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MR images of infants and fetuses allow non-invasive analysis of the brain. Quantitative analysis of brain de-
velopment requires automatic brain tissue segmentation that is typically preceded by segmentation of the in-
tracranial volume (ICV). Fast changes in the size and morphology of the developing brain, motion artifacts, and
large variation in the field of view make ICV segmentation a challenging task.

We propose an automatic method for segmentation of the ICV in fetal and neonatal MRI scans. The method
was developed and tested with a diverse set of scans regarding image acquisition parameters (i.e. field strength,
image acquisition plane, image resolution), infant age (23-45 weeks post menstrual age), and pathology
(posthaemorrhagic ventricular dilatation, stroke, asphyxia, and Down syndrome). The results demonstrate that
the method achieves accurate segmentation with a Dice coefficient (DC) ranging from 0.98 to 0.99 in neonatal
and fetal scans regardless of image acquisition parameters or patient characteristics. Hence, the algorithm
provides a generic tool for segmentation of the ICV that may be used as a preprocessing step for brain tissue

segmentation in fetal and neonatal brain MR scans.

1. Introduction

Magnetic resonance imaging (MRI) is a clinically used non-invasive
tool for monitoring brain development in fetuses and neonates. The
analysis usually comprises of quantification of brain tissue volumes and
cortical morphology to extract meaningful information for diagnosis or
prognosis (Claessens et al., 2016; Drost et al., 2018; Dubois et al., 2007;
Inder et al., 1999; Kersbergen et al., 2016; Moeskops et al., 2015,
2017). Automatic quantification of these indices requires segmentation
of brain tissue classes. To allow dedicated analysis within the brain,
automatic methods typically perform extraction of the intracranial
volume (ICV) prior to further analysis (ISgum et al., 2015; Moeskops
et al., 2016).

A number of methods for segmentation of ICV in adult MR scans
have been applied to analysis of T1- and T2-weighted neonatal MR
images (Eskildsen et al., 2012; Iglesias et al., 2011; Ségonne et al.,
2004; Smith, 2002). Brain Extraction Tool (BET) Smith (2002) is a
publicly available tool used as a preprocessing step by many automatic
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brain segmentation methods (ISgum et al., 2015). BET iteratively de-
forms a sphere to fit it on the brain surface using a geometric algorithm.
Robust Brain Extraction tool (ROBEX) is another commonly used and
publicly available tool for segmentation of the ICV in adult MR images
(Iglesias et al., 2011). ROBEX first employs a Random Forest classifier
to detect the brain boundary and thereafter uses a point distribution
model that ensures a plausible result. Furthermore, Brain Extraction
based on non-local Segmentation Technique (BEaST) is a publicly
available tool for ICV segmentation (Eskildsen et al., 2012). BEaST is a
patch-based segmentation method exploiting the similarity between the
patches in the region of interest and predefined patches in a library.
Because of the lack of publicly available tools developed for ICV
segmentation of neonatal brain MRI, these methods designed to analyze
brain MR scans of adults are frequently used to segment the ICV in
neonatal scans. Consequently, they generally do not produce highly
accurate results when applied to neonatal brain MR scans
(Yamaguchi et al., 2010). Moreover, these methods typically fail when
applied to fetal MR scans. Hence, several methods specifically designed
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to extract the ICV in MR scans of neonates have been proposed.
Serag et al. (2016); Yamaguchi et al. (2010) proposed a method for
segmentation of the ICV in brain MRI of neonates and children aged
between 36 weeks post menstrual age (PMA) and 4 years. The method
uses fuzzy logic and it is applicable to images without severe pathology
acquired sagittally. In the first step the intensity distributions of white
matter (WM), gray matter (GM), cerebrospinal fluid (CSF), fat, and
other tissues visible in the scan are estimated using Bayesian classifi-
cation and a Gaussian mixture model. Segmentation of brain tissue
classes is thereafter performed by means of a fuzzy active surface model
using distributions of WM, GM and CSF from the previous step. The
qualitative evaluation of this method demonstrated improved perfor-
mance over BET. Later, Mahapatra (2012) proposed a shape model with
graph cuts for segmentation of the ICV in neonatal MRI. The shape
model is generated by averaging manually labeled images which is
afterwards used with graph cut for segmentation. This method was
applied to term-born infants imaged at about three weeks of age.
Serag et al. (2016) proposed an atlas-based segmentation of the ICV. To
eliminate the need for representative training data i.e. data coming
from the same distribution, atlases that are uniformly distributed were
selected. The algorithm was applied to T1-weighted and T2-weighted
MR scans without visible pathology of preterm infants scanned at term
equivalent age. The method showed high segmentation accuracy and it
outperformed publicly available tools such as BET and ROBEX.

Similar to methods dedicated to segmentation of the ICV in neonatal
MR scans, a number of studies proposed segmentation of the ICV in
fetal MRI. Anquez et al. (2009) proposed a method that first localizes
the eyes and exploits this information to segment the ICV using a graph
cut approach guided by shape, contrast, and biometrical priors. The
method was applied to scans with unknown fetal orientation and the
results demonstrated high segmentation accuracy.

