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abstract

The identification of prognostic factors and building of risk assessment prognostic models will continue to play
a major role in 21st century medicine in patient management and decision making. Investigators often are
interested in examining the relationship among host, tumor-related, and environmental variables in predicting
clinical outcomes. We distinguish between static and dynamic prediction models. In static prediction modeling,
variables collected at baseline typically are used in building models. On the other hand, dynamic predictive
models leverage the longitudinal data of covariates collected during treatment or follow-up and hence provide
accurate predictions of patients’ prognoses. To date, most risk assessment models in oncology have been based
on static models. In this article, we cover topics related to the analysis of prognostic factors, centering on factors
that are both relevant at the time of diagnosis or initial treatment and during treatment. We describe the types of
risk prediction and then provide a brief description of the penalized regression methods. We then review the
state-of-the art methods for dynamic prediction and compare the strengths and limitations of these methods.
Although static models will continue to play an important role in oncology, developing and validating dynamic
models of clinical outcomes need to take a higher priority. A framework for developing and validating dynamic
tools in oncology seems to still be needed. One of the limitations in oncology that may constrain modelers is the
lack of access to longitudinal biomarker data. It is highly recommended that the next generation of risk as-
sessments consider longitudinal biomarker data and outcomes so that prediction can be continually updated.
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INTRODUCTION

The identification of prognostic factors and building of
risk assessment prognostic models will continue to
play a major role in 21st century medicine in patient
management and decision making.1 Prognostic fac-
tors in oncology associate host and tumor variables
with clinical outcomes independent of treatment.2

Gospodarowicz et al3 classified factors as either
tumor related, host, or environmental. Tumor-related
factors are variables related to the tumor and reveal the
tumor biology and pathology, such as size of tumor,
lymph node involvement, presence of metastasis, and
molecular markers (overexpression of PTEN gene,
presence of androgen receptor variant AR-V7). Host
factors are associated with patient characteristics,
such as age and comorbidities. Finally, environmental
factors are external to the patient, such as access to
health care.3 Prognostic models are increasingly used
in the design, conduct, and analysis of clinical trials.
For example, in several trials of prostate cancer,
randomization was stratified by the predicted survival
probability determined by the prognostic model of
overall survival.4-7 In the TAILORx trial, Oncotype DX,
a 21-gene score that predicts the likelihood of

recurrence, is used to classify women with breast
cancer by their risk group of recurrence.8 Prognostic
factors also have been used for enriching the patient
population in trials with targeted therapies. For ex-
ample, in the ToGA trial, patients with human epi-
dermal growth factor receptor 2–positive gastric
cancer were randomly assigned to either trastuzumab
plus chemotherapy or chemotherapy alone.9

In this article, we cover topics that are related to the
analysis of prognostic factors, centering on factors that
are relevant both at the time of diagnosis or initial
treatment and during treatment or follow-up. We use
the terms prognostic models, risk models, and risk
assessments interchangeably. This article is organized
in the following way. First, we describe the type of risk
prediction and then provide a brief description of the
penalized regression methods. Second, we review the
state-of-the-art methods for dynamic prediction and
compare the strengths and limitations of these
methods. Third, we offer a concise discussion of
validation and metrics for assessing models. Finally,
we present recommendations for the next generation
of risk assessment methods to be built in modern
oncology.
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TYPES OF RISK PREDICTIONS

Investigators are interested in examining the relationship
between host and tumor-related factors in predicting
clinical outcomes (Fig 1A). We distinguish between static
and dynamic prediction. In static prediction modeling,
variables collected at baseline typically are used in building

models. For example, prostate-specific antigen (PSA)
measurements at baseline are used for prediction of re-
currence. On the other hand, dynamic predictive models
explicitly leverage the longitudinal data of covariates that
are collected during treatment or follow-up. In patients with
advanced cancer, the disease has substantially evolved
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FIG 1. (A) Relationship between host and tumor-related factors and clinical outcomes. Modified from Halabi and
Owzar.2 (B) Dynamic risk prediction framework. LDH, lactate dehydrogenase; PSA, prostate-specific antigen.

