how proteins interact 
among them to trigger cell functionalities or to generate different molecules and metabolites, mathematical mod-
els of the activity of such pathways constitute ultimately mechanistic descriptors of the behavior of the cell. In fact, 
recent reports demonstrate that mechanistic models of the activity of metabolic or signaling pathways, render 
highly precise predictions of complex phenotypes, such as patient survival65,66, drug response67, etc.

An interesting property of mechanistic models is that, in addition to study molecular mechanisms of disease 
in a particular condition, they can be used to predict the potential consequences that perturbations (mutations 
or changes in the expression) of the proteins that compose the pathway can have over the individual circuits that 
trigger cell actions or the production of metabolites68,69. This mechanistic view of the effects of a change in the 
integrity or the activity of one or several proteins within the context of signaling66 or metabolic70 pathways can be 
used to understand the functional consequences of pLoF mutations and/or gene expression perturbations, thus 
providing a clinical interpretation for these variations in complex scenarios that takes into account the whole 
context of the impact of the perturbation from a functional angle.

Here we present a web server that implements a version of the Hipathia66, an algorithm that has recently been 
shown that outperforms other current competing algorithms71, and demonstrate the advantages of mechanis-
tic models in the interpretation of complex variability in two scenarios of different complexity: a rare disease, 
Fanconi anemia (FA) and a common disease, diabetes.

Implementation
Overview.  The general idea for the interpretation of complex variability is based on the use of an algorithm that 
uses gene expression (as a proxy of the presence of the corresponding protein within a pathway) to model the activity 
of signaling circuits defined within signaling pathways, which ultimately provide a hint on functional cell activity. A 
functional assessment of the differences in functional cell behavior between two conditions can be achieved by com-
paring the corresponding signaling circuit activity profiles to detect what circuits behave differently. Since the model 
only requires gene expression and the topology of the signaling circuits, it is easy to simulate a “mutated” condition 
just by reducing or setting to zero the expression of one or several genes (in the assumption that the effect in signal 
transduction of an inactive protein is equivalent to its absence) and constructing an artificial gene expression profile 
for the simulated mutated condition. Then, the original condition can be compared to the simulated condition to 
detect the circuits and the corresponding functions affected by the LoF of the genes.

Figure 1 shows the schema of the three analysis scenarios implemented in the Hipathia web server. The simplest 
scenario, Differential Signaling, (Fig. 1A) represents a conventional transcriptomics case/control study that can be 
transformed into a differential signaling circuit activity contrast. Gene expression values are used to define circuit 
activities (see below for details) and a Wilcoxon test is used to detect circuits that are differentially activated between 
cases and controls. In the second scenario, the Perturbation effect, the effect of a LoF mutation is interactively sim-
ulated in one or several genes (Fig. 1B). To carry out this simulation the gene expression corresponding to a specific 
condition is uploaded. The graphical interface allows the user to select one or several genes and decide the mutation 
effect by modulating the expression value of the selected genes (setting the value to 0 would simulate a total loss of 
function mutation and raising the value would simulate an over expression). Then, a fold change between the origi-
nal and the simulated conditions is used to detect effects of the perturbation over the different circuits. The third sce-
nario, Variant interpreter, (Fig. 1C) allows estimating the potential effect of a list of mutations over different human 
tissues. To achieve so, the GTEx gene expression matrices corresponding to 30 different tissues (see Additional 
Table 1), containing each a variable number of individuals, are used as controls and then, equivalent matrices of cases 
are generated by simulating the mutations as previously described on all the individuals. Then a case/control contrast 
with a Wilcoxon test is carried out for each tissue, which would reveal whether some of the mutations in the list have 
a significant impact on one or several tissues and the functional nature of such impact.
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The web interface.  The input of the program consists of normalized gene expression matrices in CSV format 
for the two first options of Differential signaling activity and the Perturbation effect (Fig. 1A,B) and also optionally 
for the Variant interpreter option that explores the effect of mutations across tissues (Fig. 1C), as user defined tissue. 
Expression may have been measured with any sequencing or microarray technology. The gene expression matrix 
must include samples as columns and genes as rows. Gene names must be Entrez or HUGO IDs.

