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Introduction
Four different lines of biomedical research during the last 4 
decades are coming together in this review. The f irst entails the 
recognition that the digestive tract is by far the largest endo-
crine organ in the body. The gut expresses at least 20 different 
hormone genes, of which some are homologous. And as the 
prohormonal translation products are often heavily processed 
by endoproteolysis and amino acid derivatizations in neuroen-
docrine cells, the gastrointestinal tract releases an order of hun-
dred different bioactive peptides to blood during and after a 
meal (for reviews, see Rehfeld1,2).

The second line is the gut-islet-axis, according to which 
some gastrointestinal hormones – not least gastrin and chole-
cystokinin (CCK) – in addition to the gut are expressed within 
pancreatic islet cells. The expression may occur in specific 
endocrine cells, in the classical islet cells, or in intra-islet gan-
glia and neurones. Furthermore, the level of expression varies 
during ontogenesis, phylogenesis, and during disease.3-15

The third line is the receptor-line, which has led to the rec-
ognition that receptors for hormonal gut peptides are widely 
expressed in extra-intestinal cells and organs. Hence, gut hor-
mones contribute substantially to metabolic and growth regu-
lation of a wide array of extra-intestinal functions all over the 
body. One of these functions is the secretion of insulin and 
glucagon from pancreatic islet cells.16-18 The gut hormones 
that stimulate in islet-cell secretion and growth have been 
named incretins (for review, see Rehfeld19).

The last line is pharmacochemical and deals with derivatiza-
tion of bioactive peptides to become useful drugs (‘peptide ther-
apeutics’).20,21 Recently, interest has focused on gut hormones 

with incretin-activity where, in particular, glucagon-like pep-
tide-1 (GLP-1)-derived drugs have been applied to the treat-
ment of type 2 diabetes mellitus.22-24 There are, however, 
considerable amounts of evidence to suggest that also other gas-
trointestinal hormones may prove valuable in diabetes therapy. 
Among these are the homologous CCK and gastrin peptides, 
which will be discussed in the following.

CCK and Gastrin Peptides
As shown in Figure 1, the C-terminal α-amidated ‘active site’ 
sequences of CCK and gastrin are highly homologous. A signifi-
cant difference is the position of the C-terminal tyrosyl residue: 
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Figure 1.  The C-terminal bioactive amino acid sequences of members of 

the gastrin/cholecystokinin family of peptides. Besides the sequences of 

mammalian cholecystokinin and gastrin, highly homologous sequences 

have been identified in extracts of frog skin glands (caerulein and 

phyllocaerulein) and the neural ganglion of the protochordate, Ciona 

intestinalis (cionin). Cionin with its disulphotyrosyl-containing sequence 

resembles a common ancestor candidate for gastrin and 

cholecystokinin.25
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position 7 in CCK vs position 6 in gastrin (as counted from the 
C-terminal Phe·NH2). However, not only is the sequence-posi-
tion of the tyrosyl residue important but it is also noteworthy 
that in most of the CCK peptides, this residue is O-sulphated, 
whereas only half of the gastrins are tyrosyl O-sulphated.

The main production site of gastrin in adults is the antro-
duodenal G-cells where most bioactive, ie, carboxyamidated, gas-
trin is synthesized as gastrin-17 and gastrin-34, both of which 
occur in tyrosyl O-sulphated and non-sulphated forms.26-28  
Also, shorter (gastrin-14 and gastrin-6) as well as longer gastrins 
(gastrin-71) are synthesized and secreted, but only in small  
quantities.29-31 The synthesis of gastrin is cell-specific (for reviews, 
see Rehfeld,1 Rehfeld et al,32 and Schubert and Rehfeld33) 
Therefore, in the present context, it is noteworthy that the spe-
cific gastrin-producing cells in the foetal and neonatal pancreatic 
islets synthesize mainly O-sulphated gastrin-17.4,34 The sulpha-
tion, however, does not change the insulinotropic activity of 
gastrin. The expression of gastrin peptides also outside the gas-
trointestinal tract and the pancreas is summarized in Table 1.