CONTEXT SUMMARY

Key Objective
Building prognostic models will continue to play a role in 21st century medicine in patient management. Wemake a distinction

between static and dynamic predictive models and provide a review of the state-of-the-art methods for dynamic predictive
models to promote them for future use.

Knowledge Generated
To date, most risk assessment models in oncology have been based on static prognostic models. An understanding of the

longitudinal relationship between host and tumor-related factors and their impact on clinical outcomes is critical. Re-
gardless of whether static or dynamic modeling is the primary objective, we envision that this review will encourage
investigators to take risk assessment as a discipline by itself.

Relevance
We expect to see an upsurge in dynamic risk assessments, and as such, it is highly recommended that the next generation of

models consider the longitudinal data and outcomes so that predictions are updated.
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and has a heterogeneous presentation within the patient.10

The inter- and intrapatient variability should be taken into
account in statistical modeling.11,12 Dynamic prediction
incorporates time-dependent covariates so that risk pre-
diction would be continually updated with new observations
to reflect the patient’s prognosis.

We define terminology that is typically used in dynamic risk
prediction. The term landmark time is defined as a current
time point at which we have data (host, tumor-related
variables, and outcomes). The term horizon time is de-
fined as a future time point at which we want to predict
a time-to-event outcome, such as overall survival. Dynamic
predictive models essentially capture the historical in-
formation of the longitudinal measurements from the study
baseline to the landmark time (t) such that the risk at
horizon time (u) can be accurately predicted (Fig 1B).

IDENTIFICATION OF PROGNOSTIC FACTORS

Several popular strategies exist for identifying prognostic
factors in static risk assessment. Standard variable selec-
tion approaches, such as forward selection, backward
selection, and so forth, with logistic regression for binary
end points,13 and proportional hazards regression for time-
to-event end points,14 have been applied. Criticism for the
stepwise variable selection has been well documented.15,16

Of note, classification trees, such as recursive partitioning
for both binary and time-to-event end points,17-20 frequently
have been used.2,21-26

We concentrate on penalized methods that fit and shrink p
predictors and in doing so, reduce the variance of the
coefficient estimates.27 Thus, these methods would im-
prove the accuracy of the model.28 The least absolute
shrinkage and selection operator (LASSO) and adaptive
LASSO (ALASSO) have been widely used to develop
prognostic models of clinical outcomes.29,30 We will briefly
describe ridge regression and penalized methods. Ridge
regression minimizes the residual sum of squares function,
but a caveat is that it does not reduce all the coefficients
exactly to 0.28 Let yi be the response, xij the jth covariate
value (j = 1, 2, …, p) corresponding to the ith individual, βj
the regression coefficient jth covariate, and λ a tuning
parameter. Similar to ridge regression, the first term in
LASSO is the residual sum of squares, and LASSO mini-
mizes this function subject to the l1 penalty (Eq 1):
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A large tuning parameter causes the coefficient estimates
to be equal to 0, thus the LASSO will have the sparsity
property.28 LASSO is an improvement over ridge regression,
although it has the main limitation of tending to select too
many unimportant variables, and it performs poorly
in situations when p . n.20,31-33 ALASSO has been pro-
posed as an improvement over LASSO to overcome the

limitation of LASSO.34 ALASSO minimizes this function
(Eq 2):
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ALASSO uses a weighted penalty term in the l1 penalty
where w = (w1, w2,…, wp) is the weight vector. If β̂ is a
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consistent estimator [eg, β̂(OLS)] of β = (β1, β2,…, βp), then
an appropriate choice of the weight w is 1 / ǀβ̂ǀ. ALASSO is
considered to be an improvement over LASSO because it
has consistent variable selection as well as lower prediction
error. Consequently, ALASSO tends to select fewer nonzero
coefficients than the LASSO despite having a smaller
prediction error. The ALASSO enjoys the oracle
property.30,34

Elastic net regression uses a combination of l1 penalty and
ridge l2 penalty and is a compromise between LASSO and
ridge regression. Furthermore, one of its main advantages
when p . n is that it retains more than n variables in the
model.35 Hastie et al28 provided a thorough comparison of
these shrinkage techniques.

