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ARTICLE INFO ABSTRACT
Keywords: Spontaneous mental activity is characterized by dynamic alterations of discrete and stabile brain states called
Alzheimer's disease functional microstates that are thought to represent distinct steps of human information processing.
Biomarkers Electroencephalography (EEG) directly reflects functioning of brain synapses with a uniquely high temporal

Electroencephalography
Functional microstates
Cerebrospinal fluid

resolution, necessary for investigation of brain network dynamics. Since synaptic dysfunction is an early event
and best correlate of cognitive status and decline in patients along Alzheimer's disease (AD) continuum, EEG
microstates might serve as valuable early markers of AD. The present study investigated differences in EEG
microstate topographies and parameters (duration, occurrence and contribution) between a large cohort of
healthy elderly (n = 308) and memory clinic patients: subjective cognitive decline (SCD, n = 210); mild cog-
nitive impairment (MCL, n = 230) and AD (n = 197) and how they correlate to conventional cerebrospinal fluid
(CSF) markers of AD. Four most representative microstate maps assigned as classes A, B (asymmetrical), C and D
(symmetrical) were computed from the resting state EEGs since it has been shown previously that this is suf-
ficient to explain most of the resting state EEG data. Statistically different topography of microstate maps were
found between the controls and the patient groups for microstate classes A, C and D. Changes in the topography
of microstate class C were associated with the CSF AB42 levels, whereas changes in the topography of class B
were linked with the CSF p-tau levels. Gradient-like increase in the contribution of asymmetrical (A and B) and
gradient-like decrease in the contribution of symmetrical (C and D) maps were observed with the more severe
stage of cognitive impairment. Our study demonstrated extensive relationship of resting state EEG microstates
topographies and parameters with the stage of cognitive impairment and AD biomarkers. Resting state EEG
microstates might therefore serve as functional markers of early disruption of neurocognitive networks in pa-
tients along AD continuum.

AD Alzheimer's disease HC healthy elderly controls

CSF cerebrospinal fluid ICA independent component analysis
EEG electroencephalography MCI mild cognitive impairment
FDG-PET fluorodeoxyglucose-PET MMSE  Mini-Mental State Examination
fMRI functional magnetic resonance imaging PLI Phase Lag Index

GFS Global Field Synchronization qEEG quantitative electroencephalography
GFP Global Field Power SCD subjective cognitive decline
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SNAC-K Swedish National study on Aging and Care — Kungsholmen
TANCOVA topographic analysis of covariance
TANOVA topographic analysis of variance

1. Introduction

How the brain integrates large-scale distributed neural activity into
coherent cognitive processes is one of the ongoing puzzles in cognitive
neuroscience. Many studies using different functional imaging mod-
alities have investigated and confirmed functional interaction of ex-
tensive neuronal populations organized to perform cognitive functions
in the form of neurocognitive networks (Varela et al., 2001;
Bressler and Menon, 2010). Conjointly, they revealed that human brain
activity constitutes of functionally connected brain areas that are syn-
chronously active during the task-absent resting state (Raichle et al.,
2001). Stimulus-independent spontaneous mental activity is therefore a
result of global intrinsic well-organized brain activity during rest
(Raichle, 2010).

Impaired functional connectivity has been repeatedly reported in
various neuropsychiatric disorders (He et al., 2007; Seeley et al., 2009;
Bressler and Menon, 2010). Alzheimer's disease (AD) is of particular
interest since it is characterized by disturbance of higher cortical
functions such as memory, comprehension, learning capacity, language,
etc. Moreover, it is accompanied by the impairment of thinking and
reasoning as well as with reduction in the flow of ideas (World Health
Organization, 1992). Dementia in AD evolves on a continuum con-
sisting of subjective cognitive decline (SCD) as the first symptomatic
and mild cognitive impairment (MCI) as the subsequent prodromal
stage of the disease (Jessen et al., 2010; Jessen et al., 2014). Preclinical
and clinical stages of AD have already been recognized as “disconnec-
tion syndromes” since numerous functional magnetic resonance ima-
ging (fMRI) and quantitative electroencephalography (qEEG) studies
have shown disturbances in resting state functional connectivity of
different brain regions in the referred patient groups (Leuchter et al.,
1992; Jelic et al., 1996; Li et al., 2002; Koenig et al., 2005;
Damoiseaux, 2012; Badhwar et al.,, 2017; Smailovic et al., 2018).
Widespread distribution of neuropathological hallmarks in the brain,
such as amyloid plaques and neurofibrillary tangles might subtend
disruptions in the large-scale neurocognitive networks. Besides, it has
already been postulated that neurodegeneration, neuronal and synaptic
loss and dysfunction might lead to the loss of structural and functional
integrity of the long cortico-cortical projections, which gives rise to the
clinical symptoms of AD (Morrison et al., 1996; Badhwar et al., 2017;
Smailovic et al., 2018). Therefore, diagnostic modalities that have a
capability to detect disruptions in spontaneous mental processes in sub-
second time dimension, i.e. disturbances in large-scale resting state
neural networks, are candidate markers of early AD.

