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Abstract

Monoclonal antibodies bind with high specificity to a wide range of diverse antigens, primarily

mediated by their hypervariable complementarity determining regions (CDRs). The defined anti-

gen binding loops are supported by the structurally conserved β-sandwich framework of the light

chain (LC) and heavy chain (HC) variable regions. The LC genes are encoded by two separate loci,
subdividing the entity of antibodies into kappa (LCκ) and lambda (LCλ) isotypes that exhibit distinct

sequence and conformational preferences. In this work, a diverse set of techniques were

employed including machine learning, force field analysis, statistical coupling analysis and mutual

information analysis of a non-redundant antibody structure collection. Thereby, it was revealed

how subtle changes between the structures of LCκ and LCλ isotypes increase the diversity of anti-

bodies, extending the predetermined restrictions of the general antibody fold and expanding the

diversity of antigen binding. Interestingly, it was found that the characteristic framework scaffolds

of κ and λ are stabilized by diverse amino acid clusters that determine the interplay between the

respective fold and the embedded CDR loops. In conclusion, this work reveals how antibodies use

the remarkable plasticity of the beta-sandwich Ig fold to incorporate a large diversity of CDR

loops.
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Introduction

The complexity of the antibody engineering process was dramatic-
ally increased by the stepwise development from murine monoclonal
antibodies (mAbs), to chimeric mAbs with murine variable (V) and
human constant (C) regions (Boulianne et al., 1984; Morrison et al.,
1984; Neuberger et al., 1985; Sun et al., 1987), to humanized mAbs
with mouse-derived complementarity determining regions (CDRs)
fused on the β-sandwiches of the human V framework regions (FR)

(Jones et al., 1986; Hale et al., 1988; Riechmann et al., 1988;
Verhoeyen et al., 1988), to the state-of-the-art fully human mAbs
(Bruggemann et al., 1989, 2015; McCafferty et al., 1990;
Bruggemann and Neuberger, 1996; Lonberg, 2008). The genetically
engineered mAbs share the characteristic composition of classical
mAbs by comprising two identical heavy (HC) and two identical
light chains (LC) (Fig. 1A) (Edelman, 1959; Alzari et al., 1988). The
variable domain’s amino-terminal regions of the HC (VH) and LC
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Fig. 1 Global sequence-structure analysis of antibodies VL domains splitting into kappa and lambda isotypes. (A) Schematic representation of the surface of a full-length

antibody that comprises two identical heavy (HC, blue) and light chains (LC, yellow), jointly forming the antigen (Ag, green) binding fragment (Fab, highlighted by red

box). (B) The Fab fragment consists of HC’s constant CH1 (cyan) and variable VH domain (red), as well as LC’s constant CL (green) and variable VL domain (blue). Fab’s

Ag affinity is cooperatively mediated by six complementarity-determining regions (CDRs) that are equally distributed over VH and VL (blue box). (C) VL contributes to the

Ag binding via three CDR loops (CDR L1 in magenta, CDR L2 in cyan and CDR L3 in red, Chothia definition) that are structurally orientated by four neighboring frame-

work regions (LFR1 green, LFR2 orange, LFR3 yellow, and LFR4 blue). (D) Scheme of the VL structure that comprises three CDR loops being embedded in four β-strand
(arrows) rich LFRs. N, amino-terminal end; C, carboxy-terminal end. (E) A set of 333 non-redundant VL sequences was assigned to the lambda (λ, light gray) and kappa

(κ; dark gray) subtype on the basis of their identity to the λ and κ consensus sequence. (F-H) Statistical analysis of the energy contributions to VL and CL structures. The

boxplots incorporate the dataset’s entire value distribution (whiskers), 25th (lower limit of the box) and 75th percentile (upper limit), mean (red dot) as well as median (cen-

tral line) with a 95% confidence interval (notches). Statistical significances obtained by a Wilcoxon rank-sum test are indicated by ns (P > 0.05), * (P ≤ 0.05), ** (P ≤ 0.01),

*** (P ≤ 0.001) and **** (P ≤ 0.0001). (F) FoldX evaluations of the κ (dark gray) and λ (light gray) dataset provided the average residue contributions to the free energy of

the folding stability of the entire LC (VL + CL). (G) The average free energies of the VL and CL fold are illustrated separately for the κ (dark gray) and λ (light gray) dataset.

(H). The LFRs, and especially LFR2, contribute to the folding stability of VLκ (dark gray) and VLλ (light gray), while the CDRs (L1, L2, L3) destabilize both structures. (I & J)

The cytoscape software (version 3.7.1. (Shannon et al., 2003)) generated 2D visualizations of the residue-residue interaction network that stabilizes the VLλ (I) and VLκ (J)

folding. Each residue is shown as a node, and each edge represents a Van der Waals contact that was determined by FoldX. Representative protein structures of the
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Fig. 1 Continued
VLκ and VLλ isotypes (pdb id 1L7I (Vajdos et al., 2002) and 6axk (Oyen et al., 2017) were used in consistence with Fig. 1E. In cytoscape, the network layout was

set to perfuse force directed in order to ensure that residues buried in the structure are centered in the 2D representation. The color code corresponds to the

regions of the domain as defined in Fig. 1D. Large nodes indicate residues that differentially stabilize the complementary isotypes as it was identified in Fig. 5B,

and square-node representations of the corresponding residues in the contrary isotype simplify the cross-comparison. Residues that interact with the VH

domain are shown in gray.
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(VL) each comprise three CDRs that mediate the antigen binding
(Fig. 1B and C). Therefore, the chimeric and CDR-grafted anti-
bodies retained the affinity of the original mouse antibodies for the
antigen targets whilst comprising less sequence motifs that are recog-
nized by the human immune system (Hwang and Foote, 2005).

In particular, the modern-day engineering processes are more
technically demanding and require the consideration of structural
information on the mAb and the mAb-antigen complex to guide the
engineering process and increase the probability of success (Haidar
et al., 2012; Hanf et al., 2014). Strikingly, the identification of muta-
tions that improve a given property (e.g. affinity) without compris-
ing other properties (e.g. stability) challenges the engineering process
of antibodies. The CDR grafting approach often requires back-
mutation of key residues of the human FR to the amino acids of the
original murine mAb to preserve the functional conformation of the
CDRs and thus its high-affinity (Queen et al., 1989; Co and Queen,
1991; Chames et al., 2009). However, the complex interplay
between residues of the FR and CDR is not completely understood
so far, thereby complicating the rational design of mutations that
increase the thermodynamic stability of the mAb structure and medi-
ate the conformation as well as orientation of CDR loops.

In this context, it is interesting that approximately 90–95% of
the human IgG1 sequence are conserved, whilst being assigned to
the framework region (FR) and constant (C) domains (Harris et al.,
2004). The constant FR regions of the LC (LFRs, Fig. 1C and D)
have either of the two evolutionarily developed kappa (LCκ) or
lambda (LCλ) sequences, coding for two distinct scaffold isotypes
that are employed in grafting the antigen-binding loops (Titani
et al., 1967). For reasons thus far unknown, the ratio of LCκ to LCλ
varies considerably between species with an average ratio of 95:5 in
mouse and 60:40 in human (Popov et al., 1999). The affinity for the
antigen is specified by the remaining 5% of the variable sequence
part that comprises the six CDRs. The sequence variability is ini-
tially obtained by somatic recombination of V(D)J regions, followed
by somatic mutations to provide a broad diversity of CDR loops
with varying physicochemical complementarities and predictable
canonical structures that differ between LCκ and LCλ (Chothia and
Lesk, 1987; North et al., 2011; Raghunathan et al., 2012; Nowak
et al., 2016). Although the binding energy is predominantly deter-
mined by a limited number of critical interface residues, the antigen
residues are stochastically mutated together with the non-binding
residues of the CDRs (Clackson and Wells, 1995; Bogan and Thorn,
1998; Sheinerman et al., 2000). Interestingly, by preferring certain
amino acids over others, each CDR has its own contact preferences
that do not depend on the remaining five CDRs (Zhao and Li,
2010; Raghunathan et al., 2012; Kunik and Ofran, 2013).