For the Variant Interpreter option, a list of Entrez or HUGO gene names can be provided.

Graphical representation of the results.  Different analysis types are carried out on the circuit’s activities 
calculated, which include two-class comparisons and PCA, with the corresponding visualizations as heatmaps 
and PCA plots. Graphical representation of the circuits significantly up- or down-activated, including the indi-
vidual node expression change, are also provided (see Fig. 1 right). An interactive graphical output in which the 
pathways analyzed are displayed with the possible ways in which the signal can be transmitted from receptor 
proteins to the corresponding effector proteins, highlighting those in which significant changes in signaling are 
found. In this visual representation, disruptions or activations in the signal transduction caused by gene pertur-
bations (mutations or expression changes) can be easily visualized and understood in terms of their consequences 
on cell signaling and their ultimate effect over the corresponding functions triggered by the effectors.

The client of the web application has been implemented in JavaScript using the HTML5 and SVG standards 
and uses CellMaps72 libraries for interactive visual representation of pathways.

Mechanistic model of cell functionality triggered by signaling.  The Hipathia (acronym for 
High-throughput pathway interpretation and analysis) is a mechanistic model of signaling circuit activities pre-
viously described66. In brief, circuits that connect receptor proteins to specific effector proteins, which ultimately 
trigger cell activities, are defined using KEGG pathways60. Such circuits represent the sequence of activation (and 
inhibition) steps that mediates the transduction of the signal from the receptor to the effector protein. The method 
assumptions are that, in order to transduce the signal, all the proteins that connect the receptor with the effector 
should be present and the higher the amount of these proteins the stronger will be the signal. Measurements of 
mRNA levels are taken as proxies of the amount of the corresponding proteins (a quite common assumption73–78). 
Then, in order to quantify the intensity of signal transduction, the following steps are taken: normalized gene 
expression values, rescaled to a value in the range [0,1], obtained as explained above, are used as proxies of the 
protein activities (activations or inhibitions in the transmission chain)73,75,79. Thus, the intensity value of signal 
transduced along a circuit that reaches the effector is estimated by starting with initial signal intensity with the 
maximum value of 1 in the receptor, which is propagated along the nodes of the signaling circuits according the 
recursive formula:
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Figure 1.  Schematic representation of the three analysis scenarios implemented in the Hipathia web server.  
(A) Conventional transcriptomics case/control study transformed by Hipathia into a differential signaling 
circuit activity contrast. (B) Interactive simulation of the effect of a mutation over the signaling circuits.  
(C) Estimation of the potential effect of a list of mutations over the different signaling circuits in a number of 
selected human tissues. Icons for organs were taken from the Reactome Icon Library111
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where Sn is the signal intensity for the current node n, vn is its normalized gene expression value, A is the set of 
activation signals (sa), arriving to the node n from the corresponding activation edges, I is the set of inhibitory 
signals (si) arriving to the node from inhibition edges66. Like normalized gene expression values, circuit activity 
values are measurements with no absolute meaning by themselves but rather in a comparison.

The application of this formula to all the circuits defined in all the pathways allows transforming a gene 
expression profile into the corresponding signaling circuit activity profile for any sample studied. If two condi-
tions are compared, a Wilcoxon test can used to assess differences in signaling circuit activity between both types 
of samples.