Like gastrin, CCK is also expressed in different molecular 
forms. The main forms are synthesized in endocrine I-cells in 
the duodenum, jejunum, ileum, and – in some species – also in 
the colon.35,36 The circulating forms released from the gut to 
plasma are CCK-58, CCK-33, CCK-22, and CCK-8.32,37,38 
Notably, the predominant forms in blood are CCK-33 and 
CCK-58, whereas CCK-8 constitutes only a minor fraction in 
plasma.37 As already mentioned, most of the intestinal hormo-
nal CCK peptides are O-sulphated, but around 25% are not.39 
The CCK gene is, however, also abundantly expressed in cere-
bral and peripheral neurones, including pancreatic neurones 
that innervate islet cells and intrapancreatic ganglia.8,40-43 The 
major neurotransmitter forms are O-sulphated CCK-8 and the 
short CCK-5.40,41,44,45 CCK-5 and CCK-4 may be of particu-
lar interest in a diabetes context because of the high stimula-
tory potency for insulin release seen in the porcine and human 
pancreas.8,46,47 The tissue expression of CCK peptides also out-
side the intestinal tract is summarized in Table 2. CCK pep-
tides in central and peripheral neurones are neurotransmitters, 
whereas the CCK in non-neuroendocrine cells is assumed to 
act as local, paracrine peptide messengers.

Gastrin and CCK Receptors
The targets for gastrin and CCK are 2 related G-protein cou-
pled receptors.48,49 The original naming as CCK and gastrin 
receptor is simple and meaningful.48,49 But a later nomencla-
ture with names such as CCK-A or CCK1 and CCK-B or 
CCK2 receptors, respectively, has now gained a strong foothold 
(for reviews, see Dufresne et al18 and Reubi50). Therefore, the 
CCK1/CCK2 receptor naming is used in the following.

The CCK1 receptor mediates gallbladder contraction, relax-
ation of the sphincter of Oddi, pancreatic growth and enzyme 
secretion, delay of gastric emptying, and inhibition of gastric 
acid secretion via somatostatin.51 The CCK1 receptor is also 
expressed in the pituitary, the myenteric plexus, and areas of the 

midbrain.52,53 The CCK1 receptor binds with high affinity only 
CCK peptides that are both carboxyamidated and tyrosyl 
O-sulphated, whereas the affinity of non-sulphated CCK pep-
tides and gastrins is negligible.54 Thus, non-sulphated, longer 
CCKs, short CCKs (CCK-5 and CCK-4), and the gastrins – 
irrespective of their degree of sulphation – are not physiological 
agonists for the CCK1 receptor.

The CCK2 receptor is the predominant receptor for gastrin 
and CCK peptides in the central nervous system (‘the brain 
receptor’).54,55 It binds both sulphated and non-sulphated gas-
trin and CCK peptides, as well as short C-terminal fragments 
like CCK-5 and CCK-4 with high affinity. The CCK2 receptor 
is also abundantly expressed on enterochromaffin (ECL) cells in 
the stomach,56,57 and on islet cells and ganglionic neurones in the 
pancreas of man and pig.16,58,59 Thus, islet cells are targets for 
both locally released gastrin (from specific pancreatic gastrin-
cells and β-cells),3-7 and CCK peptides (from intrapancreatic 
CCK neurones and islet cells),8,10,11 as well as from endocrine 
gastrin and CCK in circulation. Here, the concentrations of gas-
trin, however, are 10- to 20-fold above those of CCK.37,38,60 
Notably, the CCK receptor expression in the pancreas is 

Table 1.  Expression of gastrin peptides in normal adult mammalian 
tissue.a

Tissue Total translation 
product (pmol/g)

Precursor 
percentage

Gastrointestinal tract

  Antral mucosa 10 000 5

  Duodenal mucosa 400 20

  Jejunal mucosa 40 30

 I leal mucosa 20 85

  Colonic mucosa 0.2 100

Neuroendocrine tissue

  Cerebellum 5 20

  Vagal nerve 8 10

  Adenohypophysis 200 98

  Neurohypophysis 30 5

  Adrenal medulla 2 100

  Pancreas 2 95

Genital tract

 O varies 0.5 100

  Testicles 6 100

  Spermatozoa 2 55

Respiratory tract

  Bronchial mucosa 0.3 100

aOrders of magnitude based on examination of different mammalian species.
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species-specific. There are major discrepancies between – on one 
hand – man and pig (abundant islet-cell expression of the CCK2 
receptor) and – on the other hand – between rodents and dogs, 
where the specific CCK1 receptor is more abundant.16,61,62 
Consequently, results on the insulinotropic effects of CCK and 
gastrin obtained from rat, mice, and dog studies do not necessar-
ily apply to human physiology and diabetes pathophysiology.