We applied LASSO and ALASSO from CALGB 90401,
a phase III clinical trial in advanced prostate cancer, with
the overall goal of building a model of overall survival.5 We
had 22 variables that were common between CALGB
90401 and the Enthuse trial (external data set).36 Because
of missing data in the covariates, we used methods to
impute them as described by White and Royston.37 The
regression’s estimates from the Cox proportional hazards
model, LASSO, and ALASSO, are listed in Table 1. We
considered LASSO and ALASSO and applied both the
Akaike information criterion and the Bayesian information
criterion to choose the optimal model of overall survival.
LASSO and ALASSO selected eight and nine variables,
respectively (Table 1). We determined the ALASSO model
to be the final optimal model since it included the site of
metastases for bone disease. Figure 2 shows the solution
path for ALASSO, and we observe that lactate de-
hydrogenase (LDH) greater than the upper limit of normal
and Eastern Cooperative Oncology Group (ECOG) perfor-
mance status were selected early in the l1 path compared
with the other variables. This is followed by visceral disease,
alkaline phosphatase, albumin, hemoglobin, pain, bone
metastases, and then PSA (the Bayesian information cri-
terion stopped at PSA). The final model selected the fol-
lowing prognostic factors: LDH greater than the upper limit
of normal, ECOG performance status, metastatic site
(presence of visceral disease, presence of bone metasta-
ses), PSA, alkaline phosphatase, albumin, hemoglobin,
and analgesic opioid use.

We have focused on variable selection when the number of
predictors is small relative to the sample size. There are two
main challenges in identifying potential prognostic factors
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in high-dimensional space: computational intensity and
a high false discovery rate.38,39 Of note, several pre-
screening methods are useful in identifying prognostic
features both in the large p, small n problem and in ultra-
high-dimensional space.31,32,39-41

The concept of variable selection is more challenging in
building dynamic models because the main goal is to
identify important factors that are related to the longitudinal
process and the outcomes. In recent years, a few statistical
studies extended the penalized method for the joint
modeling of longitudinal data and survival outcomes.42,43

The general idea is to postulate the joint likelihood linking
the two submodels through latent random variables and
to add shrinkage operators to select fixed and random
effects. He et al42 proposed a variable selection method
for joint modeling with a univariable longitudinal outcome,
and Chen and Wang43 extended the framework to in-
corporate multiple longitudinal outcomes. While these
methods have not been implemented in oncology, the

statistical development paves the way for dynamic risk
prediction.

Heterogeneity of treatment effect (HTE) is another impor-
tant area to consider when building prognostic models.
HTE is the nonrandom, explainable variability in the di-
rection and magnitude of treatment effects for individuals
within a population.44 There are different sources for HTE,
and HTE may arise from an underlying causal mechanism,
artifacts, measurements, or methods.45,46 One main goal of
HTE analyses is to predict whether a patient might benefit
from a treatment. Traditionally, the Cox regression method
has been used to identify subgroups of patients who may
benefit from treatment.14 Recursive partitioning also has
been used to identify a subgroup of patients.47 While these
classification tree methods have several advantages, they
can create complicated structures and produce
overfitting.19,41,47 Other methods, such as permutation
methods, SIDES (subgroup identification based on differ-
ential effect search), doubly robust augmented inverse
probability–weighted estimator, and virtual twins, have
been developed to take HTE into consideration.45,48-52 The
personalized prediction can be adequately addressed by
the dynamic prediction framework, although it is an area for
future research.

ESTIMATING PATIENT-SPECIFIC OUTCOME PREDICTION
AND CONSTRUCTING RISK GROUPS

Once the final model is chosen, the next step is estimating
patient-specific outcome prediction. The estimated survival
function at time t is (Eq 3)

Ŝ
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]expR , (3)

where R is the estimated linear predictor or risk score for

the ith individual (� x iT β̂ � �p
j�1 β̂j xij ), the baseline survival

function is bS0(t ) � exp(−Ĥ0(t )), and the baseline cumu-
lative hazard function is Ĥ0(t ). When we turned to our
prognostic model of overall survival in prostate cancer, we
computed a risk score from the estimated regression
coefficients and the predicted survival at 24 months
using the baseline cumulative hazard. We present the
profiles of two patients with different baseline prognos-
tic factors and their predicted overall survival at
24 months5 (Table 2). We observe that patient 2 had
a worse predicted survival probability at 24 months than
patient 1.