Estimation of the impact of a mutation over cell functionality.  The effect of a mutation is depend-
ent on the context which includes the activity (gene expression status) and the integrity (mutational status) of 
the rest of proteins involved in the pathways that trigger functionalities relevant to the disease analyzed (disease 
hallmarks). The effect of one or several simultaneous mutations in a specific tissue can easily be predicted using 
the mechanistic model68,69. The reference or control dataset is taken from the tissue of interest in GTEx80. Then, 
an affected dataset is simulated from the control dataset by drastically reducing the expression of the gene(s) with 
a pLoF mutation by multiplying their expression values by 0.01 in all the control samples. This simulates either an 
inactive gene or a non-functional gene product. Then, the circuit activities are recalculated in the affected dataset 
and it is compared to the reference dataset. Although not completely realistic, given that the model does not have 
information on the way in which the diseased tissue will transcriptionally react to the perturbation induced by 
the mutated genes, the results will certainly point with precision to those cell functions affected in first instance.

Data Sources.  In the current version of HiPathia more than 8000 circuits have been identified and modeled 
within a total of more than 150 pathways downloaded from KEGG60 corresponding to three species (human 145, 
mouse 141 and rat 141).

Gene expression data from 30 non-diseased tissue sites (See Additional Table 1) used in the third option were 
taken from the GTEx Portal80 (GTEx Analysis V7; dbGaP Accession phs000424.v7.p2).

Data and methods for the examples.  Gene expression for bone marrow, which is not present in GTEx, 
was downloaded from the Gene Expression Omnibus (GEO) database (GSE16334)81.

Gene expression microarray study that compares human islets gene expression from 54 non-diabetic and 9 
type 2 diabetic donors82 was downloaded from GEO (GSE38642).

Data on natural variability of different populations, which comprises over 88 million variants of 2,504 individ-
uals from 26 populations, was obtained from the 1000 Genomes project portal3,83.

In order to assess the impact of the natural variation found in genes of healthy population, variants located 
within gene regions were annotated using CADD29. As proposed by CADD developers, a gene was considered to 
carry a pLoF mutation when the CADD score is over the threshold of 2084. A gene is considered to be affected by 
pLoF in a recessive scenario, when the two alternative alleles are present.

Transcriptomics data processing.  Gene expression data from microarrays were summarized and nor-
malized by quantiles with the Robust Multiarray Analysis method using affy R package85. Probes were mapped 
to the corresponding genes using BiomaRt86. Gene expression values are estimated as the 90 percentile of probe 
expression values. Probes that mapped in more than one gene were discarded (except in the case that they were 
the unique probes mapping on the gene, that the median value of intensities was taken.)

RNA-seq gene expression data were normalized with the Trimmed mean of M values (TMM) normalization 
method using the edgeR package87.

Then, the Hipathia66 algorithm requires some extra steps for the calculation of the signal intensities. Thus, a 
logarithm transformation (apply log(matrix + 1)) followed by a truncation by the quantile 0.99 (all values greater 
than quantile 0.99 are truncated to this upper value, all values lower than quantile 0.01 are truncated to this lower 
value) were applied to the normalized gene expression values. Finally, in both cases, quantiles normalization 
using the preprocessCoreR package88 was carried out.

Results
We demonstrate the possibilities that mechanistic models offer for the interpretation of genomic variability in two 
different scenarios. The first one is the case of Fanconi Anemia (ORPHA:84), a rare disease with well-known hall-
marks (chromosomal instability caused by failures in the repair machinery) which have been mapped in the FA 
pathway. Therefore, variants having an impact in the pathway, in the absence of other considerations, are potential 
genetic disease drivers. However, if they affect a large number of pathways as well, then they are probably lethal 
genes rather than disease driver genes.

A second scenario considered a complex disease, such as type 2 diabetes, where their disease hallmarks are 
not so well defined. Some general cell processes could potentially be associated with the disease phenotype but, 
in many cases, these are too general to be considered a clear causative agent of diabetes. Then, the number of cell 
processes potentially related to the disease can be reduced by considering only those that display a significantly 
differential behavior in a case-control comparison.