The Biological Linkage of Gastrin and CCK to 
Pancreatic Islets
As indicated above, an association between gastrin/CCK pep-
tides and islet-cell functions (and hence a role for these peptides 
in diabetes therapy) has been discussed and examined in the last 
decades. The association includes a number of cellular, develop-
mental, and pathological observations. First, the discovery that 
an essential part of gastrin in foetal and neonatal life in mam-
mals is expressed in specific gastrin cells in pancreatic islets.3-5 
These cells are ultra-structurally similar to the antro-duodenal 
G-cells in adults, but differ as being ‘closed’ cells without lumi-
nal contact and because the foetal pancreatic gastrin product 
is more extensively O-sulphated.3-5 The marked pancreatic 

expression precedes antral gastrin expression in the stomach,3-5 
but low-level pancreatic expression is maintained also in adult 
life, although in inactive prohormonal forms.6 Second, the find-
ing that pancreatic CCK neurones innervate endocrine islet 
cells and intra-islet ganglions involves also small CCK peptides 
in islet-cell regulation.8,43 Third, the observation that CCK2 
receptors are expressed fairly abundantly on beta and alpha cells 
in human islets indicates that both gastrin and CCK peptides 
influence insulin and glucagon secretion.16,59 Fourth, there are 
also gastrin and CCK peptides in secretory granules within 
insulin cells of obese rodents and humans, where they appar-
ently protect against β-cell apoptosis.7,10,11,63,64 Fifth, earlier lit-
erature has described islet-cell neogenesis and increased insulin 
secretion in endogenous hypergastrinaemia and during gastrin 
stimulation, emphasizing the growth stimulatory effects of gas-
trin and CCK peptides.65-77 Sixth, there is the well-known 
occurrence of gastrin- and CCK-producing neuroendocrine 
tumours from pancreatic islets.78-83 And, finally, there is the 
incretin effect of gastrin and CCK peptides as described below. 
The biological linkages of CCK and gastrin to islet cells are 
summarized in Table 3.

Incretin Studies of Gastrin and CCK in Man and Pig
During the late 1960s and in the 1970s, a number of incretin 
studies of gastrin in man were reported from several laborato-
ries.46,47,65-67,69,84 The conclusions in the 1970s from dose-
response studies were that – on one hand – exogenous gastrin 
does indeed release insulin, but then – on the other hand – 
endogenous gastrin release after oral glucose in normal subjects 
was too small to explain the intestinal part of the insulin 
response during an oral glucose tolerance test.65,71 Therefore, 
using the oral-glucose-incretin definition, gastrin as such was 
assumed to contribute only little to the incretin effect of gas-
trointestinal hormones. However, review of the older studies 
suggests that this negative conclusion was false. Exogenous 
gastrin-17 in itself is a quite potent insulin-releaser together 
with intravenous glucose.65 Moreover, an ordinary protein-rich 
meal releases both gastrin and insulin in substantial amounts, 
whereas the elevation in blood glucose concentration is small.65 
Hence, during and after such a meal, gastrin is likely to stimu-
late the secretion of insulin significantly. Moreover, studies in 
endogenous hypergastrinaemia in man support the idea of an 
incretin effect of gastrin in man.66

The incretin effect of CCK has been less extensively studied 
in man and pig; maybe because CCK studies entail several 
problems in comparison with those of gastrin. Thus, for exog-
enous studies, sufficient amounts of pure CCK peptides (espe-
cially CCK-58 and CCK-33) have been difficult to obtain. 
Moreover, larger CCKs are less stable than the gastrins, and the 
studies have been hard to monitor because of shortage of reli-
able CCK assays for plasma measurements of CCK.38,60 
Nevertheless, short CCK peptides such as CCK-8, CCK-5, 
and CCK-4 have been shown to release insulin quite efficiently 
in man and in the isolated perfused porcine pancreas.8,46,47,84,87

