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Abstract

Children with familial risk for major depressive disorder (MDD) have elevated risk for developing depression as
adolescents. Here, we investigated longitudinally whether resting-state functional connectivity (RSFC) could pre-
dict the onset of MDD. In this pilot study, we followed a group of never-depressed children with familial risk for
MDD and a group of age-matched controls without familial risk who had undergone an MRI study at 8—14 years of
age. Participants were reassessed 3—4 years later with diagnostic interviews. We first investigated group differences
in RSFEC from regions in the emotion regulation, cognitive control, and default mode networks in the children who
later developed MDD (converted), the children who did not develop MDD (nonconverted), and the control
group. We then built a prediction model based on baseline RSFC that was independent of the group differences
to classify the individuals who later developed MDD. Compared with the nonconverted group, the converted
group exhibited hypoconnectivity between subgenual anterior cingulate cortex (sgACC) and inferior parietal lobule
(IPL) and between left and right dorsolateral prefrontal cortices. The nonconverted group exhibited higher sgACC-
IPL connectivity than did both the converted and control groups, suggesting a possible resilience factor to MDD.
Classification between converted and nonconverted individuals based on baseline RSFC yielded high predictive ac-
curacy with high sensitivity and specificity that was superior to classification based on baseline clinical rating scales.
Intrinsic brain connectivity measured in healthy children with familial risk for depression has the potential to predict
MDD onset, and it can be a useful neuromarker in early identification of children for preventive treatment.
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Introduction

MAJOR DEPRESSIVE DISORDER (MDD) is one of the most
common psychiatric disorders, with an estimated life-
time prevalence of 16% (Kessler et al., 2003). It is associated
with high comorbidity, social and occupational dysfunction
(Godard et al., 2012), and high financial burden (Greenberg
et al., 2015). A peak period of onset is adolescence and early
adulthood (Merikangas and Avenevoli, 2002). An estimated
11% of adolescents are affected with MDD, which leads to
significant distress, dysfunction, and mortality in these
youth (Avenevoli et al., 2015). MDD is characterized by a
negative feedback cycle in which individuals experience

negative affect, perceive events negatively, and withdraw
from social and pleasurable activities, leading to further ex-
acerbation of negative mood, biased cognitions, and social
withdrawal (Beck and Haigh, 2014).

People with MDD exhibit functional brain differences, as
measured by neuroimaging, in default mode network
(DMN), cognitive control, and emotion regulation networks.
The DMN, anchored by the midline regions of medial prefron-
tal cortex (MPFC) and posterior cingulate cortex (PCC), is a
set of brain regions that has been linked to self-referential pro-
cessing and rumination in depression (Hamilton et al., 2015).
The emotion regulation network, which involves the amyg-
dala, the anterior cingulate cortex (ACC), and the MPFC,
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has shown functional brain differences in MDD (Hamilton
et al., 2015; Sheline et al., 2009; Stuhrmann et al., 2011;
Vilgis et al., 2018). The cognitive control network, which
includes dorsolateral prefrontal cortex (DLPFC) and parietal
regions, has shown abnormal activation and connectivity
patterns in MDD (Fales et al., 2008; Ye et al., 2012). Within
the emotion regulation network, subgenual ACC (sgACC)
has been considered a core region in the pathophysiology
of MDD (Drevets et al., 2008; Mayberg, 1997; Ongiir
etal., 1998; Siegle et al., 2012) and has been a successful tar-
get for deep brain stimulation treatment for MDD (Mayberg
et al., 2005).

To identify possible neural risk factors for depression, sev-
eral studies have examined brain function in children who
are not themselves depressed but who have a parent with a
history of MDD, which increases the risk of MDD in the off-
spring threefold to fivefold (Lieb et al., 2002; Williamson
et al., 2004). Functional and anatomical brain differences
between never-depressed children with familial risk for
depression and children without familial risk have been
reported in emotion processing regions (Chai et al., 2015;
Foland-Ross et al., 2015; Monk et al., 2008), suggesting
that these neural traits predispose children toward depres-
sion. Resting-state fMRI (rs-fMRI) has revealed altered pat-
terns of functional connectivity in both the DMN and in
emotion regulation and cognitive control networks in never-
depressed at-risk children. At-risk children have exhibited
hyperconnectivity between sgACC and DMN, and hypocon-
nectivity between sgACC and DLPFC and within the control
network regions (Chai et al., 2016). Similar differences have
been observed in adult (Greicius et al., 2003; Liston et al.,
2014; Ye et al., 2012) and pediatric (Cullen et al., 2009;
Gaffrey et al., 2010) patients with MDD. Finding these func-
tional network differences among at-risk offspring who are
not affected with MDD, before the period of risk for MDD
onset, raises the hypothesis that the differences represent vul-
nerability factors for depression.

To examine this question, we conducted a follow-up study
of the children imaged in our previous study (Chai et al.,
2016, 2015). The children were 8—14 years old at baseline
and 12-18 years old at follow-up. This age range at the
follow-up is a heightened time for onset of MDD in at-risk
youth, as rates of MDD from early to late adolescence in-
crease as much as sixfold (Hankin et al., 1998). We investi-
gated whether baseline resting-state connectivity in regions
that had been previously associated with depression would
predict the onset of MDD in these high-risk adolescents.
We examined baseline resting-state functional connectivity
(RSEC) data from seed regions in sgACC, DMN, amygdala,
and DLPFC in children at familial risk for depression, and
we tested whether they would predict which individuals
would later develop MDD.

We performed two types of analyses. First, we examined
group-level intrinsic connectivity differences. To understand
risk factors for depression, we compared seed-to-voxel con-
nectivity between the subset of children who later developed
MDD (the converted group) and the subset of children who
did not develop depression (the nonconverted group). To
understand resilience to depression, we compared the non-
converted group with the control group in terms of sgACC
connectivity, given the anatomical position of the sgACC
that connects to the limbic and cortical structures (Johansen-
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Berg et al., 2008), and the link between sgACC connectivity
and depression symptom in at-risk children (Chai et al.,
2016). Second, we computed connectivity between the seed
regions and regions from two different whole-brain atlases,
defined independently from the regions that exhibited
group differences, and trained machine learning models to
classify which individuals would later develop depression.
We hypothesized that (1) there would be differences in
resting-state connectivity from these seed regions between
the converted and nonconverted groups, and (2) models
based on resting-state connectivity of these seed regions to
other brain regions defined in the atlases could predict the
onset of depression with higher accuracy than a model
based on baseline clinical scores (the Child Behavior Check-
list, CBCL) alone, even though depressive symptoms carry
some prediction power for the onset of depression (Horwath
et al., 1992).