For a long time, the antigen affinity was solely attributed to the
residues of the CDRs that are oriented by the FR scaffold
(Tramontano et al., 1990). However, over the past few years the
importance of FR residues for antigen binding was emphasized
(Sedrak et al., 2003; Haidar et al., 2012). Several studies confirmed
that antigen binding of CDR grafted antibodies was successfully
reobtained by back-mutation of FR residues to the original murine
residues (Verhoeyen et al., 1988; Queen et al., 1989; Tramontano
et al., 1990; Kettleborough et al., 1991; Carter et al., 1992; Foote
and Winter, 1992; Xiang et al., 1995; Baca et al., 1997; Chiu et al.,
2011; Rodriguez-Rodriguez et al., 2012). Reversely, in some cases
the mAb fold was stabilized by mutations in the CDRs (Koenig
et al., 2015, 2017). These findings underline the complex interplay
between the binding loops and the FR scaffold. Up to now, it is still
unclear why distinct structural motifs evolved in the human

antibody repertoires of LCκ and LCλ, and whether the isotypes cor-
relate with the antigen class and/or the antibody’s affinity, specificity
and LFR structure (Knappik et al., 2000).

In first attempts, structure-based computational design methods
were applied to a predetermined antibody scaffold to achieve new
affinities and specificities (Liu et al., 2017). Low hit rates (Liu et al.,
2017) and simplified binding systems (Chevalier et al., 2017) indi-
cated that mAb engineering shows a growing need for increasing the
probability of success by acquiring more knowledge on the relatively
unknown interplay between antibody modules and residue
interactions.

In this work, statistical evaluations of the abYsis antibody data-
base (Swindells et al., 2017) provide deeper understanding of the
complex structure-function relationship of single and clustered resi-
dues in LCκ and LCλ scaffolds. Defined networks of interacting resi-
dues that mediate the interplay between CDR’s distinct canonical
structures and the surrounding LFR regions were identified for both
isotypes. This work provides further knowledge on how the VLλ
and VLκ structures evolutionarily adapted to fit to a broad variety
of different CDR loop conformations. In summary, stabilizing net-
works of interacting residues increase the diversity of antibodies,
extend the predetermined restrictions of the general antibody fold
and expand the diversity of antigen binding.

Materials and methods

Database retrieval and analysis

The abYsis database (Swindells et al., 2017) was queried using the
human sequences of the PDB as data source. Sequences with warn-
ings and unclassified, unpaired, or unnumbered sequences were
excluded, resulting in 1399 antibody structures. Duplicates were
removed as well as antibodies that contained errors after download-
ing. Solely the structures that contained the Fab (300 and 500 amino
acids) and provided a resolution lower than 2.8 Å were analyzable
by FoldX. Redundancy removal was performed based on light chain
sequence at a threshold of 98% sequence identity using the CD-hit
algorithm (Li and Godzik, 2006; Fu et al., 2012). The final database
contained 333 Fab structures that were renumbered via the Abnum
script (Abhinandan and Martin, 2008) following the Chothia num-
bering scheme.

FoldX

FoldX version 3.0 Beta 6 (c) compilation for Linux was used for all
analyses. Initially, the structures were repaired using the
‘RepairPDB’ command, and information of the residue level was
obtained via the ‘SequenceDetail’ command (Schymkowitz et al.,
2005). Interface analysis was performed by the ‘AnalyseComplex’
command. Intramolecular interface analysis (VL/CL) was obtained
by splitting the molecule at the hinge region using python scripting
and the ‘AnalyseComplex’ command. Residue level contributions to
the interaction energy was obtained by removing the interaction
partner (Antigen or HC), using the ‘SequenceDetail’ command, and
subtracting the difference of contributions with and without inter-
action partner present.

Calculation of significance

Information on the residue level was analyzed using R-studio
(RStudio Team, 2016) by running the ‘aggregate’ function, summing
and averaging on the different levels of resolution. Significance levels
and comparing means between distributions were determined using
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the Wilcoxon signed-rank test and ggpubr package (Alboukadel
Kassambara, 2017). Sequence logos were calculated and plotted
using the geom_logo command from ggseqlogo package (Wagih,
2017a). Box-plots were generated either by using the standard box-
plot command or the geom_boxplot function from the ggplot2
package (Wickham, 2009).

Random Forest

R-studio was used to perform the RandomForest analyses
(randomForest R-package version 4.6-14) (Breiman, 2001). The
variable n-tree was set at 1000 and importance at TRUE. Only
numerical variables were used in the analysis.

Statistical coupling analysis

The python implementation of Statistical Coupling Analysis was
used with the default settings to generate the clusters of interacting
amino acids (Rivoire et al., 2016).

Mutual information analysis

Mutual information between amino acid identities at Chothia posi-
tions and CDR canonical structures was calculated by converting
one letter amino acid identities and canonical structures to arbitrar-
ily chosen numbers. Subsequently, the mutual information was cal-
culated using the ‘mutinformation’ command from the infotheo
package (version 1.2.0 (Meyer, 2008)) with default settings. Chord
diagrams were generated using the ‘chordDiagram’ function from
the circlize package (version 0.4.4. (Gu et al., 2014)). A mutual
information threshold of 0.5 was used for displaying the chords.

Structure viewer

All structural visualization was done using YASARA Structure (ver-
sion 18.4.24 (Krieger and Vriend, 2014)). Images were generated
using Ray-traced screenshots.

Availability of scripts and datasets

Datasets and scripts are available at Protein Engineering, Design
and Selection online.

Results and discussion

In silico analysis of the abYsis database

The abYsis database is a web-based antibody repository for anti-
body sequence and structure-management, analysis, and prediction
(Swindells et al., 2017). In this work, abYsis (Version 3.1.0.
(Swindells et al., 2017)) was screened for crystal structures of human
antibodies and fragments thereof that contained both, heavy (HC)
and light chain (LC). The query resulted in 1399 structures of the
antigen binding fragment (Fab) with HC and LC of similar size
(Fig. 1B). In order to retain only high fidelity structural information
and run reliable energy calculations with FoldX (Schymkowitz et al.,
2005), the set was limited to crystal structures that exhibit a reso-
lution better than 2.8 Å. To avoid a bias towards thoroughly investi-
gated structures and close relatives thereof (e.g. point mutants),
redundancy removal was performed at 98% sequence identity of the
LC by performing the CD-Hit algorithm. This clustering approach
selected representative entries in case of redundancy (Fu et al.,
2012). The entire selection procedure resulted in a set of 333 non-
redundant Fab structures that were assigned to 221 LCκ and to 112

LCλ structures (relative frequencies of 0.66 and 0.33, respectively,
Supplementary Figure 1), reflecting the state-of-the-art diversity of
publicly available Fab structures with sufficient resolution. A con-
sensus sequence pursuant to the Chothia numbering system
(Chothia and Lesk, 1987) was determined for LCκ and LCλ sub-
groups by identification of the amino acid with the highest propen-
sity per position. The percent identity for both consensuses was then
calculated for each sequence. Plotting the distances (i.e. identity) of
all λ and κ sequences from the respective consensus visualized the
clustering of both subgroups (Fig. 1E). In addition, the distribution
of sequences to LCκ and LCλ isotypes also yielded a wide range of
sequence diversity towards its consensus sequences. The sequence
identity of both LC classes ranged from 70–95%, while the identity
to the different groups accounted for 50–70%. As a result, the
sequence identity of a small quantity of LCκ sequences to the LCκ
consensus sequence equals that of the LCλ consensus sequence,
underlining the difficulty in accurately assigning these ambiguous
sequences. In these cases, the sequence was assigned to one of the
isotypes via typical λ or κ key residues (Honegger and Pluckthun,
2001) such as position L10 (L, LC residue position derived from the
sequence alignment (Chothia and Lesk, 1987)) that is present in κ
but absent in the λ alignment, which in turn comprises a λ-typical
position L106A that lacks in the κ alignment. More specifically, pos-
ition L71 comprises conserved Phe/Tyr in κ, but Ala/Val/Arg in λ.