Fanconi anemia, a case example of a rare disease.  A detailed map of FA signaling is available in 
KEGG (ID: 03460) and is already implemented in the corresponding mechanistic model in Hipathia. Figure 2A 
shows the basic map of the signal transduction chain used to relate gene expression to the activity of signaling 
circuits within the FA pathway, which ultimately trigger cell activities related to FA hallmarks.
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Since the main tissue affected by FA, bone marrow, is not present in GTEx, we uploaded to Hipathia data 
from an experiment available in the GEO database (GSE16334) in which bone marrow from healthy donors was 
analyzed81.

The Loss of function (LoF) mutations in all the genes in the pathway was simulated and the results are shown 
in Fig. 2B. As expected, known disease genes produced more impact over the FA pathway than most of the genes 
that have not been described as disease-causing (to date). Other genes not identified as causal genetic drivers of 
FA produce a devastating effect on the FA circuits, but also affect many other signaling circuits in other pathways 
(see Additional Table 2), and the LoF mutations in them were almost absent in the healthy population (data taken 
from 1000 genomes), which suggest that these genes are lethal and, consequently, unrelated with the disease.

Diabetes as a common disease case example.  Diabetes is a highly prevalent disease, affecting to more 
than 8% of the population and being a major cause of blindness, kidney failure, heart attacks, stroke and lower 
limb amputation89. Inflammation is one of the most prominent phenotypic consequences of diabetes90. However, 
inflammation is a too general concept that can be associated to many conditions and, consequently, focusing on 
all the circuits that directly or indirectly trigger inflammation could result in the detection of activations unre-
lated to the disease. Therefore, a diabetes gene expression dataset that compares human islets gene expression of 
healthy donors with type 2 diabetic patients82 was used to determine which, among the 30 inflammation-related 
circuits, were specifically deregulated in the disease. Additional Table 3 shows three inflammation-related cir-
cuits significantly deregulated in diabetic human islets with respect their normal counterparts (FDR-adjusted 
p-value < 0.05)91, which are Rap1 signaling pathway:PRKCI-PARD6A-PARD3, NF-kappa B signaling pathway: 
CCL19 and NF-kappa B signaling pathway: CCL21.

In order to demonstrate the suitability of mechanistic models for the interpretation of complex genomic var-
iation we have focused on three circuits that represent three different scenarios. Firstly, the circuit Rap1 sig-
naling pathway:PRKCI-PARD6A-PARD3 (Fig. 3A) that triggers inflammation and displays one of the highest 
differences in activity between diabetic and non-diabetic samples. Secondly, the signaling circuit Chemokynes 
pathway:PARD3-PRKCZ-TIAM1 (Fig. 3B), which also triggers inflammation but does not display any significant 
difference in the comparison (see Additional Table 3), which would represent a circuit with a disease hallmark 
but unrelated with the disease. And finally, the signaling circuit TNF signaling pathway:CREB3 (Fig. 3C), which 
neither presents a different activity in the comparison nor the functions triggered are likely to be directly related 
with diabetes (see Additional Table 4).

Then we used the Hipathia functionality to check the effect of genes with LoF mutations using the pancreatic 
islet tissue as user-defined tissue, and comparing the results of the resulting pathway activity after the simulations 
with those displayed by both the normal and the type 2 diabetes tissues. Figure 4 shows the results on the LoF 
simulations in the three above mentioned signaling circuits. Three genes, SIPA1L2, RAP1GAP and SIPA1L1, pro-
duce in the Rap1 signaling pathway:PRKCI-PARD6A-PARD3 circuit a level of activity in the control quite similar 

Figure 2.  Fanconi anemia simulation. (A) The FA pathway. Nodes in orange contain known FA pathogenic 
genes. (B) The result of the LoF simulations over the different FA circuits. Over each gene column, the 
frequencies at which these genes have been found in the normal population (1000 genomes) with a pLoF 
mutation is represented.
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to the observed in the diabetic tissue. However, neither in the Chemokynes pathway:PARD3-PRKCZ-TIAM1 nor 
in the TNF signaling pathway:CREB3 circuits this trend is observed.