Materials and Methods
Procedures

Children at risk for MDD based on lifetime history of pa-
rental depression, who had not themselves had mood epi-
sodes, had undergone rs-fMRI scans at baseline. At a 3- to
4-year follow-up, participants and their parents were invited
back for diagnostic assessments to determine whether they
had developed an episode of MDD at any point during the in-
terval since the scan. The study was approved by the Institu-
tional Review Boards at the Massachusetts General Hospital
and at the Massachusetts Institute of Technology. Parents
provided written informed consent for their and their child’s
participation, and youths provided written assent. Adoles-
cents aged 18 years provided written consent for their own
participation.

Participants

Baseline. Thirty-eight high-risk participants between 8
and 14 years old who were offspring of parents with a life-
time history of MDD (at-risk group) and 30 age-matched
controls with no familial history of MDD were recruited in
the baseline study (Chai et al., 2016, 2015). Exclusion crite-
ria at baseline had included the presence of acute psychosis
or suicidality in a parent or a child; the presence of bipolar
disorder at any point in the lifespan in the parent; autism
or intellectual disability in the child; a lifetime history of a
traumatic brain injury or neurological disorder in the child;
or any variables that would interfere with fMRI (e.g., braces,
claustrophobia). At baseline, children had no current or prior
history of major depressive disorder. The final sample in-
cluded 46 participants (30 at-risk children and 16 control
children). Six participants from the at-risk group and 12 par-
ticipants from the control group were excluded from analysis
due to excessive head movement during the functional scan
(greater than 3mm displacement in x, y, or z direction, or
had more than 1/3 of the time points identified as outliers.
Two participants from the at-risk group and two participants
from the control group did not complete the resting-state scan.

Follow-up. We re-assessed 33 (25 at-risk and 8 controls)
(72%) of the 46 participants who had useable baseline rs-
fMRI data at a 3- to 4-year follow-up. Participants who
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had an incomplete resting scan or had too much head move-
ment during the scan were not included in the present anal-
ysis. At the follow-up assessment, participants were between
12 and 18 years old (mean age=15.3 years, SD=1.7 years).
Follow-up assessments were on average 205 weeks after the
initial study (range 166-258 weeks, SD=19.8 weeks). An
overlapping set of participants was included in a separate
report (Shapero et al., 2019), which examined whether
structural and functional brain measures that differentiated
children with familial risk for MDD from children without
familial risk were related to symptom severity and MDD
onset at follow-up.

Diagnostic assessment

Baseline. Each child and both parents in each family
were assessed for current and lifetime mood disorders
(MDD, bipolar disorder, and dysthymia), using structured
clinical interviews in which the mother was the informant
(Chai et al., 2016). Interviews about parents used the depres-
sion, mania, dysthymia, and psychosis modules from the
Structured Interview for DSM-IV (First et al., 1995) and
those about the child used the depression, mania, dysthymia,
and psychosis modules from the Schedule of Affective
Disorders and Schizophrenia for School-Aged Children—
Epidemiological Version for DSM-IV (K-SADS-E) (Orva-
schel, 1994). Parents completed the CBCL (Achenbach
and Rescorla, 2001), which assessed symptom scores in
the children. The CBCL includes a total problems score,
as well as scores reflecting internalizing (affective and anx-
iety) and externalizing (attentional problems and disruptive
behavior) symptoms. We also administered self-report de-
pression symptom scores, the Child Depression Inventory
(CDI) (Kovacs, 1985), to all children. More details on
CBCL and CDI are included in Supplementary Data. We
conducted two-sample #-tests in CBCL total problem scores,
CBCL internalizing, externalizing, and anxiety scores, and
CDI scores between the converted and nonconverted
group, and between the control group and nonconverted

group.

Follow-up. At follow-up, the child and one parent com-
pleted the K-SADS-E to report on the child’s current history
of psychopathology since the baseline assessment, to deter-
mine MDD conversion. The same interviewer administered
the K-SADS-E first to the parent and then to the youth,
and then created summary ratings. Currently, no consensus
exists about how best to integrate discrepant information
from multiple informants, despite the fact that parents and
children often disagree in their reports of the child’s symp-
toms (Braaten et al., 2001; Cantwell et al., 1997; Martel
et al., 2017) To maintain fidelity to the K-SADS-E, we
used the interviewer’s summary ratings based on his/her
“best-estimate’’ clinical judgment from interviewing both
parent and child. The K-SADS-E diagnostic interviews
have good inter-rater and retest reliability (Orvaschel et al.,
1995). An advanced postdoctoral psychology fellow (B.G.S.)
conducted all prospective interviews. He had extensive
experience interviewing adolescents and parents with semi-
structured diagnostic interviews, and was trained on reliability
on the K-SADS-E with a perfect diagnostic reliability
(K=1.00, p<0.001) and high item-level correlation (ICC=
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0.88, p<0.001). In addition, all diagnostic decisions were
reviewed with a senior child and adolescent psychologist
(D.R.H.B.) who has extensive expertise reliably administering,
training, and supervising interviewers on the structured clini-
cal interview for DSM-IV and K-SADS-E.

MRI procedure and image preprocessing

Data were acquired on a 3T TrioTim Siemens scanner by
using a 32-channel head coil. T1-weighted whole-brain
anatomical images and resting fMRI images were acquired.
Rs-fMRI data were preprocessed by using standard proce-
dure. The analysis was performed at 2X2 X2 mm resolu-
tion. Functional connectivity analysis was carried out by
using a seed-driven approach with in-house, custom soft-
ware ‘““CONN” (Chai et al., 2012; Whitfield-Gabrieli and
Nieto-Castanon, 2012). We addressed head motion related
artifacts by using a censoring method, which mitigates
both motion artifact and distance-dependence artifacts in
connectivity (Ciric et al., 2017). Head movement related
noise was modeled by including additional regressors for
outliers in the model. The converted, nonconverted, and
control groups did not differ significantly in head movement
parameters and the number of outlier scans in the resting
scan. Details on the scanning procedure, image preprocess-
ing, and noise estimation are described in Supplementary
Data.