EEG has long been proven to be a valuable method for investigation
of the brain resting states as it directly mirrors brain synaptic activity,
i.e. summated excitatory and inhibitory postsynaptic potentials, with a
uniquely high temporal resolution (Michel, 2009). Conventional qEEG
analysis in the frequency domain, such as power spectra analysis to-
gether with the novel qEEG measures of functional connectivity in-
volving global field synchronization (GFS) and phase lag index (PLI)
have already been proven to correlate with the stage of cognitive im-
pairment (Huang et al., 2000; Park et al., 2008; Engels et al., 2015) and
AD molecular biomarkers (Smailovic et al., 2018). However, the re-
ferred frequency analyses integrate EEG recording over seconds and
therefore entail loss of temporal resolution. Employing multichannel
EEG analysis in the time domain with the millisecond time resolution
might therefore provide a valuable tool for an investigation of the dy-
namics of resting state neurocognitive networks.

EEG recording can be directly visualized by a single scalp field map,
i.e. color-dependent plot of potentials recorded across all electrodes
sites. These maps or topographies of electric fields vary throughout
recording time as they are generated by the ensemble of all active
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neural networks in the brain at one given moment in time. Therefore,
temporal organization of the large-scale neural networks can be ana-
lyzed using topographies of electric fields measured at the level of the
scalp. Previous studies revealed two notable properties of the resting
state EEG time domain analysis. First, these arrangements of electric
fields remain quasi-stable for a certain length of time before a sudden
transition into the new arrangement (Lehmann et al., 1987). Referred
periods of stabile topographies of electric potentials do not overlap in
time and last around 60-120 ms (Lehmann et al., 1987; Koenig et al.,
2002; Michel and Koenig, 2018) which is compatible with the resolu-
tion of the human information processing (Efron, 1970). They were
proposed to represent elementary and momentary unit of thoughts as
the “atoms of thoughts” and were named functional microstates
(Lehmann et al., 1998; Lehmann et al., 2010). Second, microstate to-
pographies are notably similar across EEGs of different subjects. Only
four distinct alternating maps are sufficient to explain most of the to-
pographical variance of the resting state EEG data (Pascual-
Marqui et al., 1995; Koenig et al., 2002). These microstate topographies
were named class (map) A, B (asymmetrical), C and D (symmetrical).
Previous studies employing resting-state fMRI and EEG modalities have
provided evidence for the temporal correlation between the occurrence
of the specific microstate map and the activity of a particular resting
state network of the brain (Britz et al., 2010; Musso et al., 2010;
Yuan et al., 2012). In more detail, Britz et al. reported association of the
microstate maps A and B with auditory and visual and microstate maps
C and D with saliency and attention networks (Britz et al., 2010). An-
other study that involved EEG source localization technique found that
cortical generators of neuronal electric activity that give rise to EEG
microstates correspond to the parts of the default mode network (DMN)
(Pascual-Marqui et al., 2014). The above findings motivated EEG mi-
crostate investigations in patients with AD, since dysfunction of the
referred resting state networks have been repeatedly reported in cog-
nitively impaired individuals (Sorg et al., 2007; Li et al., 2012;
Verma and Howard, 2012; Hafkemeijer et al., 2015; Wang et al., 2015;
Badhwar et al., 2017; Mascali et al., 2018).

Several studies have reported decreased microstate duration in pa-
tients with different stages of cognitive impairment and AD
(Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher, 1998).
Conversely, longer overall microstate duration in patients with AD
compared to healthy elderly has also been reported (Ihl et al., 1993).
Although findings originated from small-scale clinical studies and in-
volved outdated analytical methodology based on two-dimensional
map descriptors, they indicated a relationship between cognitive status
and microstate parameters. However, thorough investigation of the
microstate topographies and parameters and their relationship to the
molecular markers of AD neuropathology in a well-defined memory
clinic cohort have not been conducted so far.

In accordance with the growing need for the early and reliable
functional state and trait markers of AD as well as noninvasive outcome
measures in clinical trials, the aim of the present study was to in-
vestigate the relationship of EEG microstates with the cognitive status
and conventional AD CSF biomarkers. We hypothesized that both mi-
crostate topographies and parameters are altered in the cognitively
impaired patients compared to healthy elderly controls and that these
changes are associated with AD-like CSF biomarker profile. The study
population included over 600 memory clinic patients with wide spectra
of cognitive impairment and 300 healthy elderly controls.