In recent years, convolutional neural networks (CNNs) have become
the most popular method for automatic image segmentation in medical
images (Litjens et al., 2017). Several studies investigated different CNN
architectures for brain tissue segmentation (Akkus et al., 2017; Chen
et al., 2018; Dolz et al., 2018; Makropoulos et al., 2018; Tu and Bai,
2010) and brain extraction (Dey and Hong, 2018; Dolz et al., 2017;
Kleesiek et al., 2016) in adult MRI. Wachinger et al. (2018) proposed a
network that combines brain extraction and brain tissue segmentation.

A few studies used CNNs to segment ICV from fetal or neonatal MRI.
Rajchl et al. (2017) proposed a weakly supervised deep learning ap-
proach for ICV segmentation in fetal MRI that combines a convolutional
neural network and iterative graph optimization. The network was
trained with bounding boxes around the brain as weak labels. The
method was applied to fetal MR scans and achieved high segmentation
accuracy. In another study, Rajchl et al. (2016) investigated the use of
crowd sourcing platform for ICV segmentation of fetal MRI using con-
volutional neural network. Salehi et al. (2017) proposed an iterative
deep learning segmentation method that uses U-net-like convolutional
neural network (Auto-net). In this approach, the fetal brain is seg-
mented from a localized bounding box which was defined manually
using ITKSNAP (Yushkevich et al., 2006). In a subsequent study,
Salehi et al. (2018) evaluated Auto-net on fetal MRI without any pre-
processing steps such as defining a bounding box. The method was
trained on a very large number of manually annotated fetal MRI and
demonstrated accurate segmentation results in fetal scans. Recently,
Khalili et al. (2017) proposed multi-scale convolutional neural network
for ICV segmentation of fetal MRI.

Unlike methods performing ICV segmentation directly, several
methods perform brain localization as a step prior to fetal ICV seg-
mentation (Ison et al., 2012; Keraudren et al., 2013, 2014; Taimouri
et al., 2015). Recently, Tourbier et al. (2017) proposed a pipeline that
sequentially performs ICV localization, ICV segmentation and super-
resolution reconstruction in fetal MR scans. In this method a template-
matching approach, with age as prior knowledge, is used to segment the
ICV in fetal MRI. A limitation of template based techniques is that they

NeuroImage: Clinical 24 (2019) 102061

are typically computationally more expensive than machine learning
algorithms. In addition, they have a high chance of failure if re-
presentative age-matched templates are not available. Moreover, to
segment brain tissue classes, methods employing brain localization re-
quire subsequent segmentation of the ICV.

All aforementioned methods were evaluated either on neonatal or
fetal MR scans, without visible pathology. To the best of our knowledge,
thus far no study proposed a generic method that performs segmentation
of the ICV in neonatal and fetal MRI. In this study, we propose a method
for automatic segmentation of the ICV in neonatal and fetal T2-weighted
MR scans that is robust to imaging parameters (field strength, image
acquisition plane, image resolution), and pathology and patient char-
acteristics (posthaemorrhagic ventricular dilatation (PHVD), stroke, as-
phyxia, Down syndrome). The method employs a convolutional neural
network with a U-net architecture (Ronneberger et al., 2015). The net-
work was trained with a combination of fetal and preterm born neonatal
scans acquired in axial, coronal and sagittal orientation. The age of pa-
tients at the time of scanning in the training set ranged from 23 to 35
weeks PMA. The method was evaluated using images of fetuses and in-
fants between 23 weeks PMA and 3 months of age at the time of scan-
ning, ranging from absence of visible pathology to presence of severe
pathology such as stroke or PHVD. This work builds upon our pre-
liminary study that described segmentation of the ICV in fetal MRI using
a multi-scale convolutional neural network (Khalili et al., 2017).

2. Data

In this study a diverse set of fetal and neonatal T2-weighted MR
scans was used. Fetal scans were acquired in axial, sagittal and coronal
image planes and did not contain visible pathology. Neonatal images
include scans of preterm and term-born infants. The scans were ac-
quired in axial or coronal image planes, and include images without
and with pathology. Examples of fetal and neonatal images included in
the study are illustrated in Fig. 1. As shown in the figure, fetal MRIs
have a larger field of view that visualizes the entire fetus as well as parts
of the maternal body. Moreover, we include scans which were acquired
with different scanner-vendors (Philips, Siemens) and field strength
(1,5T and 3T). The neuroimaging data were obtained as part of the
clinical protocol, written informed consent for use of the clinically ac-
quired data and approval of the experiments and methodology was
waived by the institutional review board of the University Medical
Center Utrecht, The Netherlands.

2.1. Fetal MRI

Two sets of fetal MR scans were used. The first set (Set 1) includes
T2-weighted MR scans of fetuses (age: 23—-35 weeks PMA). Images were
acquired on a Philips Achieva 3T scanner at the University Medical
Center (UMC) Utrecht, Utrecht, the Netherlands using a turbo fast spin-
echo sequence. The dataset contains 45 scans in total: 17 scans acquired
in axial direction, 15 scans in coronal direction and 13 scans in sagittal
direction. The images were acquired with voxel sizes of
1.25 x 1.25 x 2.5 mm> and reconstructed to 0.7 X 0.7 x 1.25 mm?
with reconstruction matrix of 512 x 512 x 80. The scans were re-
constructed by the scanners algorithm and no further reconstruction
(e.g. super-resolution processing) of the acquired images was per-
formed. Furthermore, the proposed approach was applied to the 2D
MRI slices without any prepossessing steps such as intensity in-
homogeneity or motion correction.