Another important task in static predictive modeling is to
construct prognostic risk groups, which can be formed on
the basis of their quantiles from the estimated linear pre-
dictor. In our overall survival model, we constructed two
and three prognostic risk groups and determined the cut
points from the training set on the basis of quantiles (33rd,
50th, and 67th percentiles).5 While demonstrating that the
overall survival curves differ across the three risk groups is
appropriate, this approach is not sufficient.53 The optimal

TABLE 1. Identified Prognostic Factors by LASSO and ALASSO in the Training Set
Description of Variable (variable name) Cox Model, β̂ LASSO, β̂ ALASSO, β̂

Site of metastases

Bone (DS2) 0.234 — 0.058

Visceral (DS3) 0.400 0.056 0.293

Liver (LIVER) 0.013 — —

Lung (LUNG) 0.199 — —

Opioid analgesic use (PAIN) 0.136 0.077 0.088

Age in years (AGE) −0.003 — —

Body mass index (BMI) −0.021 — —

White race (Caucasian) 0.034 — —

ECOG performance status (ECOG) 0.278 0.190 0.305

Comorbidity (Comorb) 0.070 — —

Gleason score (GLEAST) 0.052 — —

Prior treatment with radiotherapy (Radio) 0.105 — —

LDH ≥ ULN (LDH.High) 0.325 0.203 0.335

Albumin (ALB) −0.133 −0.080 −0.122

Bilirubin (BILI) −0.017 — —

Hemoglobin (HGB) −0.094 −0.085 −0.065

Platelets (PLT) 0.000 — —

WBCs (WBC) 0.055 — —

Alkaline phosphatase (ALKPHOS) 0.145 0.138 0.145

Aspartate aminotransferase (AST) 0.025 — —

Prostate-specific antigen (PSA) 0.063 0.026 0.015

Testosterone (TESTO) −0.088 — —

Training C-index 0.662 0.660

Integrated time AUC 0.742 0.740

Abbreviations: ALASSO, adaptive least absolute shrinkage and selection
operator; AUC, area under the curve; β̂, estimated regression coefficient; LASSO,
least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; ULN,
upper limit of normal.
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strategy would be to compute a measure of discriminative
ability of the model.

METHODS FOR DYNAMIC MODELING

Let Ti denote the true failure time and fi(t) a set of longi-
tudinal measurements at some time points up to landmark
time t. We are interested in predicting the probability that
a new patient i* is event free at least up to horizon time u. t

given survival up to t. The conditional probability is defined
as (Eq 4)

πi∗
�
u|t
�
� Pr

�
Ti∗ ≥ u|Ti∗ . t , fi∗

�
t
�
,Dn
�
, (4)

where Dn denotes a sample from the target population
and on which the prediction is based. This formulation
enables a dynamic updating scheme. Indeed, if a new
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FIG 2. Solution path for adaptive least absolute shrinkage and selection operator. ALB, albumin; ALKPHOS,
alkaline phosphatase; BMI, body mass index; comorb, comorbidity; DS2, bone metastases; DS3, visceral
metastases; ECOG, Eastern Cooperative Oncology Group performance status; GLEAST, Gleason score; HGB,
hemoglobin; LDH.High, lactate dehydrogenase greater than or equal to the upper limit of normal; PAIN, opioid
analgesic use; PSA, prostate-specific antigen; Radio, prior treatment with radiotherapy; TESTO, testosterone.
Reproduced with permission.96

TABLE 2. Profiles of Patient-Specific Predicted Probabilities

Patient No. Disease Site Opiate Use ECOG LDH > ULN ALB (g/dL) HGB (g/dL) ALK (U/L) PSA (ng/mL)
Predicted Probability at
24 Months (95% CI)*

1 Bone Yes 1 No 4 14 130 90 0.47 (0.42 to 0.52)

2 Visceral Yes 1 Yes 3 10 90 75 0.28 (0.19 to 0.38)

NOTE. From Halabi et al.5

Abbreviations: ALB, albumin; ALK, alkaline phosphatase; ECOG, Eastern Cooperative Oncology Group performance status; HGB, hemoglobin; LDH, lactate
dehydrogenase; PSA, prostate-specific antigen; ULN, upper limit of normal.
*Computed using the First-Line Metastatic Castrate-Resistant Prostate Cancer Patients risk classification tool.97
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measurement for patient i* is observed at time t
′
. t, we

can update the risk prediction by calculating πi* (uǀt
′).