2. Material and methods
2.1. Study population

The present study included 308 healthy elderly controls recruited as
part of the Swedish National study on Aging and Care in Kungsholmen,

Stockholm (SNAC-K) and 637 cognitively impaired patients from the
Memory Clinic, Karolinska University Hospital Huddinge. The SNAC-K
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Table 1
Demographics of the study population and CSF biomarker values of the patient group.
Controls SCD MCI AD
Number 308 210 230 197
Sex ratio (males/females) 121/187 79/131 109/121 72/125
Age (years) 71.6 + 8.8Pcd 60.0 *+ 6.1 >ef 65.9 * 8.2°° 67.8 = 9.2%f
(60-93) (50-83) (50-87) (51-89)
Education (years) 14.4 = 3.1 bed 13.3 + 3.6 °f 12.1 + 3.8%°% 11.1 = 3.6 4
(9-18) (1-24.5) (3-22) (6-23)

MMSE?®

CSF biomarkers
CSF AP42 (ng/L)

29.3 + 0.8 >ed
(27-30)

28.7 + 1.7bef
(23-30)

916.9 + 248.8 °f

27.3 £ 2.1 %8
(18-30)

713.6 = 271.7 ©8

23.0 + 4.3 %
(7-30)

500.9 + 12355

(300-1650) (229-1532) (250-876)

CSF p-tau (ng/L) - 52.4 + 21.5¢°f 62.7 + 28.6 “# 91.5 + 37.6 "¢
(16-183) (16-175) (16-240)

CSF t-tau (ng/L) - 256.3 + 121.4 °f 363.6 = 210.3 % 628.7 = 309.5 8
(43-689) (41-1140) (103-1500)

Data are presented as means
hoc comparisons. SCD = subjective cognitive decline, MCI = mild cognitive impairment, AD = Alzheimer's disease, MMSE = Mini Mental State Examination.

standard deviation. Kruskal-Wallis test; p < 0.05 for age, education, MMSE and all CSF biomarkers. Dunn-Bonferroni test for post-

a

n = 627 for the memory clinic cohort (Controls = 308, SCD = 206, MCI = 228, AD = 193). b p < 0.05, Controls versus SCD; “p < 0.05, Controls versus MCI; d

p < 0.05, Controls versus AD; “p < 0.05, SCD versus MCL; fp < 0.05, SCD versus AD; & p < 0.05, MCI versus AD.

study was approved by the Ethics Committee at Karolinska Institute and
the Regional Ethical Review Board in Stockholm (Dnrs: 01-114, 04-
929/3, 0 26-2007). The involvement of the patients in the study was
approved by the local ethical committee of the Karolinska University
Hospital Huddinge (Dnr: 2011/1978-31/4). Informed written consent
was obtained according to the Declaration of Helsinki from all parti-
cipants. All patients had capacity to take a decision to donate the results
of their routine assessments for the research purposes. Table 1. Presents
the demographic characteristics of the study population (healthy el-
derly and memory clinic patients).

2.1.1. Healthy elderly controls (SNAC-K cohort)

SNAC-K is a population-based study that started in 2001 and re-
cruited individuals =60 years of age living at home or in institutions.
The participants were randomly selected from age-stratified groups in
6- (between 60 and 78 years) and 3-year intervals (> 81 years). All
participants underwent extensive examination consisting of a social
interview and assessment of physical functioning, a psychological test
battery, self-administrated questionnaires and a comprehensive clinical
assessment including geriatric and neurological examination together
with laboratory tests. At baseline, a subsample of participants who were
free from dementia underwent an extended biomedical assessment in-
cluding structural MRI imaging and resting state EEG recordings.
Depending on their age, the participants are re-examined every 6 (be-
tween 60 and 78 years) or every 3 years (> 78 years).

In total, 484 participants underwent resting state EEG recording but
308 were retained for the analyses following the exclusion criteria (121
males and 187 females, mean age 71.6, mean Mini-Mental State
Examination (MMSE) score 29.3) (Table 1.). The exclusion criteria in-
cluded (i) a baseline MMSE score lower than 27 points; (ii) decline in
the MMSE of more than two points and/or a dementia diagnosis (DSM
IV criteria) during the first 6 years of the follow-up; and (iii) presence of
any major neurological and/or psychiatric disorder evidenced by the
medical history or neuroradiological report.

2.1.2. Memory clinic cohort

The patient group consisted of 637 memory clinic referrals clinically
diagnosed with SCD (n = 210) comparable to the Jessen et al. (2014),
MCI (n = 230) according to Winblad et al. (2004) and AD (n = 197)
according to ICD-10 criteria (World Health Organization, 1992). All
patients underwent routine comprehensive clinical examination, neu-
ropsychological testing, CSF sampling and resting state EEG recording
at the baseline. The exclusion criteria together with the demographics
and clinical data (Table 1) were previously described in more details in
Smailovic et al. (2018).

2.2. CSF sampling and analysis

The patient groups involved in the present study underwent CSF
sampling and conventional CSF biomarker analysis (AB42, p- and t-
tau). CSF sampling was conducted in the morning by routine lumbar
puncture procedure in the L3/L4 or L4 /L5 intervertebral space while
the patient was sitting in an upright position. CSF samples were col-
lected in polypropylene tubes, centrifuged at 1000rpm (10 minutes) in
order to eliminate cells and insoluble material and stored at -70°C
pending further analysis. CSF AB42, p-tau (threonine 181) and t-tau
protein concentrations were analyzed with xMAP technology using the
INNO-BIA AlzBio3 kit (Innogenetics, Ghent, Belgium) (Olsson et al.,
2005). The cutoff values were Af42 > 550 ng/L, p-tau < 80 ng/L,
and t-tau < 400 ng/L. The healthy individuals did not undergo lumbar
puncture due to ethical constraints.