The second set (Set 2) contains publicly available T2-weighted MR
scans of 17 fetuses (age range: 29 + 5 weeks PMA) which present a
subset of scans described by Salehi et al. (2018). Scans were acquired
on a 3T Siemens Skyra scanner at Boston Childeren’s Hospital, Boston,
US in axial, sagittal and coronal direction. The scans were acquired with
voxel sizes of 1 x 1 x 2 mm® with a reconstruction matrix of
256 X 256; the number of slices varied from 48 to 54.
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Fig. 1. Examples of preterm neonatal and fetal MR scans included in the study. Top: coronal MRI acquired at 30 weeks PMA (left), coronal MRI acquired at 40 weeks
PMA (middle), axial MRI acquired at 40 weeks PMA (right). Bottom: fetal MRI acquired in coronal (left), sagittal (middle) and axial (right) directions.

Fig. 2. Examples of T2-weighted MR scans of preterm born neonates with ischemic stroke (left), Down syndrome (middle), and PHVD (right).

Table 1

Parameters of neonatal MRI scans. For each set the table lists total number of scans (Nr) in a set, average and standard deviation of the infant age at the time of
scanning expressed in weeks of PMA (Age), image acquisition (Orientation) as axial (Ax) or coronal (Cor), reconstruction matrix (Matrix), reconstructed voxel sizes
expressed in mm and the number of scans used in training and test set (Training/Test).

Nr Age Orientation Matrix Voxel size Training / test
30-weeks coronal 20 307 = 1.0 Cor 384 x 384 x 50 0.34 x 0.34 x 2.0 3/17
40-weeks coronal 15 41.2 = 09 Cor 512 x 512 x 110 0.35 x 0.35 x 1.2 3/12
40-weeks axial 17 413 = 0.8 Ax 512 x 512 x 50 0.35 x 0.35 x 2.0 3/14
Cross-sectional cohort 10 369 = 5.0 Cor 512 x 512 x 110 0.35 x 0.35 x 1.2 0/10
Infants with CHD 10 41.0 = 1.7 Cor 512 x 512 x 110 0.35 x 0.35 x 1.2 0/10
Infants with PHVD 10 41.0 = 0.7 Cor 512 x 512 x 110 0.35 x 0.35 x 1.2 0/10
Infants with stroke 10 441 = 6.2 Ax 512 x 512 x 50 0.35 x 0.35 x 2.0 0/10
Infants with asphyxia 9 392 = 1.7 Ax 512 x 512 x 50 0.35 x 0.35 X 2.0 0/10
Infants with DS 10 379 * 59 Cor and Ax 512 x 512 x 110 0.35 x 0.35 x 1.2 0/10
Scans with artifacts 10 4112 = 0.7 Cor 512 x 512 x 110 0.35 x 0.35 x 1.2 0/10

The third set (Set 3) includes fetal T2-weighted MR scans acquired reconstruction matrix of 288 x 288 x 80.
on Philips Achieva 1.5T scanner at the UMC Utrecht, Utrecht, the

Netherlands. The dataset contains 18 scans: 6 scans were acquired in 2.2. Neonatal MRI
axial direction, 6 in coronal and 6 in sagittal direction. The scans were
reconstructed to a voxel size of 1.18 x 1.18 x 1.25 mm® and All neonatal scans were acquired on a Philips Achieva 3T scanner at
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Fig. 3. Network architecture: The network consists of a contracting path and an expanding path. The contracting path consists of repeated convolution layers
followed by max pooling, and the expansion path consists of convolution layers followed by up-sampling.

Table 2

Performance of the automatic segmentation expressed by the average Dice coefficient (DC), mean surface distance (MSD) in mm, and Hausdorff distance (HD) in mm.
Columns show experiments where the network was trained with: 1) a combination of fetal and neonatal MRI (Fetal and Neonatal) 2) fetal MRI when the test images
were from fetuses (Fetal) or neonatal MRI when test images were from neonates (Neonatal) 3) Only a representative set of images. For each test set best results among

the three experiments are indicated in bold.

Neonatal and Fetal Fetal Representative
DC MSD HD DC MSD HD DC MSD HD
Set 1 0.976 0.34 10.58 0.980 0.32 16.89 0.978 0.36 15.45
Neonatal and Fetal Neonatal Representative
DC MSD HD DC MSD HD DC MSD HD
DC MSD HD DC MSD HD DC MSD HD
30-weeks coronal 0.993 0.11 6.19 0.988 0.18 7.87 0.992 0.12 10.90
40-weeks coronal 0.993 0.18 7.98 0.994 0.14 8.32 0.993 0.16 9.64
40-weeks axial 0.988 0.22 7.60 0.988 0.24 7.67 0.987 0.44 25.89
Cross-sectional cohort 0.987 0.35 11.13 0.990 0.19 8.88 0.991 0.22 13.94
Infants with CHD 0.987 0.53 17.19 0.990 0.19 8.57 0.985 0.64 30.26
Infants with PHVD 0.987 0.29 14.67 0.988 0.31 15.89 0.986 0.35 17.34
Infants with stroke 0.987 0.30 14.68 0.988 0.46 11.09 0.984 0.58 19.05
Infants with asphyxia 0.980 0.34 10.58 0.970 0.62 15.54 0.963 0.80 16.41
Infants with DS 0.982 0.46 12.52 0.983 0.38 14.36 0.983 0.58 25.87