The destabilizing effect of incorporating CDRs is

distributed differently in κ than in λ
Each Fab structure of the dataset was analyzed using the empirical
FoldX force field (Schymkowitz et al., 2005), which was optimized
to predict the effect of mutations on the thermodynamic stability of
a protein. The resulting information of the in silico analysis were
subdivided into that of the amino acid level, the region level (FR/
CDR), the domain level (CL/VL), the chain level, as well as the full
HC/LC complex level. These energies are predictions that computa-
tionally estimate various factors.

The statistical analysis of the structure dataset demonstrated that
both architectural isotypes exhibit a comparable overall thermo-
dynamic stability on the domain level (Fig. 1F). Therefore, the ener-
gies of the constituent atoms as calculated by FoldX were added to
the residue and polypeptide chain level, thereby creating energy
descriptors at the residue and the chain level. FoldX further allowed
to characterize the LC-specific energy pattern of the thermodynamic
stability of the VL and CL domains by unraveling the energy contri-
butions e.g. electrostatics, solvation or Van der Waals packing of
each residue (Table I). On average, the CL domain of LCλ is more
stable than that of LCκ, however this trend is reversed for the VL

domains (Fig. 1G). This suggests that the VL and CL regions are
structurally independent of each other (i.e. stable by themselves) in
the κ architecture, whilst in the λ architecture a highly stable CL

domain seems to be needed to compensate for the rather less stable
VL domain. In this view the CL of LCλ appears to be a stable plat-
form that compensates through the VL-CL interface for the destabil-
izing effect of the CDRs, which was confirmed by a more detailed
analysis below. Assigning the per-residue energy distributions to the
specific VL regions clearly indicated that the scaffold (i.e. LFRs) sta-
bilizes the overall structure, whilst the CDRs exert a destabilizing
impact (Fig. 1H). Hence, the structurally destabilizing properties of
CDRs are compensated by the stabilizing LFRs in both VL scaffolds.
Despite this general trend, subtle but important differences were
identified between both isotypes. Exemplarily, CDR L2 is on
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average more destabilizing in VLκ, which in return is compensated
by the remarkably stable LFR3 found in the immediate proximity
(Fig. 1H). In contrast, VLλ comprises a more stable LFR4 that forms
the hinge region between the variable and constant domain. Again,
the interface between the VL and the CL domain seems to compen-
sate the incorporation of unstable CDRs in VL. To illustrate the spe-
cific integration of distinct structural elements in VLλ and VLκ, a
two-dimensional representation of the residue-residue interaction
networks that stabilize each domain was generated (Fig. 1I and J).
To this end, the Van der Waals contacts were determined by FoldX
from the representative protein structures of the VLκ and VLλ iso-
types (pdb id 1L7I (Vajdos et al., 2002) and 6axk (Oyen et al.,
2017)) and displayed as a network using Cytoscape (Shannon et al.,
2003). While the networks of VLλ and VLκ show much similarity,
such as an extensive network of residues interacting with the VH

domain, there are also notable differences in the exact configuration
of the network that are discussed below.

Next, differences between the amino acid sequences of VLκ and
VLλ were investigated, and the frequency of amino acids at each pos-
ition was visualized using sequence logos (Wagih, 2017a) (Fig. 2A
and B). The size of the letter reflects the amino acid’s frequency in
the alignment as calculated via Shannon’s information-entropy for-
malism (Shannon, 1948). Kolmogorov-Smirnov and Mann-Whitney
tests confirmed that the entropy distributions of the positions did not
significantly differ between VLκ and VLλ (Supplementary Figure 2),
indicating that the quantity of conserved and variable positions was
similar between both isotypes. The analysis further uncovered that
the sequence variation is not restricted to the CDRs but extended to
the LFRs (11 positions of VLκ and 14 of VLλ with an entropy of >
1.5 bits). The variability at distinct positions in the LFRs presumably
counterbalances for effects arising from CDR’s sequence variability.
Together with λ- and κ-specific and conserved amino acid positions,
these data clearly point towards isotype-specific stabilizing networks
of interacting amino acids.

Remarkably, several conserved positions comprise different ami-
no acid identities in VLλ and VLκ (Table II). Exemplarily, VLκ

incorporates at position L95 of CDR L3 a conserved proline that
was previously identified to adopt the cis-conformation, which
restricts the loop’s degrees of freedom (Chothia and Lesk, 1987; Al-
Lazikani et al., 1997). Further striking variations include positions
L7 (P in κ, S in λ), L11 (L in κ, V in λ), L71 (F in κ, A in λ), L105 (E
in κ, T in λ), L106 (I in κ, V in λ), L109 (T in κ, P in λ) and L111 (P
in κ, S in λ). In particular, the strong differential conservation of the
structurally similar residues L and V at position 11 is notable.
Interestingly, positions L105-L111 thereof are located in the C-
terminal part of LFR4 that is known to affect the λ- and κ-specific
elbow angle by forming the VL-CL interface (Stanfield et al., 2006).
Consequently, these distinct amino acid identities at conserved posi-
tions highlight the architectural differences between λ and κ
structures.

The isotypes share a common principle behind the

antibody-antigen interaction

Interestingly, the C-terminal part of CDR L2 (L54-L56) is highly
conserved in VLλ but variable in VLκ (t-test P-value = 0.03, Fig. 2A
and B). The contrary sequence variability in this part of the CDR
could emerge from differing antigen binding mechanisms between
VLλ and VLκ. This binding hypothesis was verified by a more thor-
ough analysis of 88 VLκ and 38 VLλ crystal structures being bound
to a protein ligand. First, the total energy of the antibody-antigen
interaction was unraveled into the contributions of the antibody’s
heavy chain and λ, respectively, κ light chain (Supplementary
Figure 3). As expected, the analysis confirmed the widespread theory
(D’Angelo et al., 2018) that the heavy chain contributes on average
more to the antigen binding than the light chain of both isotypes.
Focusing on the light chain, the thermodynamic stability of VL with
and without antigen bound was investigated for each residue’s con-
tribution to the interaction energy with the ligand. Therefore, the
frequency of contributing to the binding energy with more than 0.5
kcal/mol (typical FoldX-cutoff for interactions (Schymkowitz et al.,
2005; Sanchez et al., 2008)) was calculated per position (Fig. 2C).

Table I. Descriptions of FoldX variables.