Resting-state connectivity analysis

We computed whole-brain seed-to-voxel resting-state
connectivity from six regions of interests (seeds) that are
core regions in the DMN, emotion regulation, and cognitive
control networks (Drevets et al., 2008; Hamilton et al., 2015;
Stuhrmann et al., 2011): DMN, sgACC, left and right
DLPFC, and left and right amygdala (Fig. 1). The DMN
(MPFC and PCC), left and right DLPFC, and sgACC seeds
were defined as 6-mm spheres around peak coordinates
from literature (Fair et al., 2009; Kelly et al., 2009). DMN
connectivity was calculated from the averages of the time
series from MPFC and PCC seeds (Fox et al.,, 2005;
Whitfield-Gabrieli et al., 2009), given their similar connec-
tivity patterns. The amygdala seeds were defined from the
WFU Pick Atlas (Maldjian et al., 2003). Time series of all
the voxels within each seed were averaged, and first-level
correlation maps were produced by extracting the residual
BOLD time course from each seed and computing Pearson’s
correlation coefficients between that time course and the
time course of all other voxels. Correlation coefficients
were converted to normally distributed z-scores by using
the Fisher transformation to allow for second-level General
Linear Model analyses. To determine connectivity differ-
ences between the converted group and nonconverted
group, first-level connectivity maps for each participant in
the converted group and nonconverted group were entered
into a between-group #-test for each seed. Two layers of mul-
tiple comparison correction were used, one for correcting the
number of clusters and one for correcting the number of
seeds used. We first used a cluster-forming threshold for
voxel-level statistics (p <0.001), and we corrected for multi-
ple comparison at the cluster level by using false discovery
rate correction (Genovese et al., 2002), as implemented in
SPM. The cluster-level corrected p-values were further
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corrected for the number of seeds used (six), using Bonfer-
roni correction. Regions that showed significant connectivity
differences (survived Bonferroni correction for the number
of seeds tested) between groups were further examined for
their connectivity values (significantly above or below zero)
by using one-sample #-tests in each group.

To investigate resilience to depression, we performed an
additional analysis to compare the nonconverted and control
groups on sgACC connectivity, given the pivotal role of
sgACC in emotion regulation and treatment in depressed
patients (Drevets et al., 1997; Mayberg et al., 2005; Siegle
et al., 2012). First-level sgACC connectivity maps were en-
tered into a between-group z-test to determine sgACC con-
nectivity differences between the control and nonconverted
groups. The same procedure for multiple comparison correc-
tion was applied. Due to the low sample size (n=238) of the
control group who were later assessed at follow-up, we con-
ducted this test twice, once with the entire control group from
Chai et al. (2016) (n=16) and once with the subset of con-
trols who were assessed at the follow-up visit (0 conversion
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FIG. 1. Seeds (regions of
interest) used in the study. (A)
DMN (posterior cingulate cortex
and medial prefrontal cortex), (B)
sgACC, (C) left and right DLPFC,
(D) left and right amygdala. Images
are presented in neurological
convention in all figures (left side of
the brain is on the left side of the
image). DLPFC, dorsolateral
prefrontal cortex; DMN, default
mode network; L, left hemisphere;
R, right hemisphere; sgACC,
subgenual anterior cingulate cortex.

to depression). We performed an additional exploratory
analysis comparing RSFC of the amygdala and DLPFC
seeds between the nonconverted and control groups (Supple-
mentary Data). To account for the effect of sex, we
performed additional group analyses with sex included as a
covariate. We also examined age-related changes in connec-
tivity for the seeds that showed significant group differences,
given the range of the participants’ age (8§—14 at the time of
the scan) (Supplementary Data).

Prediction models for onset of depression

We trained three linear classification models with support
vector machine, implemented in machine-learning software
Weka (Hall et al., 2009), to categorize individual participants
into those who later developed depression and those who did
not, based on their rs-fMRI data (first two models) or clinical
scores (third model) at the baseline visit. To create robust
prediction models that can be generalized to new cases, we
performed leave-one-out cross-validation so that each
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FIG. 2. Left DLPFC connectivity. (A) Left
DLPFC seed exhibited higher connectivity
with the right DLPFC in the nonconverted
group compared with the converted

group. (B) Bars represent mean connectivity
(Fisher’s z) between the left and right
DLPFC in each group.

Converted

Non-converted
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TABLE 1. PARTICIPANT DEMOGRAPHIC AND CLINICAL SCORES AT BASELINE
Group mean (SD) Between-group test
Converted Nonconverted Controls p* PP p°
Age 11.5+1.41 10.9+1.51 11.3+1.84 0.34 0.57 0.72
Gender 7F, 3M 4F, 11 M 8F, 8M 0.05 0.27 0.42
1Q (KBIT) 115.3+£13.2 119.3£13.5 115.8+12.8 0.47 0.47 0.92
CBCL total 52.5+£9.8 475+12.8 41.0x11.8 0.31 0.20 0.03
CBCL internalizing 52.7£10.9 50.6+13.2 44.3+8.50 0.68 0.18 0.06
CBCL externalizing 52.4+7.8 45.3+9.8 45.1+£10.5 0.07 0.95 0.09
CDI 46.6+£59 44.0+7.6 43.0+8.1 0.40 0.97 0.44

Mean + SD where appropriate. All group tests were #-tests except for Gender (Fisher’s exact test).

4p-Value, between-group test p-value (converted vs. nonconverted groups).

®p-Value, between-group test p-value (control group vs. nonconverted group).

°p-Value, between-group test p-value (control group vs. converted group).

CBCL, Child Behavior Checklist; CDI, total score on the Child Depression Inventory; F, female; M, male; SD, standard deviation.

individual was classified on the basis of data from the other
individuals. Specifically, data from all participants except
one were used as the training set to build a classification
model, and the remaining participant was classified with
the model and used as the validation case. This procedure
was iterated for each participant and used to estimate spec-
ificity/sensitivity from the out-of-sample predictions. In the
first model, connectivity values between each of the six seed
regions and 116 anatomically defined areas from the Auto-
mated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al.,, 2002) were estimated and used in the prediction
model. The matrix of connectivity values for all participants
were used in feature selection. Feature selection was carried
out before training the classification model. We used infor-
mation gain (IG) (Mitchell, 1997; Yang and Pedersen,
1997), a filter approach for feature selection. IG ranks the
features by the IG (entropy) for each feature that measures
how important and relevant it is to the group label. Based
on Austin and Steyerberg (2015), we used 13 features in
the model, which is roughly half of the number of partici-
pants (n=25). The top 13 features that carried the most in-
formation (calculated by the feature’s contribution on
decreasing overall entropy) based on the IG method were
then used in the classification procedure to classify between
converted and nonconverted at-risk participants. In the sec-
ond model, connectivity values between the six seed regions
and all areas in the Human Connectome Project (HCP) atlas,
an atlas based on multimodal MRI data (Glasser et al.,
2016), were estimated and used in the prediction model.
The same feature selection procedure was applied in this
model. We constructed a third model based on baseline
CBCL scores (Total, Internalizing, Externalizing, Anxiety/
Depressed symptoms, and Affective Problem Scale) to ex-
amine how well these baseline scores predict the onset of
MDD.