Interestingly, when the differential activity caused by simulating LoF mutations in the three circuits is com-
pared with the frequency at which these genes appear in the healthy population with a homozygous LoF muta-
tion, it is clear that genes with relatively high LoF variation frequencies cause no effect in the pathway activity as 
a general rule (see Additional Fig. 1).

Discussion
Mechanistic models of pathway activity can be considered (complete or partial) representations of disease 
mechanisms and have been successfully used to uncover details on the molecular mechanisms behind differ-
ent cancers65,66,92–94, common diseases95,96, rare diseases97 or the mechanisms of action of drugs67,98. Moreover, 
mechanistic models have been used in other biologically interesting scenarios such as the discovery of molecular 
mechanisms that explain how stress-induced activation of brown adipose tissue prevents obesity99 or the mecha-
nisms of death and the post-mortem ischemia of a tissue100. Therefore, mechanistic models provide a holistic and 
accurate framework for the interpretation of the consequences of the genetic variation found in whole exome or 
genome sequencing, especially in the case of complex diseases, where the effect can be highly dependent on the 
specific condition of the patient.

However, even in rare Mendelian diseases, typically caused by one or a few highly penetrant variants6,7, the 
scenario is sometimes far away from the expected simplicity, as the example with FA reveals. When the LoF 
mutations were simulated, WDR48 LoF displayed a surprisingly high impact over RAD51, MLH1/PMS2 and 
RAD51C circuits. However, a large number of healthy individuals carry potential deleterious mutations in this 
gene, as shown in Fig. 2. Protein WDR48 acts as a complex together with USP1 to inhibit FANCD2/FANCI com-
plex (Fig. 2A), indeed the coupling of WDR48 to the distal end of USP1 dramatically enhances USP1 activity, 
which catalyzes the deubiquitination of FANCD2. Thus, is USP1 that plays the catalytic role, whilst WDR48 is 
only required to join USP1101,102. Therefore, WDR48 gene may accumulate mutations that do not affect WD repeat 
domain structure, and that maintain its union with USP1intact, mutations that would be predicted as deleterious 
in other genes103.

A similar situation was observed with FANCI, that also showed an impact over RAD51, MLH1/PMS2 and 
RAD51C signaling circuits, but we found several individuals harboring homozygous mutations in this gene. 
Protein complex FANCI/FANCD2 is required to DNA repair function104, however, FANCI appears to be more 
naturally mutated in normal population than FANCD2 (Additional Table 2, data on LoF simulation are not avail-
able since FANCD2 expression was not present in the analyzed dataset), suggesting that FANCD2 may play a more 
determinant role than FANCI in the DNA repair-related function of the complex.

Figure 3.  Signaling circuits analyzed in the diabetes case study. Nodes in orange contain genes whose LoF 
causes an upregulation of the circuit and nodes in blue contain genes whose inactivation causes circuit 
downregulation. (A) Rap1 signaling pathway:PRKCI PARD6A PARD3, (B) Chemokynes pathway:PARD3-
PRKCZ-TIAM1 and (C) TNF signaling pathway:CREB3 circuits.
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LoF simulations of ATRIP, ATR and TELO2 have an important impact over FA pathway, given that affects 
5 out of 6 sub-pathways. Moreover, all three genes have a low frequency of mutations in 1000 genomes healthy 
population, which point to them as good candidates. However, none of these genes are categorized as pathogenic 
by Orphanet. Nevertheless, ATR LoF simulation affects not only FA pathway, but also to 38 more circuits, most 
of them belonging to p53 signaling pathway. This fact suggests that ATRIP/ATR complex is relevant to many 
other cellular processes, so, while detected as good candidates with high impact over the cell, its impact might 
not be specific of FA disease. Protein TELO2 functions as an S-phase checkpoint protein in the cell cycle, aside of 

Figure 4.  Effect of genes with LoF mutations using the pancreatic islet tissue as used defined tissue, and 
comparing the resulting pathway activity after the simulations with those displayed by both the normal and the 
type 2 diabetes tissues. (A) Rap1 signaling pathway:PRKCI PARD6A PARD3, (B) Chemokynes pathway:PARD3-
PRKCZ-TIAM1 and (C) TNF signaling pathway:CREB3 circuits.
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its role in DNA repair, indeed mutations in this gene result in severe developmental diseases. Therefore, it is not 
misguided to present this gene as a candidate gene to further study.

