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Radiographic Honeycombing and Altered Lung
Microbiota in Patients with Idiopathic
Pulmonary Fibrosis

To the Editor:

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease
of the lung with increasing incidence and poorly understood
pathogenesis (1). The lung microbiome has recently been
implicated in IPF pathogenesis, with studies showing that lung
microbiota are altered in disease, predictive of disease progression,
correlated with variation in alveolar cytokines, and causally
involved in animal models (2, 3). Although the radiographic
features of IPF have critical diagnostic and prognostic significance
(1, 4), the relationship between radiographic findings and lung
microbiota is undetermined. To determine the relationship
between lung microbiota and the anatomic features of IPF, we
compared microbiota in IPF BAL fluid (BALF) with IPF
radiographic features. Specifically, we compared microbiota in
patients with IPF with and without radiographic evidence of
honeycombing detected via high-resolution computed tomography
(CT). Honeycombing is a cardinal histopathologic feature of IPF; it
increases the diagnostic certainty and independently predicts
mortality (4).

To examine lung microbiota and radiographic honeycombing,
we studied patients with IPF who were enrolled in the COMET
(Correlating Outcomes with Biochemical Markers to Estimate Time
to Progression in Idiopathic Pulmonary Fibrosis) study. Bacterial
communities in BALF were characterized using 16S rRNA gene
sequencing and quantified as previously described (2).
Honeycombing was recorded as absent or present on baseline chest
high-resolution CT by a thoracic radiologist. Differences in
community composition were determined by model‐based analysis
of multivariate abundance data (mvabund) and by multivariate
ANOVA with permutation testing. Differences in bacterial DNA
burden and diversity were determined using Student’s t test. A total
of 68 patients with data available for analysis were included. The
clinical characteristics and demographics of the subjects have
previously been described (2), and differences between patients
with and without radiographic honeycombing are reported in
Table 1. This was a subanalysis of previously published COMET
data. The sequencing data are available via the National Center for
Biotechnology Information Sequence Read Archive (accession
numbers PRJNA515255 and PRJNA515279). Operational
taxonomic unit (OTU), taxonomy, and metadata tables are
available for download at https://github.com/dicksonlunglab/
murine_pulmonary_fibrosis.

In this hypothesis-generating study, to determine whether
the composition of lung bacteria differs among patients with IPF
and honeycombing, we first used principal component analysis
to visualize the relative similarity or dissimilarity of specimens
when clustered by honeycombing status (Figure 1A). Although
we observed a considerable overlap in the lung communities of
patients with and without honeycombing, we also observed a
clustered separation of specimens by honeycombing status.
When we compared the communities statistically using
mvabund, this collective difference in community composition
was significant, robust to the taxonomic level of comparison
(e.g., P = 0.006 at the OTU level of taxonomy, and P = 0.037 at
the family level). The difference did not meet statistical
significance when the communities were compared via
multivariate ANOVA with permutation testing (P = 0.07,
adjusted for age, baseline DLCO, and smoking status). We thus
determined that lung communities in patients with IPF and
honeycombing are collectively different from those in patients
with IPF and no honeycombing, although a considerable
taxonomic overlap exists.

To better understand these collective differences in
community composition, we next used complementary
techniques to compare specific bacterial taxa. We used BiPlot
analysis (Figure 1B) to determine which bacterial taxa could
explain the separation of specimens in our principal component
analysis plot. This revealed several candidate taxa that explained
variation in specimens toward the honeycombing-present
cluster (e.g., OTU1464 Porphyromonas and OTU1428 Gemella),
as well as several that explained variation toward the
honeycombing-absent cluster (e.g., OTU1373 Cronobacter). We
next used rank abundance analysis to visualize differences in the
relative abundance of prominent taxa across groups (Figure 1C).
Although the most abundant taxa were common across groups
(e.g., OTU1461 Prevotella and OTU1463 Veillonella), several
prominent taxa differed visibly across the comparison (e.g.,
OTU1464 Porphyromonas, OTU1373 Cronobacter, and
OTU1428 Gemella). We directly compared the relative
abundance of candidate taxa identified by BiPlot and rank

Table 1. Demographics and Clinical Characteristics of the
COMET Idiopathic Pulmonary Fibrosis Cohort