Results

Depression conversion

Ten out of the 25 at-risk children developed MDD by the
time of follow-up. None of the control participants assessed
at follow-up developed MDD. The converted and noncon-
verted group did not differ significantly in age [#(23)=0.96,

p=0.34],1Q [#(23)=0.73, p=0.47], or baseline clinical ques-
tionnaire measures [CBCL total: #(23)=1.03, p=0.31; CBCL
internalizing: #23)=0.42, p=0.68; CBCL externalizing:
1(23)=1.9, p=0.07; CDI: #21)=0.86, p=0.40] (Table 1).
Gender distribution was only marginally different in the con-
verted group compared with the converted group (Fisher’s
exact test, p=0.05, Table 1). The nonconverted group and
the control group also did not differ significantly in age
[1(29)=0.57, p=0.57], 1Q [t(29)=0.73, p=0.47], or baseline
clinical questionnaire measures [CBCL total: #(24)=1.3,
p=0.20; CBCL internalizing: #(24)=1.4, p=0.18; CBCL ex-
ternalizing: #(24)=0.06, p=0.95; CDI: #21)=0.03, p=0.97]
(Table 1). The converted group had elevated baseline CBCL
total scores [#(19)=2.4, p=0.03] compared with the control
group, but it did not differ significantly from the control
group in age [1(24)=0.42, p=0.68], 1IQ [#24)=0.098,
p=0.92], and other baseline clinical measures [CBCL inter-
nalizing: #(19)=1.99, p=0.06; CBCL externalizing: #(19)=
1.79, p=0.09; CDI: #(16)=0.80, p=0.44] (Table 1).

Connectivity differences between converted and
nonconverted groups

Decreased DLPFC connectivity in children who later devel-
oped depression. Compared with the nonconverted group,
the converted group exhibited decreased baseline connectiv-
ity between the left DLPFC seed and a region in the right
DLPFC (BA46) (left DLPFC seed; Fig. 2 and Table 2A).
The nonconverted group had significant positive connectiv-
ity between left DLPFC seed and right DLPFC [#(14)=
12.2, p<0.001], whereas the converted group did not have
significant connectivity between left and right DLPFC
regions [#(9)=0.26, p=0.8].

Decreased sgACC-parietal connectivity in children who
later developed depression. Compared with the noncon-
verted group, the converted group exhibited decreased
connectivity between the sgACC seed and right inferior
parietal lobule (IPL)/precentral gyrus (Fig. 3 and Table 2B).
The nonconverted group had significant positive connectivity
[#(14)=5.9, p<0.001], whereas the converted group had
negative connectivity [#(9)=—-2.8, p=0.02]. All the group
differences described earlier for DLPFC connectivity and
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sgACC-parietal connectivity remained when sex was in-
cluded as a covariate (Supplementary Table S1).

Connectivity differences between nonconverted and

control groups

Compared with the entire control group (including those
who did not return for the follow-up), the nonconverted

Control Non-converted
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FIG. 3. sgACC connectivity. (A) sgACC
seed exhibited higher connectivity with the
left inferior parietal lobule/postcentral gyrus
in the nonconverted group compared with
the converted group. (B) Bars represent
mean sgACC-parietal connectivity (Fisher’s
z) in the converted and nonconverted groups
in cluster shown in (A). (C) sgACC exhibited
higher connectivity with the left inferior
parietal lobule/postcentral gyrus in the
nonconverted group compared with the
control group. (D) Bars represent mean
sgACC-parietal connectivity (Fisher’s z) in
the nonconverted group and control group in
the cluster shown in (C). Error bars represent
standard errors of the means.

group exhibited greater baseline connectivity between the
sgACC seed and right IPL/precentral gyrus (Fig. 3 and
Table 2B). The nonconverted group had significant positive
connectivity [#(14)=5.6, p<0.001], whereas the control

group did not show connectivity significantly different

from zero [#(15)=—2.0, p=0.06]. This difference remains
if only those who were assessed at follow-up (0 conversion

TABLE 2. BETWEEN-GROUP CONNECTIVITY DIFFERENCES FROM (A) LEFT DLPFC,
AND (B) SUBGENUAL ANTERIOR CINGULATE CORTEX SEEDS

BA

Volume b 4

t daf P

(A) Left DLPFC connectivity
Nonconverted>converted
R DLPFC
Converted>nonconverted
None

9/8

968

38, 28, 46

6.51 23 0.007

BA

Volume Z

(B) sgACC connectivity
Nonconverted>converted
L IPL/postcentral gyrus
Converted>nonconverted
None
Nonconverted>control
L IPL/postcentral gyrus

4072

4072

896

1128

—40, —30, 52

—42, -30, 46

5.22 23 0.005

5.54 29 0.004

Peak coordinates (x y z) based on MNI brain.

t, peak t-value from the cluster; p, FDR-corrected cluster-level p-value.
BA, Brodmann area; DLPFC, dorsolateral prefrontal cortex; FDR, false discovery rate; IPL, inferior parietal lobule; MNI, Montreal Neu-
rologic Institute; sgACC, subgenual anterior cingulate cortex; volume, cluster size in microliter.
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to MDD) were included in the analysis or when sex was in-
cluded as a covariate (Supplementary Data).

Classification of at-risk children and controls

The classification model based on connectivity data be-
tween the seeds and areas from the AAL atlas yielded 92%
accuracy, 90% sensitivity, and 93% specificity (Fig. 4).
Nine out of the 10 individuals who later developed depres-
sion were correctly classified. Fourteen out of the 15 noncon-
verted subjects were correctly classified. Features used in the
prediction model and normalized attribute weights are listed
in Table 3. Attribute weights represent the hyperplane sepa-
rating the two classes. The absolute magnitudes of the
weights represent the importance of each feature in classify-
ing the data points: Features with higher weights are more
relevant than lower weights in discriminating the two
classes.

The parietal cluster that showed different sgACC connec-
tivity between the converted and nonconverted groups (from
Table 2) overlapped with the AAL parietal region that con-
tributed to the classification model (Table 3): 77% of the
left postcentral gyrus/IPL cluster derived from the group
analysis lies within the AAL left postcentral gyrus region;
21% of the group analysis cluster lies within the AAL left
inferior parietal region.

The model based on connectivity values between the seeds
and areas in the HCP atlas yielded similar discrimination per-
formance (96% accuracy, 100% sensitivity, and 93% speci-
ficity). Features used in the prediction are listed in Table 4.
In contrast, the model based on baseline CBCL scores
(Total, Internalizing, Externalizing, Anxiety/Depressed symp-
toms, and Affective Problem Scale) yielded only 64% accu-
racy with 40% sensitivity and 80% specificity. Only 4 out
of the 10 converted subjects were correctly classified. Twelve
out of the 15 nonconverted subjects were correctly classified.