Table 2.  Expression of CCK peptides in normal adult mammalian 
tissue.a

Tissue Total translation 
product (pmol/g)

Precursor 
percentage

Gastrointestinal tract

  Duodenal mucosa 200 5

  Jejunal mucosa 250 20

 I leal mucosa 20 50

  Colonic mucosa 5 50

Neuroendocrine tissue

  Adenohypophysis 25 100

  Neurohypophysis 20 10

  Thyroid gland 2 20

  Adrenal medulla 1 50

Genital tract

  Testicles 5 80

  Spermatozoab – –

Central nervous system

  Cerebral cortex 400 2

  Hippocampus 350 2

  Hypothalamus 200 2

  Cerebellum 2 80

Abbreviation: CCK, cholecystokinin.
aOrders of magnitude based on examination of different mammalian species.
bCholecystokinin peptides are present in spermatozoa of non-human mammals. 
The concentration, however, has not been quantitated.
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Gastrin and CCK Analogues for Diabetes Therapy
CCK and gastrin analogues for stimulation of insulin secretion 
will have to target the CCK2 receptor on the β-cells. Although 
CCK and gastrin peptides are all agonists for the CCK2 recep-
tor (because of the common C-terminus Gly-Trp-Met-Asp-
Phe·NH2 [see also Figure 1]), O-sulphated CCK peptides also 
activate the CCK1 receptor on the gallbladder. Receptor-
activated permanent gallbladder contraction, however, is inex-
pedient and may result in cholelithiasis and other gallbladder 
problems.82 Therefore, sulphated CCK-like peptides should 
probably not be used for therapy of human diabetes.

The CCK analogues under study were recently reviewed.88 
They include N-terminally glycosylated CCK-8 and other 
N-terminally protected CCK analogues (pGlu-Gln-CCK-8, 
and Ac-Y*-CCK-8).85,86,89,90 Of these, the pGlu-Gln-CCK-8 
designed and tested by Irwin et al90 looks particularly promis-
ing, not least in combination with GLP-1.86,91

Also, gastrin alone, or in combination with GLP-1 or rele-
vant growth factors, shows promise in treatments of type 1 dia-
betic rodents.72-75,92 Again, strikingly positive results were seen 
in the combinatorial treatment with gastrin and GLP-1.75 
Accordingly, a hybrid dual agonist between GLP-1 and the 
C-terminal hexapeptide amide fragment of gastrin has proved 
pretty beneficial in diabetic mice.93,94

Interestingly, it has just been demonstrated that human  
β-cells after fibroblast growth factor 2 (FGF-2)-induced dedif-
ferentiation express gastrin.95 And also worth mentioning is the 
fact that postprandial CCK-secretion is increased in Roux-en-Y 
gastric bypass (RYGB)-operated obese patients.96-98 Hence, 
endogenous CCK in these patients may contribute to the insu-
linotropic amelioration of their type 2 diabetes.

Conclusions
Food is a prerequisite for life. Therefore, regulation of digestion 
is essential for all multicellular organisms. Accordingly, the gut is 
densely innervated and equipped with endocrine cells for accu-
rate regulation of digestion, absorption and metabolic functions 

in the body. For decades, studies of gastrointestinal hormones 
have probably focused too much on functions inside the gut. 
Studies of incretin did for many years so to speak fall between 2 
stools: the traditional gastrointestinal physiologists were more 
interested in proper gut functions (secretion of digestive juices, 
digestive enzymes, motility, and emptying), and classical endo-
crinologists did not like the darkness of the bowel.

With the rapidly growing epidemics of obesity and diabetes 
mellitus, incretin, however, has become a central biomedical 
issue. The prospect of GLP-1 analogues as major drugs for 
treatment of type 2 and perhaps also type 1 diabetes bears wit-
ness to this development and indicates that diabetes and obe-
sity can be profoundly influenced by gastrointestinal hormones. 
Among these, GLP-1 and GIP (gastric inhibitory polypeptide 
or glucose-dependent insulinotropic polypeptide) are impor-
tant, but not the only players. As described here and previously, 
the combinatorial effects of GLP-1 and GIP with CCK and 
gastrin peptides seem worth pursuing.88,99-101
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