Variable Definition Unit

total.energy The predicted overall stability kcal/mol
Backbone.Hbond The contribution of backbone H-bonds kcal/mol
Sidechain.Hbond The contribution of sidechain H-bonds kcal/mol
Van.der.Waals The contribution of VanderWaals forces kcal/mol
Electrostatics The contribution of electrostatic interactions kcal/mol
Solvation.Polar The penalty for burying polar residues kcal/mol
Solvation.Hydrophobic The contribution of hydrophobic groups kcal/mol
Van.der.Waals.clashes The penalty for VanderWaals’ clashes (interresidue) kcal/mol
entropy.sidechain The entropy cost of fixing the sidechain kcal/mol
entropy.mainchain The entropy cost of fixing the mainchain/backbone kcal/mol
cis_bond The penalty for having a cis peptide bond kcal/mol
torsional.clash The penalty for VanderWaals’ torsional clashes (intraresidue) kcal/mol
backbone.clash The penalty for VanderWaals’ backbone-backbone clashes kcal/mol
helix.dipole The contribution of the helix dipole (electrostatic) kcal/mol
disulfide The contribution of disulfide bonds kcal/mol
electrostatic.kon Th electrostatic interaction between molecules in the precomplex kcal/mol
energy.Ionisation The contribution of ionization energy kcal/mol
sidechain.burial Burial of the sidechain fraction
mainchain.burial Burial of the backbone fraction
sidechain.Occ Occupancy of the sidechain fraction
mainchain.Occ Occupancy of the backbone fraction
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Fig. 2 Per-residue analysis of the isotype-specific sequence-structure relationship of VL. (A, B) “Sequence logo” (Wagih, 2017a) representation of the amino acid occurrence per Chothia positions in the LFR and CDR (red

boxes) of VLκ (A) and VLλ (B) sequences. The stack height indicates the conservation of the position, whilst the character height reports the relative conservation of distinct amino acids. The theoretical maximum value

for the sequence entropy of a protein alignment is 4.36 bits. 221 VLκ and 112 VLλ sequences were used for the alignment, significantly exceeding the critical quantity of 40 sequences allowing for accurate computation

(Crooks et al., 2004). The percentage frequency of contribution to the interaction with antigen (C) and VH domain (D) was calculated per position for VLκ (red) and VLλ (blue). Residues were considered to be relevantly

involved in binding if the FoldX force field calculated an interaction energy of at least −0.5 kcal/mol. CDRs are marked by red boxes, and significance levels of the differences > 0.2 kcal/mol between VLκ and VLλ are indi-

cated (* for P ≤ 0.05, ** for P ≤ 0.01, *** for P ≤ 0.001, **** for P ≤ 0.0001).
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The antibody interacts almost exclusively with the antigen via its
CDRs, confirming the widely accepted theory that sequence varia-
tions in the LFRs accommodate sequence selection in the CDRs to
mediate binding. Since in more than 50% of the cases only a single
residue (L91) is critical for interacting with the antigen, the fre-
quency plots further verified a high diversity in the residues that
mediate the binding. By exhibiting interaction frequencies between
20% and 50%, positions L30A-L32 in CDR1 and L91-L94 in
CDR3 were identified as the most frequently involved residues for
antigen interaction. In contrast, residues of CDR L2, and, in particu-
lar, it’s highly conserved C-terminal part (L54-L56) are only margin-
ally involved in antigen binding, indicating a rather LFR-like role.
Neither of the residue position is involved in antigen binding in
more than 50% of the VLλ or VLκ structures, which again confirmed
that the CDRs of the light chain take a support role in both isotypes,
while that of the heavy chain are most frequently involved in antigen
recognition.

The VL–VH interaction occurs differently between the κ
and λ isotypes

The energetic contributions of VL residues to the interaction with
the VH domain were obtained for all 333 non-redundant Fab struc-
tures by removing VH and calculating the free energy differences.
Amino acids that contribute with at least −0.5 kcal/mol (correspond-
ing to the accepted uncertainty of FoldX (Schymkowitz et al.,
2005)) to the free energy of the VL–VH complex were classified as
key residues. The threshold allowed to identify conserved key resi-
dues that contribute significantly to the interaction with VH for the
set of VL structures, and to calculate the percentage of key residues
per position (Fig. 2D). There is a well-known network of conserved
amino acid residues that mediates the interaction between VH and
VL (Chothia et al., 1985), which were confirmed here for both iso-
types by exhibiting a frequent contribution to the VH–VL interaction
(>50% of the structures) and a high conservation (Fig. 2A and B) at
positions L36 (Tyr), L38 (Gln), L43 (Ala/Ser), L44 (Pro), L46 (Leu),
L49 (Tyr), L87 (Tyr) and L98 (Phe). Interestingly, the sidechain
orientation of these conserved residues within the VL–VH interface is
highly similar for both isotypes (Supplementary Figure 4A–D). The
antigen-distant part of the VL–VH interface is capped by a hydrogen
bonding network, connecting the backbone of a variable residue at
position L42 with the conserved Gln at position L38 in LFR2 and
the highly conserved Gln at position H39 of VH (HFR2)
(Supplementary Figure 4D). Additionally, conserved residues form a
hydrophobic core and interact via π-π stacking of two Tyrosine
(H91 – HFR2 and a variable position in CDR H3) and two
Tryptophan residues (H47 – HFR2 and H103 – HFR4).

While the majority of interactions between VL and VH are com-
mon for both subtypes, discrepancies are present. For example, the
interaction of λ’s and κ’s VL regions with VH most significantly dif-
fers in CDR L3 (Fig. 2D). Strikingly, the amino acid composition
and conformation of this region is well known to frequently contrib-
ute to the interaction with both, antigen and VH. CDR L3 exhibits
on average a shorter and highly consistent length in VLκ if compared
to the increased and more variable length of the loop in VLλ
(Supplementary Figure 4E, Supplementary Table 1). The substantial
sequence differences might be linked to isotype-specific canonical
structures of CDR L3 (Chothia and Lesk, 1987; North et al., 2011;
Nowak et al., 2016). In VLλ, the additionally introduced residues
seem to shift the hotspot for the VH-interaction towards the C-
terminus of CDR L3. For instance, CDR L3’s N-terminal position
L91 interacts significantly more frequent with VH in VLλ than in
VLκ. Interestingly, this position shows less Shannon entropy in VLλ
(1.94) if compared to VLκ (3.00), indicating less variation in amino
acid identity in VLκ, and is often an aromatic amino acid (Trp/Tyr)
(Fig. 2A and B). Furthermore, positions L94, L95 and L95A inter-
act significantly more often with VH in VLκ than in VLλ. Taken
together, this suggests that the amino acids at positions L91 and
L95C are more important interactors with both the VH as well as
the antigen in VLλ than in VLκ.

VL–CL interactions modulate elbow-angle differences

between κ and λ
In the next step, the free energy of inter-domain interactions
between VH and VL (VL/VH), CL and CH (CL/CH) as well as VL and
CL (VL/CL) were analyzed for λ and κ isotypes (Supplementary
Figure 5). FoldX calculations yielded a stabilizing total interaction
energy between CL and VLκ, however this interaction is significantly
weaker in the VLλ/CL complex (Supplementary Figure 5A). The
interaction network that stabilizes the VL/CL complex could be
assigned to the extraordinary H-bonding of LCκ‘s backbone
(Supplementary Figure 5B) and sidechain (Supplementary
Figure 5C). This effect is decisively reinforced by LCκ’s significantly
increased quantity of interacting residues with CL (Supplementary
Figure 5D). Carefully inspecting representative structures of both
isotypes enabled to pinpoint three highly conserved residue positions
that formed discrete backbone H-bonding; L105 (Glu in κ and Thr
in λ), L106 (Val in κ and Ile in λ) and L106A (missing in κ, Leu in λ)
(Supplementary Figure 5E). Similarly, two positions responsible for
the difference in sidechain H-bonding were identified; L105 (Glu in
κ and Thr in λ) and L108 (Arg in κ and Gln in λ) (Supplementary
Figure 5F). Moving to the structural level of a representative LCκ, a
conserved Glutamine at CLκ’s position L165 was identified to form
a conserved hydrogen bond with the backbone of residues

Table II. Similarities and differences in the conservation of VLκ and VLλ as determined by the alignments.