No
Honeycombing Honeycombing

P
Value

n (%) 29 (43%) 39 (57%) —
Age, yr,

mean6SD
62.76 7.3 66.56 7.0 0.03

Male, n (%) 20 (68.9%) 26 (66.6%) 0.99
FVC% predicted,

mean6SD
72.0616.6 69.8618.3 0.61

DLCO% predicted,
mean6SD

49.3613.1 39.4613.6 0.007

Smoking status 0.006
Non, n (%) 14 (48%) 6 (15%) —
Ever, n (%) 15 (52%) 33 (85%) —

Definition of abbreviation: COMET=Correlating Outcomes with Biochemical
Markers to Estimate Time to Progression in Idiopathic Pulmonary Fibrosis.
ANOVA, unpaired t test, or Fisher’s exact test was used when applicable.
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abundance analysis (Figure 1D). We found that although
OTU1428 Gemella and OTU1464 Porphyomonas were
nominally enriched in specimens from patients with
honeycombing (P = 0.008 and 0.024, respectively; mvabund),

these comparisons were not significant when controlled for
multiple comparisons (P. 0.05 for both). Similarly, although
OTU1373 Cronobacter was nominally enriched among
honeycombing-absent specimens, it was not significantly
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Figure 1. In patients with idiopathic pulmonary fibrosis, radiographic honeycombing is associated with changes in lung microbiota. Sixty-eight patients
with idiopathic pulmonary fibrosis were stratified by the presence or absence of honeycombing on computed tomography scan. Lung microbiota were
analyzed using amplicon sequencing of the 16S rRNA gene. Operational taxonomic unit (OTU) data in the principal component (PC) analysis were
Hellinger transformed to allow for better behaviors with longer species gradients. (A) Ordination of specimens by community composition (principal
component analysis) revealed clustering by honeycombing status, although considerable overlap was observed. Overall community composition was
significantly distinct across groups (P=0.006, mvabund). (B) BiPlot analysis of this ordination identified candidate bacterial taxa responsible for driving the
separation of honeycombing specimens (e.g., OTU1428 Gemella and OTU1464 Porphyromonas). (C) Rank abundance analysis revealed taxonomic
differences between groups. The 20 most abundant taxa in honeycombing-present specimens are shown in decreasing order of mean relative abundance
(mean6SEM). (D) Specific bacterial taxa were then compared across groups using direct comparison of mean relative abundance. Although select taxa
were nominally significant when compared directly (e.g., OTU1428 Gemella and OTU1373 Chronobacter), no specific taxa were significant when adjusted
for multiple comparisons by mvabund. Significance was determined via mvabund, and the nominal P values presented were obtained before adjustment
for multiple comparisons (A and D).
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enriched when adjusted for multiple comparisons (P. 0.05).
Cronobacter OTU1373 was detectable at a low signal (2.63%
of reads) in negative controls. Both Gemella OTU1428 and
Porphyromonas OTU1464 were not detectable in negative
controls. We then compared the burden of bacterial DNA
and the diversity of bacterial communities (Shannon
diversity index) in BALF from patients with IPF with and
without honeycombing. We found no significant difference in
either feature of the microbiome (P. 0.05). We concluded
that although honeycombing alters community composition, it
is not associated with differences in bacterial burden or
diversity.

Here, we demonstrate that the honeycombed lung is
associated with alterations in the community composition of
lung microbiota. These taxonomic differences are appreciable at
both the species/genus and family levels of taxonomy and may not
be directly attributable to individual taxa but rather to collective
differences in community composition. Several studies have
demonstrated the importance of lung dysbiosis in IPF. Molyneaux
and colleagues have shown that a greater bacterial burden is
predictive of increased mortality (5), a finding we recently
validated (2). Studies have linked changes in the expression of
host defense genes in blood with lung microbiota in IPF (3).
Immunosuppression has a deleterious effect on clinical outcomes
in patients with IPF, although antibiotic therapy in IPF may convey
a clinical benefit (6, 7). A recent study reported minimal bacterial
signal in excised lung tissue from patients with IPF (8), which may
suggest that the host–microbiota interface can be more readily
sampled via the airway mucosa (BALF) than from peripheral
parenchymal tissue, which is largely comprised of extracellular
matrix.