There are two general dynamic risk prediction frameworks:
joint modeling and landmark analysis. Joint modeling
comprises two linked submodels, one for the longitudinal
process and one for the time-to-event data, and both de-
pend on a common set of latent random variables.54,55 In
particular, the longitudinal data usually are modeled by
a linear mixed-effects model. The time-to-event data are
modeled by the proportional hazards model, with true
longitudinal processes as time-varying covariates. The Cox
regression coefficient quantifies the association between
the latent longitudinal process and the hazard rate at time t.
The longitudinal process and the event time process are
assumed to be independent given the latent random ef-
fects, and the joint likelihood can be derived. The model
can be estimated either using a frequentist approach that
attains maximum likelihood through an expectation-
maximization algorithm54,56-58 or a Bayesian approach
that uses Markov chain Monte Carlo to obtain posterior
means.59-61 While assuming that the parameters are readily
estimated from the observed data, the conditional proba-
bility πi* (uǀt) can be computed. A Monte Carlo estimate of
πi* (uǀt) can be obtained by sampling the random effects
and the parameters from the corresponding distributions.62

On the other hand, landmarking63-66 consists of a series of
related Cox regression models, where each one is defined
at a distinct landmark time t.63-66 For each pair of {u,t},
a separate model is fitted to the individuals who remain in
the study and have not yet experienced the event of in-
terest. The baseline hazard can be estimated using Bre-
slow’s estimator.67 Then πi* (uǀt) is computed as the survival
probability that treats the longitudinal observation at time t
as a baseline covariate.

COMPARISON BETWEEN JOINT MODELING
AND LANDMARKING

Joint modeling and landmarking approaches differ in three
aspects: model assumptions, information used, and
computational complexity. Joint modeling models the dual
distribution of the longitudinal process and the failure times
and hence satisfies the consistency conditions for dynamic
prediction.68 Moreover, it exploits the full information of
collected data and takes into account the measurement
error of the longitudinal data. This latter point is critical
because it implies that joint modeling is more efficient than
landmarking. However, joint modeling needs to specify
a correct model for the longitudinal process and requires
stronger assumptions than landmarking. Joint modeling
also takes a considerable amount of effort to estimate the
parameters, and the computational cost is high because it
involves complicated joint distribution and numerical in-
tegration. In contrast, landmarking circumvents the
aforementioned model assumptions and computational
burden, but it is not a comprehensive probability model of

the longitudinal process and failure times and, as such,
does not satisfy the consistency conditions. Another major
shortcoming is that landmarking only considers the patients
at risk at the landmark time and does not fully explore the
information.

Several articles have focused on the comparison of joint
modeling and landmarking. Rizopoulos et al69 compared
the two prediction frameworks and proposed a compromise
between joint modeling and landmarking. Suresh et al70

contrasted joint modeling and landmarking for dynamic risk
prediction in the context of a binary longitudinal marker and
applied these approaches to a prostate cancer study. Ferrer
et al71 compared the two approaches in the case of model
misspecification, and they aimed for predicting competing
risks of prostate cancer from PSA history.