the University Medical Center Utrecht, Utrecht, the Netherlands. We
divided the data according to age of the infants at the time of acqui-
sition, image acquisition plane, and presence and type of visible pa-
thology. As shown in Fig. 1, there are variations in the neonatal scans,
especially between 30 and 40 weeks PMA, when the brains exhibit
important structural development, including cortical folding, and
changes in shape and volume.

2.2.1. Preterm born infants without visible pathology

This set consists of three different subsets. The first one - 30-weeks
coronal MRI - comprises 20 scans of preterm born infants imaged at 30
weeks PMA. The second set - 40-weeks coronal MRI - contains 17 scans
of preterm born infants imaged at term equivalent age. The third set -
40-weeks axial MRI - contains 15 scans of preterm born infants imaged
at term equivalent age. This set includes all 22 scans from the
NeoBrainS12 challenge. Detailed data description is provided in a
former study (IsSgum et al., 2015).

2.2.2. Cross-sectional cohort

A set of 10 T2-weighted MRI scans were taken from a study in-
vestigating neonatal brain development that were made shortly after
birth (29-43 weeks PMA) Keunen (2017). The scans were selected to
include images of 10 neonates covering the complete available infant
age range. Hence, this set includes preterm and full-term born in-
fants.

2.2.3. Infants with congenital heart disease (CHD)

The set consists of 10 T2-weighted MRI scans of 10 patients with
critical congenital heart disease (CHD). These infants were scanned
before and after univentricular or biventricular cardiac repair using
cardiopulmonary bypass within the first 30 days of life (Claessens et al.,
2018). We selected 5 scans made before and 5 scans after surgery, of
different patients. The images visualized WM lesions indicating mild to
moderate brain injuries. However, the brain morphology was not sig-
nificantly altered.
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Fig. 4. Examples of ICV segmentation in slices from fetal scans acquired in axial (left), coronal (middle) and sagittal (right) image planes. The images are selected
from the test set. A slice from T2-weighted image (top); segmentation achieved by the proposed method trained with a combination of neonatal and fetal MRI

(middle); manual segmentation (bottom).

2.2.4. Infants with PHVD

A set of 10 T2-weigted MRI scans of 10 infants with germinal matrix-
intraventricular hemorrhage (GMH-IVH) and subsequent PHVD re-
quiring intervention were selected randomly from a clinical study on
PHVD infants (Brouwer et al., 2016). The infants included in this study
received a ventricular shunt that is next to the substantial ventricular
dilatation visible in MR images. An example of this is illustrated in Fig. 2.
Note that the ventricles are substantially enlarged typically resulting in a
deformed brain shape. Moreover, these patients often have a temporary
ventricular shunt which is visible in a number of scan slices.

2.2.5. Infants with stroke

This set consists of 10 T2-weighted MRI scans of 10 infants with
arterial ischemic stroke (Benders et al., 2014). These neonates were
treated with 1000 IU/kg rhEPO immediately after diagnosis. A sec-
ondary MRI was performed when the patients were 3 months of age. We
included 5 primary and 5 secondary scans showing WM degradation.
Primary and secondary scans were not showing the same patients.
Fig. 2 illustrates an example of a secondary scan when the stroke-af-
fected area is filled with CSF.

2.2.6. Infants with asphyxia

This set consists of 9 T2-weighted MRI scans of 9 patients with
perinatal asphyxia (Alderliesten et al., 2017). These scans present dif-
fuse hypoxic-ischemic injury demonstrated as hypointensities in the
images that can be present throughout the brain tissue.

2.2.7. Infants with down syndrome (DS)

This set consist of 10 T2-weighted MRI scans imaging 10 infants
with Down syndrome. In these patients, the brain volume is smaller
because of delayed brain growth and gyrification compared with
healthy infants (Coyle et al., 1986). Fig. 2 illustrates a typical example
of a Down syndrome infant demonstrating abnormal shape of the head,
the brain and delayed gyrifcation.

2.2.8. Infant scans with artifacts

This set consist of 10 T2-weighted MRI scans acquired in coronal
orientation from preterm born infants imaged at term equivalent age
(40 weeks of post menstrual age). 5 scans contain intensity in-
homogeneity artifacts and 5 scans show motion artifacts.

Details on image acquisition parameters for all sets are listed in
Table 1.
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Fig. 5. Examples of ICV segmentation in a scan acquired in sagittal plane. A slice
from T2-weighted fetal MRI scan (top row), segmentation obtained with joint
training (middle row) and manual segmentation (bottom row). The first column
illustrates the segmentation in the in-plane view. Second and third columns il-
lustrated out-of-plane views. The slices were selected from the test set.