Discussion

In this study, we investigated the potential of using rs-
fMRI for early identification of high-risk children who are
likely to develop MDD over the subsequent 3-4 years.
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FIG. 4. Performance of the prediction models based on
baseline rs-fMRI data from the AAL atlas (dark gray bars)
or baseline symptom scores (light gray bars). AAL, Auto-
mated Anatomical Labeling; rs-fMRI, resting-state fMRL
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TABLE 3. LisT OF FEATURES (CONNECTIVITY VALUES
BETWEEN SEEDS AND BRAIN AREAS FROM THE AUTOMATED
ANATOMICAL LABELING ATLAS) USED IN THE SUPPORT
VECTOR MACHINE PREDICTION MODEL ORDERED BY
NORMALIZED ATTRIBUTE WEIGHTS FROM THE MODEL

SVM attribute

Seed AAL area weight

DMN L IFG (pars opercularis) 0.9906
R DLPFC R Mid cingulum 0.8846
L Amygdala R Hippocampus —0.8647
R DLPFC L Parahippocampal gyrus 0.8394
DMN L Middle cingulate area 0.7858
sgACC L Postcentral gyrus 0.783

L Amygdala R Cerebellum lobule IV, V —0.7769
DMN L IPL 0.7289
sgACC L Superior frontal gyrus —0.6393
R DLPFC L Superior parietal lobule 0.5375
DMN R Hippocampus —0.3475
R Amygdala R Superior parietal lobule 0.1328
DMN R Middle cingulate area —0.106

AAL, Automated Anatomical Labeling; DMN, default mode net-
work; SVM, support vector machine.

First, in regards to neurobiological risk, there were marked
differences in intrinsic functional connectivity in the emotion
regulation and cognitive control networks between previ-
ously never-depressed children with familial risk for MDD
who either converted or did not convert to MDD. The chil-
dren who later developed MDD, compared with the children
who did not develop MDD, showed lower baseline bilateral
DLPFEC connectivity and lower baseline sgACC-IPL connec-
tivity. Second, in regards to resilience, compared with the
control group who had no familial risk for MDD, the noncon-
verted group exhibited higher baseline sgACC-IPL connec-
tivity. Lastly, machine-learning models based on baseline
resting-state connectivity in brain regions defined from two
different atlases (independent from the clusters that exhibited

TABLE 4. LisT OF FEATURES (CONNECTIVITY VALUES
BETWEEN SEEDS AND BRAIN AREAS FROM THE HUMAN
CONNECTOME PROJECT ATLAS) USED IN THE SUPPORT
VECTOR MACHINE PREDICTION MODEL, ORDERED
BY NORMALIZED ATTRIBUTE WEIGHTS FROM THE MODEL

SVM attribute

Seed HCP atlas area weight

sgACC L Area 23d 1.285

DMN R Area 5m ventral 1.0665
DMN R Area PFcm 0.9983
L Amygdala R PreSubiculum —0.8381
LDLPFC L Area 1 —0.8373
sgACC L Area 2 0.7733
R Amygdala L Area STGa —0.7497
DMN L Area 23c 0.6657
DMN L Area 7PC 0.5974
R Amygdala R Medial IntraParietal area 0.5053
DMN L Area IFJa 0.4971
DMN R Area 2 0.4719
DMN L Area 8C 0.2409

HCP, Human Connectome Project.
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group differences) accurately predicted the onset of MDD,
with high sensitivity and specificity that was superior to a
model based on baseline behavioral scores.

Risk for MDD onset

Reduced baseline connectivity between sgACC and a re-
gion in the frontoparietal control network (IPL) was observed
in at-risk children who later developed MDD compared with
those who did not develop MDD. We previously reported re-
duced baseline connectivity between sgACC and another
frontoparietal network region (left DLPFC) in this same sam-
ple of at-risk children compared with control children (Chai
et al., 2016). Altered sgACC connectivity has been linked
with symptom severity scores in children and adolescents
with MDD (Connolly et al., 2013; Gaffrey et al., 2010).
Given these findings and the unique anatomical position of
sgACC that connects to both limbic subcortical regions and
cortical regions (Johansen-Berg et al., 2008), it is possible
that the reduced coupling of sgACC and the cognitive control
network in at-risk children contributes to dysfunction of emo-
tion regulation, and it appears to place children at risk for
onset of MDD.

Compared with at-risk children who did not develop
MDD, connectivity within the cognitive control network—
between left and right DLPFC—was reduced in the children
who developed MDD 3-4 years later. A similar pattern of
connectivity difference was found in these never-depressed
children with familial risk for depression when they were
contrasted to children without familial risk for depression:
At baseline, these at-risk children showed lower connectiv-
ity within the frontal-parietal control network (Chai et al.,
2016). Similar patterns of reduced connectivity in cognitive
control regions have been observed in adults with MDD
(Alexopoulos et al., 2012; Veer et al., 2010; Ye et al.,
2012), and this reduced connectivity may contribute to dif-
ficulty in cognitive control and emotion regulation in pa-
tients (Gotlib and Hamilton, 2008). The present results
suggest that weakened connectivity in cognitive control
regions is present in the brain years before the onset of de-
pression and greater weakness is a possible risk factor for
the development of depression in offspring of depressed
parents.

Resilience to depression

The group of at-risk children who did not develop MDD
3—4 years later had greater connectivity between sgACC
and left IPL compared with both control children and at-
risk children who later developed MDD. This suggests that
elevated sgACC-IPL connectivity may be protective and
represent a neuromarker for resilience to depression in chil-
dren at familial risk for MDD. Our finding is consistent with
another study that found greater limbic control network con-
nectivity in resilient high-risk adolescents compared with
high-risk adolescents who developed depression and low-
risk control adolescents (Fischer et al., 2018). The sgACC
and frontoparietal network are typically anticorrelated in
healthy adults and children (Kelly et al., 2009; Margulies
et al., 2007), but the resilient group in this study showed
positive connectivity between these regions. These compen-
satory functional connectivity patterns in the emotion regu-
lation network in at-risk children and adolescents may
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represent resilience to depression, although the origin and
development of such patterns are unknown.

Prediction of MDD onset

The machine-learning models based on baseline resting-
state connectivity predicted the subset of at-risk children
who later converted to depression with higher accuracy
and sensitivity compared with the model based on baseline
clinical CBCL scores alone. The resting-state connectivity
that carried the most predictive power included connections
within or between three important networks for depression:
the emotion regulation network, the DMN, and the cognitive
control network. Abnormal patterns of connectivity in these
networks have been previously reported in adult (Ye et al.,
2012) and pediatric (Gaffrey et al., 2010) MDD, as well as
in never-depressed children at familial risk for depression
(Chai et al., 2016; Clasen et al., 2014). Here, we demon-
strated that using a relatively easy and reliable brain measure
(rs-fMRY), it is possible to predict the onset of MDD in ado-
lescents with high accuracy.

Among the features that carried the most predictive power
in the AAL model, sgACC-postcentral gyrus connectivity
overlapped with the group difference results: Connectivity
between sgACC and a cluster in the postcentral gyrus/IPL
was higher in the nonconverted than the converted group.
We did not find other overlaps in the brain for baseline dif-
ferences between converted and nonconverted groups versus
the most predictive features in the machine-learning models.
This could be because the atlas regions included in the
machine-learning model were much larger than the clusters
that were found in the direct group comparison, which repre-
sented the clusters with maximal differences between the
groups. We used well-established atlas regions in the predic-
tion model to avoid dependency on the group difference re-
sults and showed high prediction accuracy from atlas
regions, which are more generalizable to new cases. It is
also possible that our small sample size was not enough to
detect significant group differences in some of the features
that carried predictive power in the classification model.