2.3. EEG recordings

The resting state EEG recordings of the healthy elderly (SNAC-K)
and memory clinic cohorts share key features of the methodological
setup. However, they were conducted in different clinical and/or re-
search frameworks and their differences are therefore described sepa-
rately below. Raw EEG recordings of both cohorts were further pre-
processed and analyzed following the same methodological procedure.
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2.3.1. EEG recordings of the healthy elderly controls

The subjects underwent resting-state EEG recordings on the
Schwarzer EEG Natus Incorporated System by using Easy Caps with the
placement of the 19 scalp electrodes, proven to be sufficient for reliable
microstate analysis (Khanna et al., 2014), following the standard 10/20
system. The subjects had their eyes closed and their vigilant state has
been monitored during spontaneous real-time EEG recording. In case of
changes in the vigilant state (e.g. drowsiness), the subjects would re-
ceive an auditory warning sound. The sampling rate of the EEG re-
cording was 256 Hz with the electrode impedance below 5 kQ and
band-pass filters between 0.5 Hz and 70 Hz.

2.3.2. EEG recordings of the memory clinic patients

The patient group underwent resting-state EEG recording on the
Nervus System. The recording setup was identical to the one used in the
healthy control group as noted above. Compatibility of two recording
systems (Schwarzer Natus and Nervus) was checked by dummy signal
generator recordings on both systems.

2.4. EEG microstate analysis

The preprocessing of the EEGs of both healthy elderly controls and
memory clinic patients was conducted in Brain Vision Analyzer, version
2.0 software (Gilching, Germany). Eye movements and electrocardio-
graphic artifacts were removed using independent component analysis
(ICA) algorithm while remaining artifacts, periods of drowsiness, eyes
open and other non-resting state vigilant states were removed by visual
inspection. The average total length of the preprocessed EEG recording
available for the further analysis was between 6 (healthy controls) and
11 min (patient groups).

Microstates analysis was performed on all the available segments of
the preprocessed EEG data in MATLAB version R2017. The analysis
followed well established procedure previously described in detail
(Pascual-Marqui et al., 1995; Koenig et al., 2002). Functional micro-
states are defined as periods of stable electric field topographies that do
no overlap in time and undergo sharp transitions into new topo-
graphical configurations (Lehmann et al., 1987). It has been previously
shown that these topographies remain stable around the global field
power (GFP) peaks and tend to change at the moments of the minimal
GFP values (Michel, 2009). Therefore, topographies (maps) at the GFP
peaks throughout the whole 2-20 Hz band-pass filtered EEG data were
subjected to the modified k-means spatial cluster algorithm. Referred
cluster analysis yielded four most representative microstate maps per
participant, previously found to be optimal to explain most of the
variance in the resting state EEG data (Koenig et al., 2002). Four in-
dividual microstate maps of all the healthy elderly subjects were further
averaged in order to compute four average or grand mean microstate
maps of the control group. The control's grand mean microstate maps
were assigned as class A, B, C and D based on the similarity to the
normative microstate maps available from the literature (Koenig et al.,
2002). Finally, the four individual maps of all the subjects in the study
(healthy controls and patients) were assigned as class A, B, C and D
based on the similarity to the corresponding controls’ grand mean mi-
crostate maps (Fig. 1) and were further used for the statistical analysis
of their corresponding topographical differences.

The analysis of microstate parameters included computation of
duration, occurrence and contribution of each microstate map in the
EEG recording. Duration corresponds to the continuous period within
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which particular microstate class is active and presumably reflects
stability of the underlying active brain networks. Occurrence corre-
sponds to the average number of appearance of each microstate class
per second and may resemble the tendency of the underlying brain
networks to become activated. Contribution is a microstate parameter
defined as a percentage of the total time occupied by the particular
microstate class and therefore portrays how much a particular map is
“dominant” compared to all other maps (Koenig et al, 2002,
Khanna et al., 2015). We hypothesized that the topography of controls’
microstate maps differ from the maps of the patient group, e.g. the
landscape of the AD patient's map A might not correspond to the
landscape of the control's map A, thus involving comparison of basically
different maps and corresponding parameters. Additionally, it has been
shown that the usage of the average or mean microstate maps for the
between-group comparisons is a valid and reliable approach
(Khanna et al., 2014). Therefore, microstate parameters were calcu-
lated using the average controls’ grand mean maps as the standard that
was fitted by spatial correlation to the original patients’ EEG data. This
procedure allowed for the computation of duration, occurrence and
contribution of each healthy elderly microstate map in the patient's EEG
data (Fig. 1). The microstate parameters were consequently compared
between SCD, MCI and AD groups only.

2.5. Statistical analysis

2.5.1. Microstate statistics

The demographic characteristics, clinical variables (MMSE) and
biomarkers (CSF AP42, p- and t-tau) of the study population were
presented with descriptive statistics. The differences in sex ratio, age,
years of education, MMSE and CSF biomarkers between the groups
were investigated by Chi Square (sex ratio only) and nonparametric
Kruskal-Wallis test, followed by Dunn-Bonferroni test for post-hoc
comparisons.