Honeycombing is a feature of IPF with pathologic and
prognostic significance. It is believed to derive from mucin
dysfunction in the distal airway, whereby epithelial cells exhibit
increased expression of Muc5b, a mucin that is essential for
normal mucocillary clearance (9). Overexpression of mucin in the
distal airway may alter the ecological conditions of the lungs,
selectively promoting dysbiosis. We observed a potential
association between honeycombing and a member of the
Gemella genus. Gemella belong to the Firmicutes phylum, are
found at the mucosal surface of the aerodigestive tract, and
have been implicated in exacerbations of chronic lung disease (10).
We speculate that honeycombing results in ecological changes to
the distal airways, fostering the growth of taxa such as Gemella
spp., altering community composition, and contributing to
injury from mucin overexpression and defective mucocillary
clearance.

Our work has several limitations. We were unable to
examine the topographical extent and severity of
honeycombing in our study cohort. BALF was acquired from
the right middle lobe or lingular segment based on the extent
of comparative disease between these two locations, but the
severity of honeycombing was not recorded or incorporated
into our analysis. It may be that graded relationships exist
between honeycombing and lung microbiota. Furthermore,
interobserver variability exists in the reporting of CT
honeycombing. It is possible that confounding is present in
lung microbiome studies (e.g., due to medications or disease
severity) that cannot be known or accounted for in our analysis.

The size of our study cohort and the power to detect
differences were limited. Therefore, these observations
should be further examined in other cohorts of patients with
IPF.

Our exploratory findings suggest a bidirectional interaction
between lung microbiota and the anatomic disruption of IPF.
Future studies should interrogate further the causal role of dysbiosis
in the progressive tissue distortion and honeycombing of IPF to
determine whether the lung microbiome represents a therapeutic
target in IPF. n
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Effect of Nusinersen on RespiratoryMuscle Function in
Different Subtypes of Type 1 Spinal Muscular Atrophy

To the Editor:

Spinal muscular atrophy (SMA) is the leading inherited cause
of infant death. However, the rapidly evolving landscape of
therapeutic options is dramatically changing the natural history of
the disease. Nusinersen was the first drug to be approved for
the treatment of SMA, and it is now commercially available in
many countries worldwide. Very recently, the gene therapy
onasemnogene abeparvovec-xioi also received approval from the
U.S. Food and Drug Administration for the treatment of patients
younger than 2 years of age. Nusinersen is administered
intrathecally and consists of an antisense oligonucleotide designed
to modify pre-mRNA, thus increasing the level of SMN protein
(1). A phase 3 randomized, double-blind, sham-controlled,
clinical trial in patients with SMA1, the most severe form of
SMA, showed that patients treated with nusinersen had a
significant motor milestone response and a higher likelihood
of event-free survival (2) (i.e., free from tracheostomy

or noninvasive permanent ventilation). However, there is no
information regarding the effects of the treatment on respiratory
function. Such effects can strongly affect the prognosis in
SMA1 because respiratory problems are the major cause of
hospitalization, morbidity, and mortality. Ribcage muscle
weakness is a distinctive feature of SMA1 since infancy,
whereas the diaphragm is spared and carries out the breathing
function (3), and natural history studies have shown that the
majority of surviving children with SMA1 become ventilator
dependent (4, 5). The assessment of respiratory function in
infants is challenging because it usually requires invasive
and/or volitional tests (6). We have previously reported how
feasible and informative noninvasive measurements of the
respiratory pattern during quiet breathing by optoelectronic
plethysmography can be, even in uncooperative infants.
We have characterized the specific ventilatory and
thoracoabdominal patterns that occur during quiet breathing
of infants and children affected by the three forms of SMA.
Specifically, patients with SMA1 were characterized by rapid and
shallow breathing with paradoxical thoracoabdominal motion (3)
and a bell-shaped thorax (7). The study was performed in 32
untreated patients with SMA1, who might be considered a
control group of natural-history patients. In the present study,
respiratory function data from the control group were compared
with those obtained in a new cohort of 27 infants and children
with SMA1 who were treated with nusinersen. For the very first
time, we were able to determine whether and how nusinersen
affects respiratory function in the most severe form of the
disease.

To better capture possible responses to treatment, which
have been reported to be variable depending on different
factors, including age at treatment and disease duration and
severity, we decided to divide both the control subjects and
the treated patients with SMA1 into three subtypes, defined
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Figure 1. Median (symbols) and interquartile range (whiskers) of
age (x-axis) and percentage contribution of the pulmonary ribcage
to VT (DVRC,P; y-axis) in children with spinal muscular atrophy 1
subtypes A and B (open grey symbols) and C (solid black symbols),
treated (circles) or not (squares) with nusinersen. Negative values
indicate the presence of paradoxical inspiratory inward motion of the
pulmonary ribcage.
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