Both strengths and limitations of this study can be noted.
Strengths include prospective examination of connectivity in
regions of interest believed to be associated with MDD for
their potential to predict onset of MDD in adolescents, as
well as state-of-the art neuroimaging, diagnostic assessment,
and data analytic methods. However, our study should be
viewed in light of several limitations. The small sample
size limited our power to detect group differences in this
early pilot study. Nevertheless, this study provides prelimi-
nary evidence that intrinsic functional connectivity may re-
flect vulnerability for and resilience to depression. All
testing procedures and data analyses were carried out with
careful and rigorous methods. Our findings are largely con-
sistent with results in adult and pediatric MDD patients
and children with familial risk for MDD. Future studies
with larger samples are needed to confirm the results. Partic-
ipants had a higher than average mean IQ, so future studies
will need to examine more representative samples. In addi-
tion, participants were not asked after the study whether
they fell asleep during the scan. We communicated with
the participants via the scanner intercom after each scan.
All participants were alert and responding after the resting-
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state scan. Although we did not specifically ask whether they
fell asleep during part of the resting-state scan, we believe
that sleepiness was unlikely since the resting-state scan
was conducted in the beginning of the session, right after
MPRAGE. Lastly, we restricted our sample to offspring at
risk for depression. We chose these participants because
we hypothesized that they would have an elevated rate of
MDD emergence during adolescence, and indeed, consistent
with the larger literature (Lieb et al., 2002; Williamson et al.,
2004), more than a third of the participants did develop
MDD. Studies using similar methods in large samples of
children who do not have familial risk for depression will
be needed to determine whether these predictors operate in
the population in general or only in offspring at risk.

Psychosocial approaches to preventing onset of depression
in adolescence have shown promise (Hetrick et al., 2016;
Merry et al., 2012), including cognitive-behavioral interven-
tions similar to those used to treat depression (Garmy et al.,
2017; Perry et al., 2017; Rohde et al., 2018, 2014). Our find-
ings suggest that reduced connectivity within the cognitive
control network and connectivity between emotion/limbic
regions and control regions may indicate susceptibility for
MDD onset. Future research on cognitive-behavioral inter-
ventions targeting emotion regulation and cognitive risk fac-
tors for depression is needed to evaluate the effectiveness of
such interventions in reducing the risk for MDD onset. If
confirmed, our findings offer the exciting prospect of being
able to use fMRI studies to identify asymptomatic children
who are at elevated risk to develop MDD as adolescents,
so that these youths can be targeted for preventive cognitive-
behavioral interventions to reduce this risk.

Acknowledgments

The authors thank Christian Hoover, Lauren Jacobs,
Flavia Vaz de Souza, Gretchen Reynolds, Daniel O’Young
and Jiahe Zhang, Elana Kagen and Tara Kenworthy for
their help in data collection. This research was carried out
in the Athinoula A. Martinos Imaging Center at the McGov-
ern Institute for Brain Research at the Massachusetts Institute
of Technology and in the Child Cognitive Behavioral Ther-
apy Program at the Massachusetts General Hospital. The
follow-up study was supported by a Harvard University Cat-
alyst Award, which draws its funding from the National
Institutes of Health (NIH SUL1TRO001102-03). The baseline
study was carried out in the MGH Clinical and Research Pro-
gram in Pediatric Psychopharmacology and was supported
by the Tommy Fuss Fund, the Poitras Center for Psychiatric
Disorders Research, and the MGH Pediatric Psychopharma-
cology Council Fund. The funding sources had no involve-
ment in study design; in the collection, analysis, and
interpretation of data; in the writing of the article; or in the
decision to submit the article for publication.

Disclaimer

This article was prepared while B.G.S. was employed at
the Massachusetts General Hospital/Harvard Medical
School. The opinions expressed in this article are the author’s
own and do not reflect the view of the National Institutes of
Health, the Department of Health and Human Services, or
the U.S. government.

HIRSHFELD-BECKER ET AL.

Author Disclosure Statement

The authors report no conflicts of interest. Dr. Joseph
Biederman is currently receiving research support from the
following sources: The Department of Defense, AACAP,
Alcobra, Forest Research Institute, Ironshore, Lundbeck,
Magceutics, Inc., Merck, PamLab, Pfizer, Shire Pharmaceut-
icals, Inc., SPRITES, Sunovion, Vaya Pharma/Enzymotec,
and NIH. In 2014, Dr. Joseph Biederman received honoraria
from the MGH Psychiatry Academy for tuition-funded CME
courses. He has a U.S. Patent Application pending (Provi-
sional No. #61/233,686) through MGH corporate licensing,
on a method to prevent stimulant abuse. Dr. Biederman re-
ceived departmental royalties from a copyrighted rating
scale used for ADHD diagnoses, paid by Ingenix, Prophase,
Shire, Bracket Global, Sunovion, and Theravance; these roy-
alties were paid to the Department of Psychiatry at MGH.

Supplementary Material

Supplementary Data
Supplementary Table S1

References

Achenbach TM, Rescorla LA. 2001. Manual for ASEBA School-
Age Forms & Profile. Burlington, VT: University of Ver-
mont, Research Center for Children, Youth, & Families.

Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF,
Lim KO, Gunning FM. 2012. Functional connectivity in
the cognitive control network and the default mode network
in late-life depression. J Affect Disord 139:56-65.

Austin PC, Steyerberg EW. 2015. The number of subjects per
variable required in linear regression analyses. J Clin Epide-
miol 68:627-636.

Avenevoli S, Swendsen J, He JP, Burstein M, Merikangas KR.
2015. Major Depression in the National Comorbidity
Survey—Adolescent supplement: prevalence, correlates, and
treatment. ] Am Acad Child Adolesc Psychiatry 54:37-44.e2.

Beck AT, Haigh EAP. 2014. Advances in cognitive theory and
therapy: the generic cognitive model. Annu Rev Clin Psychol
10:1-24.

Braaten EB, Biederman J, Dimauro A, Mick E, Monuteaux MC,
Muehl K, et al. 2001. Methodological complexities in the di-
agnosis of major depression in youth: an analysis of mother
and youth self-reports. J Child Adolesc Psychopharmacol
11:395-407.

Cantwell DP, Lewinsohn PM, Rohde P, Seeley JR. 1997. Corre-
spondence between adolescent report and parent report of
psychiatric diagnostic data. ] Am Acad Child Adolesc Psy-
chiatry 36:610-619.