2.3. Reference standard

To establish the reference standard, manual segmentation of the ICV
was performed by a trained medical student. Manual annotation was
accomplished using in-house developed software by painting ICV voxels
in each image slice. ICV included brain, cerebellum and extracranial
cerebrospinal fluid. Skull and skin were excluded from the segmenta-
tion. We followed the definition of the eight tissue types provided by
the NeoBrainS12 challenge for ending point of the brain stem
(Isgum et al., 2015). Note that the reference standard for Set 3 of fetal
MRI and infants scans with artifacts was not available, hence the seg-
mentation performance on these two sets was evaluated visually.

To estimate inter-observer variability, three slices of 7 scans were
segmented by different observers. Two scans from 30 weeks coronal
MRI, three scans from 40 weeks coronal MRI and two scans from 40
weeks axial MRI were selected. Furthermore, the slice representing the
middle of the brain and subsequently, the first and last slice on which
each tissue was visible were identified.

3. Method

Our aim is to train a single network that is able to perform seg-
mentation of the ICV in a diverse set of scans where the diversity
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comprises differences in field of view, age of the scanned subjects, or-
ientation of image acquisition, image resolution and presence of pa-
thology" Our method employs a fully convolutional network (FCN) with
U-net like architecture (Ronneberger et al., 2015) since such networks
have demonstrated accurate segmentation performance in a number of
different segmentation tasks (Litjens et al., 2017). We have used a
smaller version of U-net to avoid over-fitting. The network has a con-
tracting path and an expanding path. The contracting path consists of
repeated 3 X 3 zero padded convolutions where each convolution is
followed by a rectified linear unit (ReLU). 2 X 2 max pooling layers
with stride 2 downsample the feature maps. The number of the feature
maps doubles after every two convolutional layers. In the expanding
path, up-sampling with stride 2 is followed by a 2 x 2 transposed
convolution which halves the number of feature channels. The resulting
feature maps were concatenated with the corresponding feature map of
the contracting path and convolved by two 3 X 3 convolutional layers
followed by ReLU. At the final layer, a 1 X 1 convolutions map each
component of feature vector to the desired number of classes (Fig. 3). A
softmax function is applied in the last layer to classify ICV and back-
ground. As a loss function, cross-entropy between the output layer and
the manual segmentation reference is used. For optimization, Nesterov
Adam optimizer is applied (Dozat, 2016; Kingma and Adam, 2015). In
order to increase the mean learning rate, batch normalization (Ioffe and
Szegedy, 2015) is used after each convolutional layer (Convolution,
Batch Normalization, ReLU) Ioffe and Szegedy (2015). The learning
rate of Adam optimization is set to 0.0001. The hyper-parameters were
tuned using cross-validation on the training set. The training was
stopped after 300 epochs when the loss function became stable. The
network is trained with 2D slices and batch size is 30 for each iteration.
The image intensity were normalized to the range [0, 1023] before
feeding them to the network. Data augmentation was applied during
the training by random flipping and rotation of 2D slices. The rotations
ranged between 0 to 360 degrees to mimic fetal brain angle variations.
As all image intensities were normalized between [0, 1023], we did not
vary image intensities nor the contrast as an augmentation. We have
implemented the network in Keras, an open-source neural-network li-
brary written in Python (Chollet et al., 2015).

Given that the network performs voxel classification, ICV segmen-
tation may result in small isolated clusters of voxels outside the ICV. To
prevent this, 3D connected components smaller than 3 cm?® are dis-
carded. Similarly, possibly remaining holes in the binary mask auto-
matically are filled.

4. Evaluation

The automatic ICV segmentations were evaluated in 3D by means of
the Dice coefficient, the mean surface distance and the Hausdorff dis-
tance (Taha and Hanbury, 2015) between the manual and automatic
segmentations per image per set.

5. Experiments and results
5.1. Training with joint neonatal and fetal scans

We performed segmentation in fetal and neonatal MRI scans using a
single trained network. The training set consisted of 21 fetal and 9
neonatal scans. Fetal scans in the training contained 7 scans acquired in
axial, 7scans acquired in coronal and 7scans acquired in sagittal
imaging orientations (21 scans) of 7 patients from Set 1. Neonatal scans
were from preterm born infants without visible pathology. Neonatal
scans included in the training consisted of 3 coronal scans acquired at
30 weeks PMA, 3 coronal scans acquired at 40 weeks PMA, and 3 axial

! We are aiming to make the code publicly available upon the paper accep-
tance.
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Fig. 6. Examples of ICV segmentation in slices from fetal scans that visualized intensity inhomogeneity. A slice from T2-weighted image (left); segmentation achieved
by the proposed method trained with a combination of neonatal and fetal MRI (middle) and manual segmentation (right). The images were selected from the test set.

Fig. 7. Example of ICV segmentation in one test neonate with PHVD on the left
compared with manual segmentation on the right.The infants received a tem-
porary ventricular shunt that is visible in some slices. The images were selected
from the test set.

scans acquired at 40 weeks PMA. Note that the training and test set
were separated per subject. During the training, only in joint training
scenario, each batch was balanced between fetal scans, 30 weeks cor-
onal neonatal, 40 weeks axial neonatal and 40 weeks coronal neonatal
scans.