Interestingly, only 12.29% of LoF mutations categorized as pathogenic by Orphanet have no impact over FA 
pathway, while 35.71% of the non-pathogenic genes have no impact on the pathway according to our model 
(Additional Table 2). This suggests that our model can be a useful tool to provide variant interpretation, especially 
in those cases where no variant is found in the disease-associated known genes.

As for Rap1 signaling pathway:PRKCI-PARD6A-PARD3 LoF simulation analysis related to diabetes, 
we found up to nodes disturbing the activation of the sub-pathway: CTNNB1, CDH1, RAPGEF1, DOCK4, 
RAP1GAP, SIPA1L2, SIPA1L1, SRC/FARP2, CDC42, VAV2/TIAM1 and PKKCI/PARD6A/PARD3.Among 
them, the LoF of nodes RAP1GAP, SIPA1L2 and SIPA1L1 were the only ones showing diabetes-like activation 
values, therefore resulting in an overactivation of the Rap1 signaling pathway:PRKCI-PARD6A-PARD3 cir-
cuit, as found in the analysis performed with the diabetes dataset. As seen in Fig. 3A, all three genes code for 
proteins that inactivate the RAS-related RAP1 protein, which is involved in many cellular processes, including 
inflammatory response, cell proliferation and adhesion and Thyroid Stimulating Hormone (TSH) signaling 
pathway.

The relationship between inflammation and type 2 diabetes has long been established. The proposed mecha-
nisms to explain impaired insulin secretion include oxidative stress, endoplasmic reticulum stress, ectopic lipid 
deposition in muscle, liver and pancreas, lipotoxicity and glucotoxicity, all processes that may cause an inflam-
matory response105,106.

Focusing on RAP1 inactivation, a recent study reported the association between inhibition of RAP1 (via miR-
NAs) and hyperglycemia in patients with Type 1 Diabetes107. Moreover, other authors have suggested its relation 
with diabetic cardiomyopathy and with immune-mediated diabetes108,109. Therefore, it is reasonable to think that 
LoF mutations in those genes inactivating RAP1 protein would result in an over-activation of inflammatory 
response and thus, an increased risk of developing immune-mediated diabetes.

Beyond signaling, which can be mechanistically linked to cell functionalities71, other cellular processes such 
as metabolism, can also be used for a detailed interpretation of the consequences of variation over other relevant 
cell biological processes. Actually, it has recently been demonstrated that mutations with an impact over several 
metabolic pathways have a clear connection with certain cancer processes and could be easily related to patient 
phenotypes such as survival70,92.

Mechanistic models like the one used in this work rely on the accuracy of the pathways used to derive circuit 
topologies71. Although in general pathways from the most known repositories (KEGG60, Reactome61, Pathway 
Commons62, Wikipathways63, etc.) represent curated biological knowledge and are expected to be quite accurate, 
they are not absent of errors. Moreover, in many cases pathways represent incomplete biological knowledge. 
Errors or missing links will define erroneous or incomplete circuits with unpredictable (but most likely erro-
neous) behavior. Recently, we have described some constitutively inactive circuits that were incorrectly anno-
tated in the Fanconi Anemia pathway that, after literature exploration, could be fixed and recovered the expected 
behaviour110.

Conclusions
By transforming the current variant-centric and gene-centric data into function-centric measurements a more 
holistic and context-dependent approach to the interpretation of complex variability, especially useful for com-
mon diseases, can be attained. Mechanistic models of cell functionality will open new avenues for understanding 
the complex relationships among genes that ultimately shape the phenotype.
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