Definition Chothia numbers

Conserved in both VLκ and VLλ,
identical amino acids

L5, L6, L16, L23, L35, L36, L37, L38, L40, L41, L44, L46, L48, L49, L57, L61, L62, L63, L64, L67, L68,
L73, L75, L82, L86, L87, L88, L98, L99, L101, L102, L103

Conserved in both VLκ and VLλ,
different amino acids

L7, L11, L71, L105, L106, L109 and L111

Highly variable in both VLκ and VLλ L3, L13, L17, L19, L22, L27, L28, L29, L30, L30B, L30C, L31, L32, L33, L34, L42, L43, L45, L50, L51,
L53, L58, L60, L76, L77, L78, L79, L80, L89, L91, L92, L93, L94, L95A, L95B, L96, L97, L104

Conserved in VLκ while variable in VLλ L1, L2, L8, L18, L20, L24, L26, L39, L47, L52, L59, L66, L69, L70, L72, L81, L90, L95, L107, L108
Conserved in VLλ while variable in VLκ L4, L9, L12, L15, L21, L25, L30A, L54, L55, L56, L83, L92, L100
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L105-L106A (Supplementary Figure 5G). Furthermore, the highly
conserved Arginine L108 forms a hydrogen bond bridge between
the backbone of L109 and CLκ. Another hydrogen bond is formed
between the Tyr at residue position 173 in CLκ and the negatively
charged residue (Glu) at position L105 in VLκ. The absence of Gly
at position L107 (exclusively present in VLλ) and a consistent hydro-
gen bonding pattern between VL and CL domains might restrain the
flexibility of the hinge region in LCκ but. Moreover, a strong inter-
action energy between VLκ and CLκ is reached by the simultaneous
formation of two hydrogens bonds via an Arg at position L108,
whilst in λ only a singular and weaker hydrogen bond is formed via
a conserved Glu at position L108 (Supplementary Figure 5G and H,
respectively).

This analysis confirmed that in κ an extensive network of hydro-
gen bonds firmly staples the hinge region connecting VL and CL in
place, thereby fixing the elbow angle between the domains. In con-
trast, λ exhibits significantly less interactions between VL and CL,
thus creating a higher flexibility of the elbow angle (Stanfield et al.,
2006).

Sequence selection in the CDRs is coupled to

sequence variation in the entire VL domain

Besides characterizing individual contributions of single residues of
VL to the binding of antigen and VH, the VL fold was further investi-
gated for correlated networks of amino acids using statistical coup-
ling analysis (SCA) (Halabi et al., 2009). The technique measures
covariations between pairs of amino acids in a multiple sequence
alignment. Thereby, high statistical coupling energies indicate evolu-
tionary dependence between residue pairs. Ideally, clustering of stat-
istical coupling energies yields networks of evolutionary dependent
amino acids (Halabi et al., 2009), for which reason it is capable of
revealing how sequence selection in one part of the antibody poten-
tially affects the amino acid identity of further parts. While the tech-
nique itself is entirely unbiased, it depends critically on the number
of sequences comprised within the alignment in order to detect
meaningful coupling information (Zafra Ruano et al., 2016).
However, given that our analysis is focused on the structure-
sequence relationship, we limited the analysis to our non-redundant
set of sequences for which reliable structural data was available, i.e.
the analysis was performed on the entire multiple sequence align-
ment containing 333VL sequences without subgrouping into λ and
κ, which is on the low side for this method and hence only the most
consistent results should be taken from this. Nevertheless, using typ-
ical settings of statistically significant coupling analysis (Lockless
and Ranganathan, 1999), three conserved clusters of interacting
amino acids were identified (Fig. 3 and Table III) that unequivocally
connect sequence variations in the CDRs with different parts of the
LFRs. For example, cluster 1 comprises statistically coupled amino
acids of the framework regions LFR1 (L7), LFR3 (L62 and L67)
and LFR4 (L98, L99, L101, L102 and L104) with a residue of CDR
L1 (L25) (Fig. 3A). In other words, the selection outcome of position
L25 at the N-terminal end of CDR L1 correlates with adaptive
changes in the frame regions LFR1, LFR3, and most prominently in
LFR4 that forms CDR L1’s opposite side of the domain.
Intriguingly, position L25 is not frequently involved in binding
(Fig. 2C), but seems to serve as a connection point between the loop
to the rest of the structure. Notably, the coupled L7 (LFR1) is a con-
served position that differs between the VL isotypes (Proline in κ,
Serine in λ, Fig. 2A and B), suggesting that these different conserved
residues help to accommodate a distinct selection of CDR sequences.

The next identified cluster 2 shows statistical coupling between ami-
no acid positions in the framework regions LFR1 (L5, L6 and L22)
and LFR3 (L57, L58, L78, L82 and L84) with CDR L1 (L31) and
CDR L3 (L94, L95 and L95B), thus connecting the rest of the fold
with both CDRs that are strongly involved in interacting with the
ligand (Fig. 3B). In particular, residues L31 and L94 are often crit-
ically involved in antigen binding (Fig. 2C), and their coupling to
LFR residues provides direct evidence of the entire domain adjust-
ing to selections at these critical positions for antigen binding. The
role of L95 and L95B seems to be more adaptive as they are not as
frequently involved in antigen binding (Fig. 2C). Additionally,
cluster 3 comprised statistically coupled amino acid positions of
the framework regions LFR1 (L12, L18, L19, L20 and L21),
LFR2 (L36, L37, L38, L41 and L45) and LFR3 (L74 and L75)
and a central position in CDR L2 (L54) (Fig. 3C). Again, the third
cluster connects a sequence selection in one of the CDRs to posi-
tions distributed across the entire domain. Taken together, these
three amino acid clusters provide clear evidence that CDRs and
FRs cannot be studied individually. Since sequence variations in
CDR positions impact throughout the entire antibody domain,
adaptive changes may be required to accommodate the CDR
sequence selection.

Besides that, no specific differences in the network of co-evolving
residues were found between VLκ and VLλ, in part due to this meth-
od’s large data requirements to detect subtle connections (Zafra
Ruano et al., 2016). Additionally, the conservation analysis most
readily identifies the commonalities in the entire family and is less
sensitive for identifying differences in subgroups (Lockless and
Ranganathan, 1999; Suel et al., 2003). Consequently, additional
methods were applied to resolve potential differences between inter-
acting residues in VLκ and VLλ.

Mining structural differences between λ and κ
In order to elucidate structural factors that distinguish between VLκ
and VLλ, a machine learning technique called Random Forest
(Breiman, 2001) was used in order to identify the most convenient
variables differentiating between both classes. According to this
method, a large quantity of decision trees is generated that each
splits instances of a dataset to their predefined classes (VLκ and
VLλ), based on a subset of variables that are randomly selected from
a predefined pool. Parameters describing the properties of λ and κ
Fab structures were extracted from the FoldX analysis, supplemen-
ted with other structural descriptors and used as input variables
(Supplementary Table 2). The ensemble of decision trees (the forest)
was then used to rank the most important variables with respect to
their ability to classify between kappa and lambda by determining
the mean decrease gini, a factor that weighs the relative importance
of each parameter in obtaining a reliable classification (Fig. 4A). The
length of the LFR4 region was identified as the variable with the
highest importance (Fig. 4B), referring to the fact that LFR4 com-
prises an additional residue (L106A) in VLλ but not in VLκ
(Fig. 4C). The relatively small and flexible glycine is usually present
as VLλ’s additional residue (Fig. 1J) in a stretch forming the VLλ-
CLλ interface, which was previously hypothesized in literature
(Stanfield et al., 2006) and confirmed above to allow λ light chains
to adopt a more flexible switch region and larger elbow angles
between VL and CL.

The penalty for peptide bonds in the cis-conformation i.e. cis-
prolines was identified as the second most important variable to
classify between κ and λ. Strikingly, VLλ comprises no cis-Prolines
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on average, and CLλ and CLκ both contain one cis-conformation
(Fig. 4D). Contrarily, VLκ exhibits two peptide bonds in the cis-
conformation in LFR1 (L8) and CDR L3 (L95) in the most cases
(Fig. 4D) (Spada et al., 1998; Ewert et al., 2003). As a result, the N-
terminal β-strand (LFR1) of VLκ is bent by a cis-proline at position
L8, while in VLλ this kink in the β-strand results from two consecu-
tive trans-prolines (Fig. 4F).