Chai XJ, Castafian AN, Ongiir D, Whitfield-Gabrieli S. 2012.
Anticorrelations in resting state networks without global sig-
nal regression. Neuroimage 59:1420-1428.

Chai XJ, Hirshfeld-Becker D, Biederman J, Uchida M, Doehr-
mann O, Leonard JA, et al. 2016. Altered intrinsic functional
brain architecture in children at familial risk of major depres-
sion. Biol Psychiatry 80:849-858.

Chai X]J, Hirshfeld-Becker D, Biederman J, Uchida M, Doehr-
mann O, Leonard JA, et al. 2015. Functional and structural
brain correlates of risk for major depression in children
with familial depression. Neuroimage Clin 8:398-407.

Ciric R, Wolf DH, Power JD, Roalf DR, Baum GL, Ruparel K,
et al. 2017. Benchmarking of participant-level confound



DEPRESSION ONSET PREDICTION

regression strategies for the control of motion artifact in
studies of functional connectivity. Neuroimage 154:174—
187.

Clasen PC, Beevers CG, Mumford JA, Schnyer DM. 2014. Cog-
nitive control network connectivity in adolescent women
with and without a parental history of depression. Dev
Cogn Neurosci 7:13-22.

Connolly CG, Wu J, Ho TC, Hoeft F, Wolkowitz O, Eisendrath
S, et al. 2013. Resting-state functional connectivity of subge-
nual anterior cingulate cortex in depressed adolescents. Biol
Psychiatry 74:898-907.

Cullen KR, Gee DG, Klimes-Dougan B, Gabbay V, Hulvershorn
L, Mueller BA, et al. 2009. A preliminary study of functional
connectivity in comorbid adolescent depression. Neurosci
Lett 460:227-231.

Drevets WC, Price JL, Simpson JR, Todd RD, Reich T, Vannier
M, et al. 1997. Subgenual prefrontal cortex abnormalities in
mood disorders. Nature 386:824-827.

Drevets WC, Savitz J, Trimble M. 2008. The subgenual anterior
cingulate cortex in mood disorders. CNS Spectr 13:663—
681.

Fair Da, Cohen AL, Power JD, Dosenbach NUF, Church JA,
Miezin FM, et al. 2009. Functional brain networks develop
from a “local to distributed” organization. PLoS Comput
Biol 5:14-23.

Fales CL, Barch DM, Rundle MM, Mintun MA, Snyder AZ,
Cohen JD, et al. 2008. Altered emotional interference pro-
cessing in affective and cognitive-control brain circuitry in
major depression. Biol Psychiatry 63:377-384.

First MB, Spitzer RL, Gibbon M, Williams JBW. 1995. Struc-
tured Clinical Interview for DSM-1V Axis I Disorders (Clini-
cian Version). New York: New York State Psychiatric
Institute Biometrics Department.

Fischer AS, Camacho C, Ho TC, Whitfield SG, Gotlib IH.
2018. Neural markers of resilience in adolescents at famil-
ial risk for major depressive disorder. JAMA Psychiatry 75:
493-502.

Foland-Ross LC, Gilbert BL, Joormann J, Gotlib IH. 2015. Neu-
ral markers of familial risk for depression: an investigation of
cortical thickness abnormalities in healthy adolescent daugh-
ters of mothers with recurrent depression. J Abnorm Psychol
124:476-485.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME. 2005. The human brain is intrinsically orga-
nized into dynamic, anticorrelated functional networks.
Proc Natl Acad Sci U S A 102:9673-9678.

Gaffrey MS, Luby JL, Repovs G, Belden AC, Botteron KN,
Luking KR, et al. 2010. Subgenual cingulate connectivity
in children with a history of preschool-depression. Neurore-
port 21:1182-1188.

Garmy P, Clausson EK, Berg A, Steen Carlsson K, Jakobsson U.
2017. Evaluation of a school-based cognitive—behavioral de-
pression prevention program. Scand J Public Health [Epub
ahead of print]; DOI: 10.1177/1403494817746537.

Genovese CR, Lazar NA, Nichols T. 2002. Thresholding of
statistical maps in functional neuroimaging using the false
discovery rate. Neuroimage 15:870-878.

Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J,
Yacoub E, et al. 2016. A multi-modal parcellation of human
cerebral cortex. Nature 536:171-178.

Godard J, Baruch P, Grondin S, Lafleur MF. 2012. Psychosocial
and neurocognitive functioning in unipolar and bipolar de-
pression: a 12-month prospective study. Psychiatry Res
196:145-153.

397

Gotlib IH, Hamilton JP. 2008. Neuroimaging and depression:
current status and unresolved issues. Curr Dir Psychol Sci
17:159-163.

Greenberg PE, Fournier A-A, Sisitsky T, Pike CT, Kessler RC.
2015. The economic burden of adults with major depressive
disorder in the United States (2005 and 2010). J Clin Psychia-
try 76:155-162.

Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional
connectivity in the resting brain: a network analysis of the
default mode hypothesis. Proc Natl Acad Sci U S A 100:
253-258.

Hall M, National H, Frank E, Holmes G, Pfahringer B, Reute-
mann P, et al. 2009. The WEKA data mining software: an up-
date. SIGKDD Explor 11:10-18.

Hamilton JP, Farmer M, Fogelman P, Gotlib IH. 2015. Depres-
sive rumination, the default-mode network, and the dark mat-
ter of clinical neuroscience. Biol Psychiatry 78:224-230.

Hankin BL, Abramson LY, Moffitt TE, Angell KE, Silva PA,
McGee R. 1998. Development of depression from preadoles-
cence to young adulthood: emerging gender differences in a
10-year longitudinal study. J Abnorm Psychol 107:128-140.

Hetrick SE, Cox GR, Witt KG, Bir JJ, Merry SN. 2016. Cogni-
tive behavioural therapy (CBT), third-wave CBT and inter-
personal therapy (IPT) based interventions for preventing
depression in children and adolescents. Cochrane Database
Syst Rev CD003380; DOI: 10.1002/14651858.CD003380
.pub4.

Horwath E, Johnson J, Klerman GL, Weissman MM. 1992.
Depressive symptoms as relative and attributable risk factors
for first-onset major depression. Arch Gen Psychiatry 49:
817-823.

Johansen-Berg H, Gutman DA, Behrens TEJ, Matthews PM,
Rushworth MFS, Katz E, et al. 2008. Anatomical connectiv-
ity of the subgenual cingulate region targeted with deep brain
stimulation for treatment-resistant depression. Cereb Cortex
18:1374-1383.

Kelly AMC, Di Martino A, Uddin LQ, Shehzad Z, Gee DG,
Reiss PT, et al. 2009. Development of anterior cingulate
functional connectivity from late childhood to early adult-
hood. Cereb Cortex 19:640-657.

Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas
KR, et al. 2003. The epidemiology of major depressive disor-
der: results from the National Comorbidity Survey Replica-
tion (NCS-R). JAMA 289:3095-3105.