Microstate topographies of each microstate class were compared
between healthy controls and patient groups using a non-parametric
randomization topographic analysis of variance (TANOVA) (Strik et al.,
1998) in the Ragu software (Koenig et al., 2011). The four individual
microstate maps per participant, retrieved from the above described
cluster analysis and canonical sorting procedure were compared be-
tween the four groups (controls, SCD, MCI and AD) in order to identify
significant reference-independent topographical differences. Note that
the map sorting procedure employed before was designed to minimize
the potential variance among microstate maps across individuals and
groups, such that these topographic comparisons were as conservative
as possible. Post-hoc electrode-wise t-maps were computed between all
possible group pairs in case of a significant TANOVA (Controls vs SCD,
SCD vs MCI, MCI vs AD, etc.). Both TANOVA and post-hoc tests were
conducted after regressing out age and sex, with 5000 randomization
runs and level of significance p < 0.05.

The group differences in microstate parameters (duration, occur-
rence and contribution) were investigated using nonparametric
Kruskal-Wallis test due to the non-normal distribution of the data. The
analysis was performed separately for each microstate parameter. The
level of significance wasp < 0.05.

2.5.2. Correlation of microstates topographies and parameters with clinical
variables
The association of the MMSE and CSF biomarkers (A42, p- and t-
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Fig. 1. Steps of the EEG microstate analysis. The analysis started with the individual's preprocessed EEG that was subjected to the spatial k-means cluster analysis.
The cluster analysis yielded four most representative microstate maps per individual. The next step involved computation of the average or grand mean microstate
maps of the healthy elderly group (n = 308). The four healthy grand mean maps were then assigned as class A-D based on the similarity to the maps from the
normative study. Following the same sorting procedure, the four individual microstate maps of both healthy controls and patients were assigned (sorted) as class A-D
based on the similarity to the four healthy grand mean maps. Finally, sorted and assigned individual microstate maps (orange area) were used for the analysis of their
topographical differences between the groups. The healthy controls’ grand mean maps (blue area) were further used for the computation of microstate parameters
(duration, occurrence and contribution) in the original preprocessed patients’ EEG data. HC = grand mean microstate maps of healthy elderly controls, N = average

(representative) microstates maps from the normative data (Koenig et al.,
referred to the web version of this article.)

2002). (For interpretation of the references to color in this figure legend, the reader is

tau; in the memory clinic patient group only) with the topography of
microstate classes were investigated using topographic analysis of
covariance (TANCOVA). TANCOVA uses nonparametric randomization
statistics when the predictor is a continuous variable (Koenig et al.,
2011). The data was regressed out for age and sex prior to the analyses.
TANCOVAs were separately performed for MMSE and each CSF bio-
marker, with the 5000 randomization runs.

The correlations of the MMSE (in both healthy and patient groups)
and CSF biomarkers (in the patient group) with the microstate para-
meters were investigated by Spearman's rank correlation tests due to
the non-normal distribution of the data.

The level of significance for both TANCOVA and Spearman's cor-
relation tests was p < 0.05. All the TANOVA and TANCOVA analyses
were conducted in the Ragu software (Koenig et al., 2011). The de-
scriptive statistics, Kruskal-Wallis and Spearman's rank correlation tests
were performed in SPSS (SPSS Statistics, version 23.0).

2.6. Data availability statement
Clinical data used in the present study are not publicly available due
to the ethical constraints. The researchers interested in the reported

findings should contact the study responsible senior (Vesna Jelic, ves-
na.jelic@ki.se) and corresponding author (Una Smailovic,

A Normative data B
(n =496, 6 — 80 years)

Class A

(Z@

una.smailovic@ki.se) who will make the data available upon reason-
able request. Request for clinical information and data availability of
the ongoing longitudinal SNAC-K study (http://www.snac-k.se/)
should be directed to Laura Fratiglioni, PI of the SNAC-K study
(Laura.Fratiglioni@ki.se). Microstate analysis algorithm and Ragu
software have been developed by Thomas Konig, University of Bern,
and are available for downloading online (http://www.thomaskoenig.
ch/index.php/software/ragu/download).

3. Results
3.1. Grand mean microstate maps of healthy controls

The descriptive statistics of the study population and CSF bio-
markers are presented in Table 1.

The four average or grand mean healthy elderly microstate maps
yielded by cluster analysis of the controls’ EEGs (n = 308, 60-93 years)
were analogous to the four grand mean microstate maps of the nor-
mative data published in Koenig et al. (2002) (Fig. 2). The observed
differences can be attributed to the age-related changes in microstate
topographies as the normative study included only 26 subjects above
the age of 50 (Koenig et al., 2002).