Dynamic risk prediction (joint modeling) relies on model
assumptions, and hence, its performance suffers from
model misspecification. Functional data analysis, which is
a nonparametric framework, has received considerable
attention in medical studies because it is a flexible tool for
modeling nonlinear longitudinal processes.72-74 In partic-
ular, these methods have been incorporated with joint
modeling75 and are exploited to construct dynamic pre-
diction models.61,76-78

EXAMPLES

A few examples exist in cancer where longitudinal data
were modeled with clinical outcomes. We have previously
explored whether PSA decline at different landmark times is
prognostic for overall survival in patients with advanced
prostate cancer.79 Fontein et al80 developed a dynamic
model for predicting overall survival in patients with breast
cancer. The authors validated the overall survival model
using a dynamic cross-validated C-index and reported
C-indices of 0.72, 0.76, and 0.79 at 1, 2, and 3 years,
respectively. Suresh et al70 and Ferrer et al71 extended the
landmarking approach and used prostate cancer studies as
the testing bed. In addition, Proust-Lima and Taylor81 de-
veloped a dynamic prognostic tool that is based on joint
modeling using PSA as a biomarker for prostate cancer re-
currence. Other applications of dynamic models have been
implemented to prostate cancer82-85 and colorectal cancer.86

We demonstrated the application of dynamic risk prediction
using the DATATOP study,87 a clinical trial that examined
the benefits of deprenyl and α-tocopherol in slowing the
progression of Parkinson disease (PD).88 Multiple longi-
tudinal biomarkers were collected in the DATATOP study,
including Unified PD Rating Scale total score, modified
Hoehn and Yahr scale, and Schwab and England activities
of daily living. The biomarkers measured at baseline, 1
month, and every 3 months showed strong correlation
between PD symptoms and the terminal event. We applied
a joint modeling framework to account for the informative
event times. We developed a Bayesian approach for pa-
rameter estimation and predicted patients’ future outcome
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trajectories (Fig 3A) and risk of functional disability (Fig 3B).
Patient 169, who had more severe disease with earlier
development of functional disability, and patient 718, who
had less severe disease, were selected to illustrate the
patient-specific predictions at clinically relevant future time

points conditional on their available longitudinal mea-
surements. The predicted Unified PD Rating Scale tra-
jectories were biased, with wide uncertainty bands when
only baseline measurements were used. Although dynamic
prediction for longitudinal trajectories is an advantage of the
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FIG 3. (A) Predicted Unified Parkinson Disease Rating Scale (UPDRS) trajectories and (B) predicted conditional failure probabilities for patient 169 (top
rows) and patient 718 (bottom rows). Solid lines are themeans of 2,000Markov chainMonte Carlo samples. Dashed lines are the 2.5 and 97.5 percentiles of
the 2,000 Markov chain Monte Carlo samples. The vertical lines represent the landmark time. Reproduced with permission.87
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joint modeling, our major interest was to predict the
probability of functional disability after visits at time t given
the patients’ longitudinal profiles and event-free status up to
time t. We found a similar pattern in that the risk predictions
with higher accuracy were achieved on the basis of more
longitudinal observations. For example, according to the
longitudinal profiles of the first 12 months, the predicted
probabilities in the next 3, 6, 9, and 12 months were 0.21,
0.46, 0.78, and 0.97, respectively, for patient 169 (Fig 3B,
last plot, top row) and 0.02, 0.06, 0.13, and 0.30, re-
spectively, for patient 718 (Fig 3B, last plot, bottom row).
Therefore, patient 169, who had a higher risk of functional
disability in the next few months, might need attentive
medical intervention to control disease progression.
Meanwhile, the Brier’s scores were 0.216 and 0.108, re-
spectively, which implied a better prediction in terms of
calibration given more follow-up data.

VALIDATION AND ASSESSMENT OF PROGNOSTIC MODELS

The primary goal of a risk assessment is to provide accurate
outcome prediction in new patients.16,89 Overfitting remains
one of the main challenges in model building. Overfitting
occurs when a high predictive accuracy is estimated from
amodel that has been applied to the training set but has low
accuracy when assessed in an independent data set.90 A
good example of overfitting is provided in Halabi and Owzar.2

The validation of a prognostic model is considered a critical
step after a risk assessment model has been built. There
are two types of validation: external and internal.16,89,90

External validation, where the frozen model from the
training data is applied to an independent data set, is the
most rigorous approach. However, investigators often may
not have access to the external data set. Of note, other types
of resampling methods, such as cross-validation, boot-
strapping, and bootstrapping using 0.632+, are considered
appropriate approaches to model validation.32,53,91,92