The method was tested with the remaining 24 fetal scans from Set 1
that were acquired in axial, coronal and sagittal orientation, and neo-
natal scans of the remaining 110 patients. The obtained quantitative
results are listed in Table 2 (first three columns). Fig. 4 illustrates ex-
amples of the obtained ICV segmentations in images acquired in axial,
coronal and sagittal image planes. Fig. 5 illustrates ICV segmentation
results in one scan acquired in sagittal imaging plane. The segmentation
results are shown in the acquisition plane as well as in planes perpen-
dicular to the acquisition plane. Furthermore, Fig. 6 illustrates ex-
amples of the ICV segmentations in slices with intensity inhomogeneity.

Moreover, Fig. 7 shows an example of ICV segmentation in a neo-
nate with PHVD. The automatic segmentation excluded the inserted
shunt from the brain mask even though PHVD scans were not included
in the training data. Fig. 8 illustrates another example of ICV segmen-
tation in a neonate with PHVD where the cerebellum was under-
segmented. It may be observed that in this case cerebellum has voxels of
lower intensity than images without visible pathology.

5.2. Training with neonatal or fetal scans

Manual annotation in a large set of scans is time-consuming and
expensive. Hence, to estimate whether the method performs better on
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Fig. 8. A slice from a scan of infant with PHVD (left) where the joint training undersegmented cerebellum (middle) compared with reference annotation (right). The
cerebellar volume, shape and image intensity are typically different in infants with PHVD from infants without visible pathology. The images were selected from the

test set.

Table 3

Performance of the proposed method using joint training with 21 fetal and 9
neonatal MRI scans, and performance of the publicly provided Auto-net trained
with 260 fetal MRI scans. Both methods were tested on publicly available fetal
scans from Set 2. The results are expressed by the average Dice coefficient (DC),
mean surface distance (MSD) in mm, and Hausdorff distance (HD) in mm.

DC MSD HD
Joint training 0.94 = 0.02 1.7 = 0.72 345 = 16.11
Auto-net 0.98 = 0.01 0.2 = 0.04 10.1 = 5.45

fetal images when trained with fetal images only and whether it per-
forms better on neonatal images when trained with neonatal images
only, additional experiments were performed. For this, two separate
networks were trained. The first network was trained using only fetal
images. This set included scans of 7 fetuses with images acquired in
axial, coronal and sagittal directions. The second network was trained
using only neonatal images. This training set included images of infants
scanned at 30- and 40- weeks PMA acquired in axial and coronal di-
rections. In both experiments, the training images were the same
training images that were used in the experiment described in Section 4
A when the fetal and neonatal training images were used together in the
training. No other changes in the network architecture or training
procedure were applied. The obtained results are listed in Table 2
(middle three columns).

5.3. Training with representative scans

To evaluate whether it might be advantageous to train the network
using representative data only, three instances of the original network
were trained. One instance was trained and tested with scans of neo-
nates acquired at 30 weeks PMA coronal, another instance was trained

and tested with scans of neonates acquired at 40 weeks PMA coronal,
and last instance was trained and tested with scan of neonates acquired
at 40 weeks PMA axial. Training images represent subsets of scans used
in the experiment where all training data was mixed. The obtained
results are listed in Table 2 (last three columns).

5.4. Second observer evaluation

To evaluate inter-observer variability, we obtained second observer
manual annotations for small subset of neonatal data. The evaluation
was performed on 3 slices of 7 scans, i.e 21 slices in total and the results
were compared to corresponding slices annotated by the first observer.
The results are listed in Table 6.

5.5. Comparison with state-of-the art methods

The performance of the proposed method was compared with
publicly available ICV segmentation tools. Given that BET is frequently
used to segment the ICV in premature neonatal images (Moeskops et al.,
2016), we have applied it to segment images in our test set. The frac-
tional intensity threshold (-f) is empirically set to 0.3. The obtained
results are presented in Table 5. They demonstrate that BET achieved
better performance in neonatal MRI acquired at 40 weeks PMA than in
neonatal MRI acquired at 30 weeks PMA. Fig. 10 shows segmentations
obtained with BET and joint training in a slice from a scan acquired at
30 weeks PMA and one acquired at 40 weeks PMA.

Both slices illustrate oversegmentation of the ICV along the whole
boundary, which is a frequent error of the BET tool visible in our test
set. Quantitative results listed in Table 5 show that joint training con-
sistently achieved higher DC and lower HD and MSD than BET.

To investigate robustness of our method to variation in scanner
characteristics and patient population, the joint training model was
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Fig. 9. Dice coefficients achieved by the proposed method using joint training with 21 fetal and 9 neonatal MRI scans, and by the publicly provided Auto-net trained
with 260 fetal MRI scans. Both methods were tested on Set 1 (left) and Set 2 (right).
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Table 4

Performance of the proposed method using joint training with 21 fetal and 9
neonatal MRI scans and performance of the publicly available Auto-net trained
with 260 MRI scans. Both methods were tested with fetal images from Set 1.
The results are expressed by average Dice coefficient (DC), Mean surface dis-
tance (MSD) in mm, and Hausdorff distance (HD) in mm.