Healthy elderly controls
(n =308, 60 — 93 years)
Class A Class B
% C)/ff
Class C Class D
Ja) Ja)
A
S —N Q

Fig. 2. Microstate maps of the healthy population. Grand mean microstate maps of the (A) Normative data that included 496 controls aged 6 to 80 years but only 26
subjects above the age of 50 (Koenig et al., 2002), (B) Healthy elderly controls included in the present study (n = 308) aged between 60 and 93 years.
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Fig. 3. Analysis of topographical differences in microstate maps. TANOVA of the individual microstate topographies between Controls, SCD, MCI and AD for the
microstate class A (a), B (b), C (¢) and D (d). The figure displays between-group spatial comparison of each microstate class that has been fed into a multidimensional
scaling (MDS) analysis. MDS analysis downscales high-dimensional result spaces into lower dimensional ones by subjecting all mean group maps to the spatial
principal component analysis (PCA) that allows visualization of the data. The maps shown on the x- and y-axes represent PCA eigenvector maps. Each group point on
the graph is therefore represented in a way that groups with similar topographies will be found at closer whereas groups with dissimilar topographies will be found at
the greater mutual distance. HC = healthy elderly controls, SCD = subjective cognitive decline, MCI = mild cognitive impairment, AD = Alzheimer's disease.

3.2. Topographical differences in microstates maps between healthy controls
and memory clinic patients

TANOVA showed significant interaction effect of microstate classes
* diagnostic groups (p = 0.027). TANOVA of the individual microstate
topographies revealed significant differences between the healthy

elderly controls (HC) and patient groups (SCD, MCI, AD) for microstate
classes A, C and D, while controlling for age and sex (p < 0.001 for all
separate TANOVAs) (Fig. 3). Even though graphical representation of
topographical differences suggest deviation of class B in the patient
groups, it did not reach statistical significance (p = 0.079) (Fig. 3).
Post-hoc tests for the topographical group-wise comparisons
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Table 2
Topographical group-wise comparison of microstate maps.
Group pair A B C D
HC vs SCD 0.011 - < 0.0- < 0.0-
01 01
HC vs MCI 0.001 - n.s. < 0.0-
01
HC vs AD 0.002 - n.s. < 0.0-
01
SCD vs MCI n.s. - 0.017 n.s.
SCD vs AD 0.013 - 0.031 n.s.
MCI vs AD 0.006 - n.s. n.s.

Post-hoc TANOVA for topographical group-wise comparison of microstate to-
pographies. Microstate maps were corrected for age and sex. Overall TANOVA
was significant for maps A, Cand D (p < 0.001), dash indicates that overall
TANOVA was not significant and therefore post-hoc tests were not computed.
The table presents p values < 0.05; n.s. = non significant. HC = healthy elderly
controls, SCD = subjective cognitive decline, MCI = mild cognitive impair-
ment, AD = Alzheimer's disease.

Table 3
Association of microstate topographies with MMSE and CSF biomarkers.
A B C D

MMSE (healthy controls) n.s. n.s. n.s. n.s.
MMSE! (patients) 0.027 n.s. n.s. n.s.
CSF biomarkers?
CSF AP42 n.s. n.s. 0.049 n.s.
CSF p-tau n.s. 0.035 n.s. n.s.
CSF t-tau n.s. n.s. n.s. n.s.

TANCOVA of the microstate classes with the MMSE and CSF biomarkers as
predictors. Analyses controlled for age and sex. The table presents p values <

0.05; n.s. = non significant. MMSE = Mini Mental State Examination.
n = 627 for the memory clinic cohort (SCD = 206, MCI = 228, AD = 193).
2n = 637, investigated in the patient group only.

between healthy controls and the patient groups revealed statistically
significant topographical differences between the maps for microstate
classes A (HC vs SCD, p = 0.011; HC vs MCIL, p = 0.001; HC vs AD,
p = 0.002), C (HC vs SCD,p < 0.001) and D (HC vs any of the patient
groups, p < 0.001). The topographical differences between the patient
groups were significant for classes A (SCD vs AD, p = 0.013; MCI vs AD,
p =0.006) and C (SCD vs MCI, p = 0.017; SCD vs AD, p = 0.031)

NeuroImage: Clinical 24 (2019) 102046

(Table 2).
3.3. Association of microstate topography with MMSE and CSF biomarkers

TANCOVA revealed statistically significant association between
MMSE score and topography of microstate class A in the patient group
only (p = 0.027), while controlling for age and sex (Table 3).

The investigation of relationship of microstate class topographies
and CSF biomarkers in the patient group revealed statistically sig-
nificant association between CSF AB42 levels and the topography of
microstate class C (p = 0.049) and CSF p-tau and topography of class B
(p = 0.035) while controlling for age and sex (Table 3). The direction of
topographic deviations in association with MMSE score and CSF bio-
markers can be inferred from the covariance maps (Supplementary
Fig. 1).

3.4. Differences in microstate parameters between memory clinic patients

The previous analysis revealed significant topographical difference
in the microstate maps for classes A, C and D between healthy elderly
and the patient groups. Therefore, direct between-group comparison of
microstate parameters is confounded by their topographical differences.
Consequently, computation of parameters involved fitting of healthy
controls average (grand mean) microstate maps onto the original pa-
tients EEG recording (SCD, MCI and AD). The four healthy controls
microstate maps accounted on average for 78% of the variance in the
patients EEG data which is comparable to the literature (Koenig et al.,
2002; Michel and Koenig, 2018).