Assessment of the model’s performance usually is con-
ducted by examining the calibration and discriminative
ability of the model. Calibration signifies the extent of the
match between the predicted and observed outcome.16

Often, investigators plot the predicted versus the ob-
served outcome. The model would be calibrated if the data
fall on a 45° line. Using data from two phase III clinical
trials, we evaluated the overall survival model for calibration
at different landmarks.36,93 Figure 4A shows that the pre-
dicted survival probabilities at 18 months in the Enthuse 33
trial were close to the proportion of patients who survived 18
months. On the other hand, Figure 4B demonstrates that
the model was not well gauged because the observed-
predicted data points did not fall on the 45° line. The first
two points (circles) show that the model overpredicted the
proportion of patients who survived 12months, whereas the
third and fifth data points show that the model under-
predicted the proportion of patients who survived 12
months.

Discrimination describes the ability of a prognostic model to
distinguish between patients with and without the outcome
of interest.16 Several metrics are used to report the per-
formance of a model. A widely used measure is concor-
dance (C-index), which is the agreement between observed
outcomes and prediction. Another widely used measure of
predictive accuracy is the time-dependent area under the
receiver operating characteristic curve (tAUROC),94 which
can be combined to form an integrated AUROC for the
whole range of the study.95 Circling back to our prognostic
model in prostate cancer, we evaluated the performance of
the model by implementing the integrated measure for the
tAUROC by Uno et al,95 which was 0.73 (95% CI, 0.70 to
0.73) and 0.76 (95% CI, 0.72 to 0.76) in the testing and
validation sets, respectively.5

Dynamic models also need to be assessed for their dis-
criminative ability and calibration. These measures can
evaluate the performance of the model at various time
points of the prediction. The tAUROC and Brier’s score are
widely used for dynamic prediction validation.69,70,82,87 In
the DATATOP study,87 we applied fivefold cross-validation
to evaluate the predictive performance of our framework.
Conditional on the longitudinal history up to month 3 and
month 12, our model yielded tAUROCs of 0.744 and 0.766,
respectively, for correctly assigning a higher risk of func-
tional disability by month 15 to patients with more severe
disease.

Criteria for evaluating risk assessments have been published
by the Precision Medicine Core of the American Joint
Commission on Cancer,53 the Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis,92 and the Critical Appraisal and Data Extraction
for Systematic Reviews of Prediction Modeling Studies.91

Investigators are encouraged to follow these guidelines as
more rigorous tools of clinical outcomes would be developed
in oncology. These models are anticipated to be imple-
mented in both the design and the conduct of future trials.

Although static models will continue to play an important
role in oncology, developing and validating dynamicmodels
of clinical outcomes need to take a higher priority. A
framework for developing and validating dynamic tools in
oncology seems to be needed. One of the limitations is that
modelers may be constrained by the lack of access to the
longitudinal biomarker data; therefore, the next generation
of risk assessments are highly recommended to take into
consideration the longitudinal biomarker data and out-
comes so that predictions are updated.

In summary, risk assessment will remain an important
research task in precision oncology. We advocate for good
clinical practice in risk assessment studies and recom-
mend that investigators design these studies prospectively
to obtain accurate individual outcome prediction and
prognostic risk group classification. Prognostic studies
should begin by asking fundamental questions that are
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pertinent to patient outcomes, define the primary end point
a priori, justify the sample size, and describe the appro-
priate methods for variable selection and model assess-
ment. Lastly, they should be validated using external data
sets if available.

An understanding of the longitudinal relationship be-
tween host and tumor-related factors and their impact on
clinical outcomes is critical. We expect to see an upsurge
in dynamic risk assessments in oncology, and as such,
the American Joint Committee on Cancer and the

Transparent Reporting of a Multivariable Prediction Model
for Individual Prognosis or Diagnosis guidelines should be
extended to dynamic predictive modeling. Regardless of
whether static or dynamic modeling is the primary objec-
tive, we envision that this review will bridge gaps in
knowledge and motivate investigators to take risk assess-
ment as a discipline by itself. Funding opportunities with
the primary goal of building and validating high-quality
prognostic models will be critical for personalized
predictions.
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