DC MSD HD
Joint training 0.98 = 0.02 0.3 + 0.36 10.6 = 5.73
Auto-net 0.87 = 0.10 3.2 = 1.84 72.41 + 50.34

NeuroImage: Clinical 24 (2019) 102061

Fig. 10. Examples of ICV segmentation in
neonates acquired at 30 weeks PMA (top
row) and 40 weeks PMA (bottom row).
Results of the joint training (first
column), the result obtained with BET
(second column), manual annotation
(third column) and the original T2-
weighted MRI (last column).The images
were selected from the test set.

Table 6

Evaluating joint training segmentation performance with manual segmentation
obtained by two different observers. The results are expressed in terms of Dice
coefficient (DC), Hausdorff distance (HD) and mean surface distance (MSD).
The HD and MSD are expressed in mm. Note that the evaluation was performed
in 3 slices in 7 scans, totalling to 21 slices. The segmentations are compared
with the segmentations of the first observer in the same slices.

First Observer Second Observer

DC MSD HD DC MSD HD

Table 5

Performance of the joint training using fetal and neonatal scans for ICV seg-
mentation compared with BET. The results are expressed using the average Dice
coefficient (DC), mean surface distance (MSD) in mm, and Hausdorff distance
(HD) in mm.

Joint training BET

DC MSD HD DC MSD HD
30-weeks coronal 0.99 0.11 6.19 0.91 2.05 24.92
40-weeks coronal 0.99 0.18 7.98 0.94 1.92 27.91
40-weeks axial 0.99 0.22 7.60 0.94 1.39 34.63
Cross-sectional cohort 0.99 0.35 11.13 0.93 1.83 26.76
Infants with CHD 0.99 0.53 17.19 0.95 2.36 36.46
Infants with PHVD 0.99 0.29 14.67 0.94 1.72 24.16
Infants with stroke 0.99 0.30 14.68 0.95 1.33 30.80
Infants with asphyxia 0.98 0.34 10.58 0.95 1.33 32.88
Infants with DS 0.98 0.46 12.52 0.95 1.43 14.69

evaluated using publicly available fetal MRI scans from another hos-
pital (Set 2). The results were compared with a publicly available Auto-
net (Salehi et al., 2018)% model trained on a much larger set of re-
presentative fetal scans from the same hospital. Even though, U-net or
any fully convolutional neural network can take any arbitrary image
size but the segmentation performance will likely drop if the images in
the training and test set do not have the same resolution. Given that
scans in Set 2 have different voxel sizes than our fetal images (Set 1)
used in the training, prior to analysis scans from Set 2 were resampled
to the resolution of our training images. Furthermore, the images were
normalized between [0, 1023]. All obtained results are listed in Table 3
and shown in Fig. 9. Note that this model was only trained on fetal MRI
and training data did not include any neonatal MRI data. Therefore, the

2 https://bitbucket.org/bchradiology/u-net/src

30-weeks coronal 0.993 0.656 11.52 0.983 1.660 16.92
40-weeks coronal 0.992 0.891 9.231 0.994 0.474 6.332
40-weeks axial 0.993 0.828 8.752 0.992 0.979 9.620

evaluation was performed on fetal MRI only.

In addition, Auto-net was evaluated on fetal images from our hos-
pital (Set 1). Quantitative results are listed in Table 4. As in the previous
experiment scans from Set 1 were resampled to the same resolution of
the images used to train Auto-net (Set 2). Furthermore, the scans were
normalized between [0, 1023]. Fig. 9 illustrates the segmentation
performance in a box plot. Note that even though the scans were re-
sampled to the same resolution in both experiments, the images had
different field of view.

5.6. Evaluation on scans acquired with 1.5 Tesla scanner

To demonstrate the performance of the proposed method on images
acquired with a scanner exploiting a different field strength, the joint
training model was evaluated on fetal MRI scans (Set 3) acquired with
1.5 Tesla scanner. We illustrate segmentation results in the three scans
without reference standard in Fig. 11. Visual inspection of the results in
these scans reveals that the joint training model produced accurate ICV
segmentations in scans with different field strength, although the model
was not trained with such scans.

5.7. Evaluation on scans with artifacts

To demonstrate the performance of proposed method on scans with
intensity inhomogeneity and motion artifacts, the joint training model
was evaluated on 5 neonatal scans with intensity inhomogeneity and 5
neonatal scans with motion artifacts. We illustrate segmentation results
in the five scans with intensity inhomogeneity in Fig. 12 and five scans
with motion artifacts in Fig. 13. Visual inspection of the results in these
scans reveals that the joint training model produced accurate ICV
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Fig. 11. Examples of ICV segmentation in slices from fetal scans acquired with 1.5 Tesla scanner in coronal (top), sagittal (middle) and axial (bottom) image planes. A
slice from T2-weighted image (left) and segmentation achieved by the proposed method trained with a combination of neonatal and fetal MRIs (right).

segmentation in scans with motion artifacts and intensity in-
homogeneity.

5.8. Second observer evaluation

Manual annotation in a large set of scans is time-consuming and
expensive. Hence, to estimate inter-observer variability, second ob-
server performed manual annotations in a small subset of neonatal data.
The evaluation was performed on 3 slices of 7 scans, totally in 21 slices.
These segmentations were compared with the segmentations of the first
observer in the same slices. The results are listed in Table 6.