Kruskal-Wallis test revealed statistically longer mean duration in a
gradient- like manner between SCD, MCI and AD groups for microstate
classes A (p < 0.001) and B (p < 0.001) . On the other hand, there
was statistically significant lower mean occurrence in a gradient-like
manner between the SCD, MCI and AD groups in the microstate classes
C( < 0.001) and D (p < 0.001). Overall, there were significant
differences in the mean microstate contribution for all microstates
classes (class A, p = 0.001; class B,p < 0.001; class C, p = 0.012; class
D, p = 0.003). Mean contribution of the asymmetrical (A and B) classes
was higher whereas symmetrical (C and D) classes was lower with the
more severe stage of cognitive impairment (Fig. 4).

3.5. Association of microstate parameters with MMSE and CSF biomarkers

Spearman correlation revealed significant associations between
MMSE, CSF biomarkers values and microstates parameters in the pa-
tient cohort, however Spearman's rank coefficient was < 0.25 for all
correlations (Supplementary Table 1).
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Fig. 4. Gradient-like differences in microstate parameters between memory clinic patient groups. Microstate duration (A), occurrence (B) and contribution (C)
between subjective cognitive decline, mild cognitive impairment and Alzheimer's disease patients, using the average (grand mean) maps of the healthy control group
for computation. Different bar colors present different diagnostic groups. The interquartile range is presented by the box; the median by the solid line; lower and
upper 25% of distribution are presented by whiskers. Kruskal-Wallis test over the diagnostic groups. *p < 0.05.

4. Discussion

The present study investigated differences in the topography and
dynamics of EEG microstates between the two large and well char-
acterized cohorts of patients with different stages of cognitive impair-
ment and healthy elderly controls. To our knowledge, it is the first EEG
study that investigated biological bases of these neurophysiological
findings by assessing their relationship with conventional AD molecular
markers. In this study we have shown that EEG microstate topographies
significantly deviate between the controls, SCD, MCI and AD patients
for microstates classes A, C and D. On the one hand, post-hoc group-
wise comparisons highlighted that all the patient groups separately
(SCD, MCI and AD) had significantly different microstate topographies
compared to the healthy controls for classes A and D (Table 2). On the
other hand, deviations in the topography of microstates classes C and A
might be specific to patients with early (SCD) and advanced (AD) stage
of the cognitive impairment, respectively, as supported by the graphical
plot of their topographical similarities (Fig. 3) and post-hoc group-wise
comparisons (Table 2). These findings indicate the plausible sensitivity
of functional microstates to the disturbances in synaptic function and

superimposed neural networks that underlie early clinical symptoma-
tology in patients along AD continuum.

A previous EEG study on microstate topographies has demonstrated
more frontally located center of gravity of the microstates in patients
with AD, however involved obsolete analytical approach (Dierks et al.,
1997). Two other studies employing current microstates methodology
reported no statistically significant differences in microstate topo-
graphies between AD patients and controls; however this might have
been due to underpowered analyses given small sample sizes
(Nishida et al., 2013; Grieder et al., 2016). The interpretation of de-
viations in the resting state microstate topographies relies on the con-
cept that different microstate maps mirror different coordinated and
synchronized neural networks in the brain. Therefore, changes in the
map topographies recorded at the level of the human scalp resemble
changes in the activation, distribution and/or orientation of the un-
derlying neural assemblies in the brain (Lehmann et al., 1987;
Khanna et al., 2015).

We reported the association between CSF Ap42 levels and the al-
terations in the topography of symmetrical microstate class C in the
patient cohort. Decreased levels of AB42 in the CSF correlate with the
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increased brain amyloid load evidenced by neuropathological ex-
amination or amyloid-positron-emission = tomography  (PET)
(Strozyk et al., 2003; Blennow et al., 2010). Additionally, amyloid
cascade hypothesis of AD pathogenesis has dominated the field for
several decades (Selkoe and Hardy, 2016), indicating causative re-
lationship between the amyloid accumulation and synaptic dysfunction
along AD continuum (Selkoe, 2002; Selkoe and Hardy, 2016). Micro-
state class C has been previously associated with activation in the parts
of the default mode network such as posterior and anterior cingulate
cortex as shown by 3D EEG source localization and correlative resting-
state fMRI-EEG studies (Britz et al., 2010; Pascual-Marqui et al., 2014;
Michel and Koenig, 2018). Concurrently, a recent study aiming to
identify spread of AD pathology has shown that earliest Af accumula-
tion occurs within areas of default mode network (DMN), affecting
functional connectivity of these regions in healthy elderly and MCI
patients (Palmgqvist et al., 2017). This might explain the reported as-
sociation between CSF AB42 levels and microstate class C since our
memory clinic cohort prevalently consisted of patients diagnosed with
SCD and MCI. Topographical deviation of microstate map C in patients
with cognitive impairment may therefore indicate increased brain
amyloid load and consequent functional disruption of the DMN.