Correlating with the presence of cis-conformations in LFR1,
the length of this region emerged as another important classifica-
tion parameter between both isotypes. The LFR1 of VLκ exhibits
exactly 23 amino acids, whereas the length of the region is
restricted to 22 or 21 amino acids in VLλ (Fig. 4E). The cis-proline

at position L8 allows for one extra residue to be placed in LFR1 of
VLκ (Fig. 4F), where in VLλ two prolines at positions L7 and L8
form the bridge connecting the two halves of the beta-sandwich
(Fig. 2A, B and F).

Being exclusively found in VLκ, the second cis-proline at residue
L95 leads to a highly conserved structural feature in the middle of
CDR L3 (Fig. 4H, J). Simultaneously, the consistent length of this
loop clearly differentiates from the varying length of the correspond-
ing CDR in VLλ lacking the cis-conformation (Supplementary
Figure 4E). A clear pattern emerges from the structural environment
of cis-Pro95 comprising a hydrogen bond between the conserved
Thr97 and the frequently found (86%), β-branched Ile2 (Fig. 4H).

A

B

C

Fig. 3 Statistical Coupling Analysis (SCA) of VL structures identified three conserved clusters of statistically coupled amino acids. Ranganathan’s SCA method

determined three statistically coupled networks of amino acids (1, red; 2, blue; 3, magenta) in the VL domain. The clusters are shown on a representative VLκ
structure (left, PDB: 1l7i (Vajdos et al., 2002)) and marked through bars on a topological scheme. The color-coding scheme for CDR and LFR is maintained from

Fig. 1C and D.
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As a consequence, the N-terminal region is fixed to the structure by
a network of conserved hydrogen bonds. Interestingly, the VLλ
structures relatively often lack the N-terminal positions L1 and L2,
which might result from a low electron density in the X-ray diffrac-
tion pattern that is obtained during structure elucidation of this typ-
ically flexible region. This relates back to the hypothesis that the N-
terminal end of LFR1 has a lower thermodynamic stability in VLλ,
which was previously proposed to explain the susceptibility of
human VLλ to amyloid formation and overrepresentation in light
chain amyloidosis (Zhao et al., 2018).

Additionally distinguishing VLκ from VLλ, CDR L3 is fixed via
hydrogen bonding between the backbone of position L93 and a con-
served Gln90 (85%) that further hydrogen bridges with Thr97
(Fig. 4H). This considerably conserved network of hydrogen bonds
consistently stabilizes the structural environment of the antigen-
binding loop between VLκ chains. In contrast, VLλ exhibits a broad
range of amino acids at position L90 (Ser: 46%, Ala: 21%, Thr:
17%, Val: 16%) as well as more unspecific interaction partners (Val
at L97:76%), providing CDR L3 a greater level of variability to
adopt versatile loop conformations and broad affinities to ligands.
The isotype-specific structural features seem to be linked to the par-
ticular function of the respective CDR L3. While this region is on
average only moderately involved in target binding in VLκ, the loop
is critically important in VLλ with L91 significantly contributing to
the antigen interaction (Fig. 2C).

λ and κ structures are stabilized by differential

interaction networks

After determining differences between the sequence (Figs 1–3) and
structural appearance (Figs 1, 2 and 4) of VLλ and VLκ, next the
underlying scaffolds were investigated for stability differences. To
this end, the contribution of each residue to the thermodynamic sta-
bility (ΔGcontrib) of the respective fold was calculated using FoldX
(example data in Fig. 5A). To identify energetic differences between
the scaffolds of both isotypes, the per-residue contribution to the
thermodynamic stability of VLλ was subtracted by that of VLκ.

G G Gcontrib contrib contribΔΔ Δ Δ= λ − κ

The statistical significance of energetic differences was calculated
using the Wilcoxon signed rank test (Fig. 5A), and ΔΔGcontrib was
plotted against the -log10 p-value resulting in a so-called volcano
plot (Fig. 5B). Difference of at least ΔΔGcontrib = ±0.5 kcal/mol
combined with a p-value <0.05 were assigned as significant. The
method identified 28 positions that are evenly distributed through-
out the domain, half of which contribute to the stability of the λ
fold, while the remaining positions favor the κ scaffold. The identi-
fied residues were highlighted on a representative structure (Fig. 5C)
and on a two-dimensional interaction network representation
(Fig. 1I, J), both illustrating that the isotypes are stabilized by differ-
ent networks of interacting residues. Positions that predominantly
stabilize the VLλ structure (L7, L8, L15, L27, L28, L30, L30C, L39,
L55, L67, L70, L91, L97 and L108) are widespread and differ in
the conservation degree; L7, L8, L15 and L55 (all highly conserved
Prolines, the last located in CDRL2), L27, L28, L30, L30C and L91
(variable positions in CDR L1 and CDR L3), L39 (variable position
in LFR2), L67, L70, L97 and L108 (relatively conserved positions in
LFR3 and LFR4). Similarly, the remaining positions that contribute
to the stability of VLκ (L2, L17, L22, L25, L29, L33, L47, L54,
L71, L80, L83, L85, L94, L95) are distributed throughout the
domain while offering a broad range of conservation scores. L2,
L17 and L22 (relatively highly conserved positions in LFR1), L25,
L29 and L33 (relatively highly conserved positions in CDR L1), L47
(completely conserved position in LFR2), L54 (relatively highly con-
served position in CDR L2), L71 (completely conserved position in
LFR3), L80, L83 and L85 (variable positions in LFR3), L94 (highly
variable position in CDR L3) and L95 (highly conserved proline in
CDR L3).

In the following, the domain’s antigen binding site is exemplarily
studied in more detail to illustrate isotype-specific interaction net-
works. In VLκ (Fig. 5D), the cluster of interacting residues connects
CDR L1 (Ala/Ser at L25, an aliphatic residue at L29 and Leu33)
with LFR1 (Ile2) and LFR3 (Phe71) (Fig. 5B). VLλ is stabilized by a
different network in which several variable positions of CDR L1
(L27, L28, L30) interact with LFR3 (Thr/Ser at L70, Ser67)
(Fig. 5E). Furthermore, the cluster comprises a frequently found
Tyr/Trp at position L91 that was shown to mediate antigen and VH

interaction. Other parts of the domain reveal further differences in
stabilizing clusters, thus showing that despite the high similarity in
overall structure, VLλ and VLκ are stabilized in a fundamentally dif-
ferent manner.

λ and κ frameworks adapt to the conformation of the

CDRs

To elucidate how the selection of certain CDR loop conformations
requires adaptations in the framework region, a variation of the

Table III. Ranganathan clusters

Cluster # Chothia # Region

1 L7 LFR1
L25 CDRL1
L62 LFR3
L67 LFR3
L98 LFR4
L99 LFR4
L101 LFR4
L102 LFR4
L104 LFR4

2 L5 LFR1
L6 LFR1
L22 LFR1
L31 CDRL1
L57 LFR3
L58 LFR3
L78 LFR3
L82 LFR3
L84 LFR3
L94 CDRL3
L95 CDRL3
L95B CDRL3

3 L12 LFR1
L18 LFR1
L19 LFR1
L20 LFR1
L21 LFR1
L36 LFR2
L37 LFR2
L38 LFR2
L41 LFR2
L45 LFR2
L54 CDRL2
L74 LFR3
L75 LFR3
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Fig. 4 Structural differences between VLκ and VLλ were determined by RandomForest. (A) The most reliable classifiers for assigning the dataset of full light chain

structures to the κ and λ isotypes are identified by the mean decrease gini (variables defined in Supplementary Table 1). (B) Unknown sequences can be reliably

assigned to the κ and λ isotype according to the length of LFR4. (C) An overlay of representative Cα-traces displays how the exclusion (VLκ, green, 5ifa (Huang

et al., 2004)) or incorporation (VLλ, red, 3ujj (Guan et al., 2013)) of L106A in LFR4 affects the structure. (D) VLλ structures exhibited a significantly lower energy

penalty for peptide bonds in the cis-conformation if compared to VLκ structures. (E) The number of residues in LFR1 enables to distinguish between VLκ and VLλ
sequences. (F) Representative structures of VLλ (3ujj (Gorny et al., 2011), red) and VLκ (5ifa (Jardine et al., 2016), green) illustrate structural differences in LFR1.