6. Discussion and conclusion

An automatic method for segmentation of the ICV in fetal and
neonatal brain MR scans was presented. The proposed method employs
a fully convolutional network with U-net architecture. It was trained by
using a combination of neonatal and fetal MRI and the results

10

demonstrate accurate segmentation of ICV in fetal and neonatal MR
scans regardless the orientation of the image acquisition, the age of
infants at the time of scanning or the presence of pathology. Unlike
previous ICV segmentation methods developed for fetal or neonatal
MRI (Anquez et al., 2009; Keraudren et al., 2013; Taimouri et al.,
2015), the proposed method does not require brain localization or prior
information about the patient age or expected anatomy.

In this study, 2D analysis was applied. Even though 3D analysis
regularly allows better exploitation of the available information com-
pared to 2D analysis, 2D analysis was advantageous as it minimized the
risk of overfitting and allowed analysis of scans with large slice thick-
ness that led to substantial changes in the anatomy (Havaei et al., 2017;
Moeskops et al., 2016; Wolterink et al., 2016). Moreover, 2D analysis
was less influenced by missing and corrupted slices resulting from
continuous fetal motion.

Generating manual segmentation is a cumbersome and extremely
time-consuming task. The results illustrate that with a small number of
available manual segmentation used for training, the network achieves
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Fig. 12. Examples of ICV segmentation in 5 neonatal MR scans with intensity inhomogeneity artifacts. A slice from T2-weighted fetal MRI scan (first row); seg-

mentation obtained with joint training (second row).

Fig. 13. Examples of ICV segmentation in 5 neonatal MR scans with motion artifacts. A slice from T2-weighted fetal MRI scan (first row); segmentation obtained with

joint training (second row).

a competitive and robust results in a large test set. Using semi-auto-
matic segmentation comprised of automatic presegmentation and sub-
sequent manual correction to gnerate refrence standard for training
purposes could make the process faster. Availability of a large training
set could offer possibility to investigate the impact of the size of the
training set on the method performance as well as research towards the
requirements regarding characteristics of the training set for employ-
ment in the MRIs presenting pathology or artifacts. This may be in-
teresting direction for future research.

Although the network was trained with images containing no visible
pathology, the evaluation was performed on a large and diverse set of
scans, which includes scans with pathology. The segmentation results in
neonatal scans with or without lesions are comparable. Note that large
lesions in the brain strongly affecting tissue appearance (infants with
stroke), morphological changes (infants with Down syndrome and
PHVD), and presence of implants (shunts) that were mostly excluded
(PHVD) (see Fig. 7).

We evaluated the proposed method on scans with artifacts such as
intensity inhomogeneity and motion artifacts. The visual inspection

11

demonstrate that even thought scans with artifacts were not in the
training, the proposed approach is able to segment ICV.

Furthermore, we investigated whether it is feasible to train a single
instance of the network applicable to both fetal and neonatal scans, or
whether better performance can be achieved by training a separate
network using only fetal or only neonatal scans. The results show that
in both cases DC ranges from 0.98 to 0.99.

Moreover, we compared performance using joint training with fetal
and neonatal scans against training using representative scans only. The
results demonstrate that in both cases accurate segmentation was
achieved when evaluating the overlap between automatic and reference
segmentations (0.98 to 0.99 Dice coefficient). The results also demon-
strate that training with diverse images using fetal and neonatal scans
reduced false positive voxels far from the intracranial volume surface
leading to lower Hausdorff distances and mean surface distances in all
sets. Training with both fetal and neonatal scans indicated the most
noticeable improvement in infants with asphyxia. Despite the differ-
ences in image acquisition, image orientation, and brain morphology,
fetal and neonatal scans share common features that improve the ability
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of the network to generalize, making it more robust and compensating
for the lack of representative data.

To investigate robustness of the proposed method to variations in
scanner characteristics and patient population, the method was eval-
uated using publicly available fetal MRI scans from another hospital
(Set 2). The results were compared with a publicly available Auto-net
(Salehi et al., 2018) model trained on a much larger set of re-
presentative fetal scans from the same hospital. The results show that
our model did not outperform the dedicated data-specific approach.
Nevertheless, it achieved DC, MSD and HD of 0.94, 1.7 and 34.5 re-
spectively. Similarly, we evaluated Auto-net on fetal scans from our
hospital (Set 1). The results demonstrate that the proposed method
trained on representative fetal scans from our hospital outperformed
Auto-net trained on different data. The two experiments indicate that
reasonable performance can be achieved using different scans but also
underline the importance of training with representative data. In future
research, investigating interpretability of model using saliency map
(Simonyan et al., 2013) can demonstrate a better understanding of
limitations in network performance.

In addition, the proposed method was compared with the publicly
available and widely used BET for the segmentation of neonatal MRIs.
Although BET is known to achieve accurate segmentation of ICV in
adults, our results demonstrate that it is less suited for neonatal brain.
Our dedicated method clearly outperformed BET.

To conclude, this study presented a method for automatic ICV
segmentation in neonatal and fetal MRI. Despite the variability among
the evaluated scans, the method obtained accurate segmentation results
in both fetal and neonatal MR scans. Hence, the algorithm provides a
generic tool for segmentation of the ICV that may be used as a pre-
processing step for brain tissue segmentation in fetal and neonatal brain
MR scans.
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