Kovacs M. 1985. The Children’s Depression, Inventory (CDI).
Psychopharmacol Bull 21:995-998.

Lieb R, Isensee B, Hofler M, Pfister H, Wittchen H-U. 2002.
Parental major depression and the risk of depression and
other mental disorders in offspring: a prospective-
longitudinal community study. Arch Gen Psychiatry 59:
365-374.

Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R,
Leuchter B, et al. 2014. Default mode network mechanisms
of transcranial magnetic stimulation in depression. Biol Psy-
chiatry 76:517-526.

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. 2003. An au-
tomated method for neuroanatomic and cytoarchitectonic
atlas-based interrogation of fMRI data sets. Neuroimage
19:1233-1239.

Margulies DS, Kelly AMC, Uddin LQ, Biswal BB, Castellanos
FX, Milham MP. 2007. Mapping the functional connectivity
of anterior cingulate cortex. Neuroimage 37:579-588.

Martel MM, Markon K, Smith GT. 2017. ResearchrReview: multi-
informant integration in child and adolescent psychopathology



398

diagnosis. J. Child Psychol Psychiatry Allied Discip 58:
116-128.

Mayberg HS. 1997. Limbic-cortical dysregulation: a proposed
model of depression. J. Neuropsychiatry Clin. Neurosci 9:
471-481.

Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz
D, Hamani C, et al. 2005. Deep brain stimulation for
treatment-resistant depression. Neuron 45:651-660.

Merikangas KR, Avenevoli S. 2002. Epidemiology of mood and
anxiety disorders in children and adolescents. In: Tsuang MT,
Tohen M (eds.) Textbook in Psychiatric Epidemiology, 2nd
ed. Hoboken, NJ: John Wiley & Sons; pp. 657-704.

Merry SN, Hetrick SE, Cox GR, Brudevold-Iversen T, Bir JJ,
McDowell H. 2012. Cochrane review: psychological and ed-
ucational interventions for preventing depression in children
and adolescents. Cochrane Database Syst Rev 7:1409-1685.

Mitchell TM. 1997. Machine learning. Annu Rev Comput Sci
DOI: 10.1145/242224.242229.

Monk CS, Klein RG, Telzer EH, Schroth EA, Mannuzza S, Moul-
ton JL, et al. 2008. Amygdala and nucleus accumbens activation
to emotional facial expressions in children and adolescents at
risk for major depression. Am J Psychiatry 165:90-98.

Ongiir D, Drevets WC, Price JL. 1998. Glial reduction in the
subgenual prefrontal cortex in mood disorders. Proc Natl
Acad Sci U S A 95:13290-13295.

Orvaschel H. 1994. Schedule for Affective Disorder and Schizo-
phrenia for School-Age children—Epidemiologic Version, 5th
ed. Fort Lauderdale, FL: Nova Southeastern University, Cen-
ter for Psychological Studies.

Orvaschel H, Lewinsohn PM, Seeley JR. 1995. Continuity of
psychopathology in a community sample of adolescents. J
Am Acad Child Adolesc Psychiatry 34:1525-1535.

Perry Y, Werner-Seidler A, Calear A, Mackinnon A, King C,
Psych MC, et al. 2017. Preventing depression in final year
secondary students: school-based randomized controlled
trial. J Med Internet Res 19:e369.

Rohde P, Briere FN, Stice E. 2018. Major depression prevention ef-
fects for a cognitive-behavioral adolescent indicated prevention
group intervention across four trials. Behav Res Ther 100:1-6.

Rohde P, Stice E, Shaw H, Briére FN. 2014. Indicated cogni-
tive behavioral group depression prevention compared to
bibliotherapy and brochure control: acute effects of an
effectiveness trial with adolescents. J Consult Clin Psychol
82:65-74.

Shapero BG, Chai XJ, Vangel M, Biederman J, Hoover C,
Whitfield-Gabrieli S, et al. 2019. Neural markers of depres-
sion risk predict the onset of depression. Psychiatry Res Neu-
roimaging 285:31-39.

Sheline YI, Barch DM, Price JL, Rundle MM, Vaishnavi SN,
Snyder AZ, et al. 2009. The default mode network and
self-referential processes in depression. Proc Natl Acad Sci
U S A 106:1942-1947.

HIRSHFELD-BECKER ET AL.

Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J,
Thase ME, et al. 2012. Toward clinically useful neuroimag-
ing in depression treatment: prognostic utility of subgenual
cingulate activity for determining depression outcome in cog-
nitive therapy across studies, scanners, and patient character-
istics. Arch Gen Psychiatry 69:913-924.

Stuhrmann A, Suslow T, Dannlowski U. 2011. Facial emotion
processing in major depression: a systematic review of neuro-
imaging findings. Biol Mood Anxiety Disord 1:10.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, et al. 2002. Automated anatomical la-
beling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuro-
image 15:273-289.

Veer IM, Beckmann CF, van Tol M-J, Ferrarini L, Milles J,
Veltman DJ, et al. 2010. Whole brain resting-state analysis
reveals decreased functional connectivity in major depres-
sion. Front Syst Neurosci 4:1-10.

Vilgis V, Gelardi KL, Helm JL, Forbes EE, Hipwell AE, Keenan
K, et al. 2018. Dorsomedial prefrontal activity to sadness
predicts later emotion suppression and depression severity
in adolescent girls. Child Dev 89:758-772.

Whitfield-Gabrieli S, Nieto-Castanon A. 2012. Conn: a func-
tional connectivity toolbox for correlated and anticorrelated
brain networks. Brain Connect 2:125-141.

Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT,
Faraone SV, McCarley RW, et al. 2009. Hyperactivity and
hyperconnectivity of the default network in schizophrenia
and in first-degree relatives of persons with schizophrenia.
Proc Natl Acad Sci U S A 106:1279-1284.

Williamson DE, Birmaher B, Axelson DA, Ryan ND, Dahl RE.
2004. First episode of depression in children at low and high
familial risk for depression. J] Am Acad Child Adolesc Psy-
chiatry 43:291-297.

Yang Y, Pedersen JO. 1997. A Comparative Study on Feature
Selection in Text Categorization. In: Proceedings of the
Fourteenth International Conference on Machine Learning.
San Fransisco, CA, pp. 412-420.

Ye T, Peng J, Nie B, Gao J, Liu J, Li Y, et al. 2012. Altered func-
tional connectivity of the dorsolateral prefrontal cortex in
first-episode patients with major depressive disorder. Eur J
Radiol 81:4035-4040.

Address correspondence to:

Xiaogian J. Chai

Division of Cognitive Neurology/Neuropsychology
Department of Neurology

Johns Hopkins University

1629 Thames Street

Baltimore, MD 21231

E-mail: xiaoqian.chai@jhu.edu