VLκ structures frequently contain a cis-proline at position L8, stabilizing a fold that dramatically differs from VLλ structures that favor trans-prolines at positions

L7 and L8. (G) ‘Sequence logo’ representation of the amino acids identities in LFR1 of VLκ (top) and VLλ (bottom). (H, I) Representative structures of VLκ
(H, green, PDBs: 3drq (Julien et al., 2008), 4ygv (Schiele et al., 2015), 4jm4 (Kong et al., 2013) and 4zyk (Gilman et al., 2015)) and VLλ (I, red, PDBs: 4h8w (Acharya

et al., 2014), 1aqk (Faber et al., 1998), 5d7s (Eylenstein et al., 2016), 5cck (Lee et al., 2015)) clearly differ in the conserved environment of residue L95. Yellow

cylinders, hydrogen bonds; yellow and orange structure, heavy chain; cyan residue, Gln L90; magenta, Pro L95; orange, Thr L97; blue, Phe L98; green, Val L97.

(J) ‘Sequence logo’ representation of the amino acids occurrence spatially neighboring residues of L95 in VLκ (top) and VLλ (bottom).
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Shannon information analysis was performed (Lenaerts et al., 2008,
2009a,b; Zafra Ruano et al., 2016). State-of-the-art CDR databases
were used that classify canonical structures according to their length
(Dunbrack (North et al., 2011; Adolf-Bryfogle et al., 2015)) and

overall structural similarity (Deane (Nowak et al., 2016))
(Table IV). For the entirety of VL structures, the mutual information
network between framework’s residue identities and both CDR loop
libraries (Fig. 6A, Supplementary Figure 6A) were visualized as

A

B C

D E

Fig. 5 Key residues contribute significantly different to the folding stability of VLκ and VLλ structures. (A) Key residues that differed most clearly in their energy

contribution to the folding stability of either VLκ or VLλ were identified. The Wilcoxon rank-sum test yielded a statistical significance of P ≤ 0.0001 (****) for key

residues. The amino acid conservation in the ‘sequence logo’ format was extracted from Fig. 2A and B. In accordance to the schema in Fig. 1C, the color coding

of the lower bar indicates the CDR L2 and LFR3. (B) The volcano plot visualizes the per-residue preference for stabilizing either the VLλ (negative energy values)

or the VLκ fold (positive energy values) by plotting the difference of mean energy contribution to both structure types against the -log10 P-value (negative 10

base log of the P-value). Highly significant data points correspond to low P-values that appear at the top of the plot. The mean energy difference threshold was

set at > 0.5 kcal/mol (corresponding to the accepted uncertainty of FoldX (Schymkowitz et al., 2005)) and the P-value threshold at P < 0.05 (corresponding to a

-log10 P-value of < 1.30). The dots are color coded according to Fig. 1C and D. (C) The isotype-specific folds are stabilized by particular residue positions

(Fig. 5B) that are highlighted on representative VLκ (red clusters, PDBid: 5ifa (Huang et al., 2004) and VLλ structures (blue clusters, PDBid: 3ujj (Guan et al., 2013).
(D-E) Distinct clusters of stabilizing amino acids near the antigen binding site are shown for (D) VLκ (PDBid: 5ifa (Huang et al., 2004) and (E) VLλ (PDBid: 3ujj

(Guan et al., 2013).
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Chord diagrams, expressing the quantity of mutual information
between residue positions (nodes) via the thickness of edges.
Thereby, the connection between CDR conformations and sequence
patterns of VLλ and VLκ, and thus adaptations in the LFR accom-
modating for CDR canonical classes was unraveled. An extensive
list of couplings between residue positions of the scaffold and loop

conformations of CDR L1 and L3 was identified. CDR L2 did not
show any mutual information with framework reisdues, which is
likely due to its limited number of canonical structures (Table IV,
(North et al., 2011; Nowak et al., 2016)). Given that loop confor-
mations of λ and κ are assigned to different canonical categories, the
coupling is directly related to isotype-specific residue positions that

Table IV. Counts of canonical structures for Dunbrack and Deane definitions.

Dunbrack Deane

CDR Canonical K count L count Canonical K count L count

L1 L1-8-* 0 2 L1-10,11,12-A 52 0
L1-9-* 4 0 L1-11-A 0 10
L1-10-1 4 0 L1-11-B 0 4
L1-11-1 103 0 L1-12-A 2 0
L1-11-2 11 1 L1-12-B 3 0
L1-11-3 2 36 L1-12-D 1 0
L1-12-1 13 0 L1-13-A 0 1
L1-12-2 10 0 L1-13,14-A 0 26
L1-12-3 0 1 L1-17-A 1 0
L1-13-1 0 28 Unclustered 4 5
L1-13-2 1 3
L1-14-2 0 24
L1-14-cis9-* 0 1
L1-15-1 9 0
L1-15-2 1 0
L1-16-1 24 0
L1-16-cis9-* 1 0
L1-17-1 9 0
<NA> 29 16 <NA> 158 66

L2 L2-6-* 0 1 L2-7-A 63 44
L2-8-1 182 77 L2-7-B 2 0
L2-8-2 5 10
L2-8-3 2 0
L2-8-4 1 5
L2-8-5 1 1
L2-8-cis3-* 2 1
L2-12-2 0 1
<NA> 28 16 <NA> 156 68

L3 L3-5-* 10 1 L3-5-A 4 1
L3-6-cis4-* 0 1 L3-7-A 1 0
L3-7-1 1 0 L3-8-A 2 0
L3-8-1 9 0 L3-9-A 0 3
L3-8-2 4 0 L3-9-B 0 1
L3-8-cis6-1 1 0 L3-9,10-A 51 0
L3-9-1 4 12 L3-10-A 0 3
L3-9-2 12 2 L3-10-C 1 2
L3-9-cis5,7-* 1 0 L3-10-D 0 1
L3-9-cis7-1 116 0 L3-10,11-A 0 15
L3-9-cis7-2 1 0 L3-12-A 0 1
L3-9-cis7-3 4 0 L3-13-A 0 2
L3-10-1 5 27 Unclustered 10 15
L3-10-cis5,8-* 1 0
L3-10-cis6-* 0 2
L3-10-cis7-* 3 0
L3-10-cis7,8-1 6 0
L3-10-cis8-1 1 0
L3-11-1 8 37
L3-11-cis7-1 5 0
L3-11-cis8-* 1 1
L3-12-1 1 11
L3-12-cis8-* 0 1
L3-13-1 0 2
<NA> 27 15 <NA> 152 68
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were already determined by sequence alignments (Fig. 2A, B).
Interestingly, the mutual information between framework positions
and canonical structures of CDR L1 seems to exceed that of CDR
L3 (Fig. 6A, quantity of edges), suggesting a particular dependence
of CDR L1’s canonical structures on framework identities.

To study VLλ- and VLκ-specific sequence adaptions to its dis-
tinct CDR loop classes, equivalent chord diagrams were con-
structed isotype-specifically applying Dunbrack’s (Fig. 6B and C)
and Deane’s (Supplementary Figure 6B and C) CDR loop classes.
VLλ comprises an intricate network of connected amino acid resi-
dues, for which reason many positions throughout the domain
accommodate the canonical structures of CDR L1 and CDR L3
(Fig. 6B). The conformational cluster of CDR L1 is connected to posi-
tions of the surrounding VLλ scaffold except region LFR4. This con-
nection is used as an example to validate the mutual information
method below.