On the other hand, we observed significant association of CSF p-tau
levels and alterations in the topography of asymmetrical microstate
class B. CSF p-tau reflects the phosphorylation state of tau as well as
extent of the cortical neurofibrillary tangle pathology (Buerger et al.,
2006; Tapiola et al., 2009; Blennow, 2017). Compared to the t-tau le-
vels, it appears to be more specific for AD (Scheurich et al., 2010;
Blennow, 2017). Microstate class B has been found to correlate with the
bilateral occipital cortex activity as shown by fMRI-EEG study and
therefore to be associated with visual network (Britz et al., 2010).
Another study, using 3D EEG source localization technique, has shown
that class B has a maximum activation in the right occipital area in
addition to the posterior cingulate cortex (Pascual-Marqui et al., 2014).
Recent reports on brain tau pathology distribution in relation to the
resting-state functional neural networks revealed that regional pattern
of hyperphosphorylated tau pathology involved temporal cortical areas,
precuneus/posterior cingulate, occipital and lateral parietal cortices
which corresponds to the dorsal attention, higher visual, limbic and
default mode networks (Ossenkoppele et al., 2016; Hansson et al.,
2017). Thus, brain areas and networks associated with microstate class
B overlap with the regional distribution of hyperphosphorylated tau
pathology and consequently affected functional brain networks. Inter-
estingly, topographical differences of class B in our study were not
significant between the healthy elderly controls and memory clinic
patient groups (Fig. 3). Taking into account that the diagnoses of our
memory clinic patients were based on the clinical criteria, we suggest
that the deviations in the topography of map B might be a valuable
functional marker of the accumulating molecular neuropathology ra-
ther than the cognitive status.

Asymmetrical microstate class A and symmetrical class D have been
shown to correspond to the resting state networks associated with
phonological processing and attention network, respectively
(Britz et al., 2010). Conversely, a more recent study reported associa-
tion of class A with visualization as a modality of thinking, while it
confirmed previous finding of association of microstates class D with
attention and no-task resting state (Milz et al., 2016). We have reported
significant association of MMSE score with the topographical altera-
tions of microstate class A. Even though additional studies are needed
to extend and confirm hypothesized topographical and brain network
correlates of the microstate maps, the disruptions in default mode
network, attention, visual and phonological processing networks have
indeed been observed in MCI and AD patients (Sorg et al., 2007;
Li et al., 2012; Verma and Howard, 2012; Hafkemeijer et al., 2015;
Wang et al., 2015; Badhwar et al., 2017; Mascali et al., 2018).

The microstate parameters analysis showed a significant gradient-
like increase in the mean duration of microstate classes A and B and a

10

NeuroImage: Clinical 24 (2019) 102046

gradient like decrease in the mean occurrence of classes C and D with
the more severe stage of cognitive impairment. The contribution
parameter summarizes differences in both duration and occurrence,
since it reflects the overall time coverage of a particular map in the
whole EEG recording. We reported significant gradient-like increase in
mean contributions of asymmetrical classes A and B and decrease in
contribution of symmetrical classes C and D with the more severe stage
of cognitive impairment.

The same pattern of microstate parameters alterations have already
been observed in patients with different stages of cognitive impairment
in comparison to the healthy controls (Koenig et al., 2002). Interest-
ingly, this arrangement is exactly the opposite of the one observed
during the normal brain development, characterized by decrease in
contribution of asymmetrical and increase in contribution of symme-
trical microstate classes (Koenig et al., 2002). While the underlying
biological substrates of the observed pattern of changes are still open to
discussion, these alterations might be related to the broad maturation
processes such as myelination and organization of the synaptic con-
nections (Koenig et al., 2002). Besides, one of the observations in the
development of the AD neuropathology is that its evolution inversely
mirrors development of cortical myelination. In other words, brain
areas that are last-to be myelinated are the first to be affected by AD
pathology (Braak et al., 1999; Bartzokis, 2004). We therefore hy-
pothesize that described pattern of changes in microstate parameters in
patients along AD continuum mirrors progressive region-selective
spread of pathology and thus disruption in the impulse transmissions
and functional connectivity of distributed neural networks.

Investigation of the resting states of the brain poses certain ad-
vantages in the clinical settings such as straightforward planning and
execution, minimal requirements for the patient participation and
avoidance of confounding factors such as individual performance on the
cognitive tasks (Bressler and Menon, 2010). Therefore, noninvasive and
widely accessible resting state EEG might be a method of choice when it
comes to the investigation of disruptions in the neurocognitive net-
works in the preclinical and clinical phases of AD. The present study has
however certain limitations, such as lack of direct investigation of
correlatives of the EEG microstate topographies with the functional
neuroimaging modalities such as fMRI and/or fluorodeoxyglucose-PET
(FDG-PET). Longitudinal follow-up of the patients with cognitive im-
pairment would further contribute to the evaluation of prognostic po-
tential of EEG microstate measures. In addition, inclusion of alternative
synaptic biomarkers such as novel CSF markers in future studies would
substantiate investigation of candidate EEG measures as early markers
of synaptic dysfunction along the AD continuum.

4.1. Conclusions

Our results demonstrated extensive relationship of resting state EEG
microstates topographies and parameters with the stage of cognitive
impairment, MMSE score, CSF A42 and p-tau levels in patients diag-
nosed with SCD, MCI and AD. EEG microstates might therefore serve as
novel functional state and trait markers of brain synchronous activity
that contribute to understanding and detecting early disruption of
neurocognitive networks in patients along AD continuum.
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