The canonical structures of VLλ’s CDR L1 favor three represen-
tative Dunbrack classes, i.e. L1-11-3, L1-13-1 and L1-14-2
(Table IV). Residues of CDR L2 (L51) and LFR3 (L66) clearly cor-
relate with that of the surrounding CDR L1 (L29) and its C-
terminal end (L33) by forming an interaction network (Fig. 7).
Canonical structure L1-11-3 (Fig. 7A) is uniquely stabilized by a
cross-linked network of hydrogen bonds involving the class-specific
side chains of AspL51 and AsnL66 as well as the backbone at pos-
ition L33 and L29(L29···AsnL66···AspL51···L33). Two of these posi-
tions (AsnL51, LysL66) are consistently modified in sequence of the
second canonical structure L1-13-1, which dramatically affects the
conformation of CDR L1 (Fig. 7B). The C-terminal end of the loop
is fixed via hydrogen bonding of the altered AsnL51 side chain and
the backbone of L33, while the middle of the loop is stabilized by a
hydrogen bond between the varied LysL66 side chain and the L29
backbone. Similarly, the third canonical structure L1-14-2 is
oriented by the unchanged LysL66 side chain and backbone of L29,
but hydrogen binding between CDR L1 and L2 is prevented by a
class-specific ValL51 (Fig. 7C). The rather nonspecific, hydrophobic
interactions of ValL51 presumably permit a more flexible loop
orientation of CDR L1. An overlay of these three canonical classes
(Fig. 7D) indicates that the lacking hydrogen bond of L51 relaxes
the backbone of CDR L1-14-2 into an extended beta-strand. In
contrast, the loop conformation of L1-11-3 is precisely positioned
by a well-defined hydrogen bond network between L33, L51, L66
and L28. The sequence variability of CDR L2 in VLλ seems to con-
tribute less to antigen binding (Fig. 2C) rather than to support the
remaining hypervariable regions to form distinct canonical struc-
tures. The herein identified unique interaction networks between
framework residues and canonical CDR structures strongly sup-
ports the hypothesis stating that the conformation of CDRs of VLλ
depend stronger on framework positions than in the case of VLκ.
For grafting CDRs on VLλ scaffolds, this finding underlines an
increased importance of considering key residues of the scaffold
and verifying the loop orientation of its CDR L1, L2 and L3. VLκ
exhibits less couplings between loop conformations and LRF scaf-
fold, suggesting that loop grafting could potentially be less compli-
cated (Fig. 6C).

A

B

C

Fig. 6 Chord diagrams of mutual information between canonical structures

and framework residues. (A, B, C) Mutual information of Dunbrack’s canon-

ical structures (North et al., 2011) and framework residues of (A) VL, (B) VLλ
and (C) VLκ was calculated, and values > 0.5 are shown. The color of the

chords corresponds with CDR’s canonical group (salmon: CDR L3, purple:

CDR L1), and chord width correlates with the extent of mutual information

(in bits). The coloring scheme of Chothia positions reflects their topological

region similar to that used in Figs 1–3.
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Conclusion

The role of loops, particularly longer ones, in protein structures is
often underappreciated as the focus goes to the regular hydrogen
bonded elements of (secondary and tertiary) structure and the
hydrophobic core, with the loops required to connect more interest-
ing structure parts (Pei et al., 1997; Fiser et al., 2000). This is par-
ticularly pronounced in the concept of CDR loop grafting in the
field of antibody engineering. However, 20–30% of protein struc-
tures are composed of elements that can be classified as loop struc-
tures while playing an integral and essential role in the folding and
stability of the protein structure (Vanhee et al., 2011). Moreover,
loop structures can act as tensioned springs that propagates strain
throughout the surrounding structure, a mechanistic concept that

seems to occur typically around active sites (Rousseau et al., 2001;
Gutteridge and Thornton, 2004).

The field of antibody engineering has gradually incorporated a
more integrative view, in which the CDRs are fitted into the frame-
work regions rather than being grafted on top of it. In the current
study, advanced statistical analysis of protein structures was
employed to comprehensively map the network of interactions that
connect the CDRs to the rest of the VL domain. A special focus was
further set on the structural difference between VLλ and VLκ iso-
types to highlight the specific structural adaptations through the
domains. The view that emerges is that there are residues distributed
over the VL domain whose amino acid identity are adapted to the
structure of the CDRs. The analysis forms the starting point to

A B

C D

Fig. 7 Networks of interacting amino acids stabilize distinct canonical structures of CDR L1 in VLλ. (A) Dunbrack’s CDR cluster L1-11-3 is favored by a hydrogen

bond network between Asp L51 of CDR L2 and Asn L66 of LFR3, cooperatively coordinating the C-terminal end of CDR L1 (L33) and the center of CDR L1 (L29).

PDB 4m5y was representatively used to visualize the structure (Hong et al., 2013). (B) Canonical class L1-13-1 is stabilized by hydrogen bonding between Asn

L51 of CDR L2 and Val L33 of CDR L1, and between Lys L66 of LFR3 and Ile L29 of CDR L1. The structure of PDB 3n9g was exemplary used for visualization

(Kaufmann et al., 2010). (C) The canonical structure L1-14-2 is favored by a hydrogen bond between Val L29 of CDR L1 and Lys L66 of LFR3, whilst L33 and L51

do not interact as it was shown for PDB 3kdm (Niemi et al., 2011). (D) An overlay of (A-C) highlights the structural differences between the canonical classes L1-

11-3, L1-13-1 and L1-14-2. The consistent hydrogen bonds between the sidechain of L66 and the central part CDR L1, and between the sidechain of L51 of CDR

L2 and L33 of the C-terminus of CDR L1 define the Dunbrack canonical classes of CDR L1 in VLλ.
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design a back-mutation algorithm that identifies and modifies prob-
lematic positions to optimize the placement of defined loop config-
urations on scaffold regions. The applied methods are in principle
amenable to analyze any protein domain, but the availability of
structural information with sufficient resolution and diversity are a
prerequisite. Taking the latter into consideration, the analysis of
novel developments such as more complex antibody formats are cur-
rently out of scope.

The structural differences between VLλ and VLκ reveal how the
VL domain adapts to entirely different loop classes. Most notably,
solely VLλ‘s CDR L1 contains a helical segment sittings tightly in
the beta-sandwich of the Ig fold, partly distorting the inter-sheet
interaction of the sandwich. Another important difference to VLκ is
found in the linker region between VL and VC, which forms less
interactions and a more flexible elbow angle conformation in VLλ.
The structural differences are apparent in both, the conservation
pattern of each isotype, and the network of interactions stabilizing
each structure. It is hence consistent that grafting of loops on a VL

domain will require isotype-specific adaptations of its key residues
which identities associate with its CDR loop classes.

The analytical framework of this work provided new insight into
the VL architecture, but have not yet been turned into a protocol for
antibody framework engineering in response to loop grafting. A
method still to be developed could predict the most appropriate ami-
no acid choices at crucial framework positions under consideration
of its CDR loop classes. Although machine learning algorithms
appear to be ideally suited for this task at first sight, the available
set of diverse and high-quality structural data is currently too limited
to allow the training of a sufficiently accurate method. Besides that, in
the most cases accurate loop class assignments are precluded by solely
knowing the CDR loop sequences rather than their exact structures.
The absence of accurate structural models further limits the potential
application of force field calculations to identify optimal amino acid
identities at critical positions. As a consequence of the mentioned
restrictions, the best current approach may be based on selectively
varying amino acids on critical positions in the VL domain followed
by experimentally selecting the best variants with regard to its bio-
physical properties and antigen affinity. The fact that several of the
aspects that stood out form our analysis have been incorporated in
existing antibody design workflows (Lapidoth et al., 2015; Adolf-
Bryfogle et al., 2018) further underlines the validity of our findings.

Supplementary Data

Supplementary data are available at Protein Engineering, Design and
Selection online.
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