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Abstract: State-of-the-art automatic speech recognition (ASR) engines
perform well on healthy speech; however recent studies show that their
performance on dysarthric speech is highly variable. This is because of
the acoustic variability associated with the different dysarthria subtypes.
This paper aims to develop a better understanding of how perceptual
disturbances in dysarthric speech relate to ASR performance. Accurate
ratings of a representative set of 32 dysarthric speakers along different
perceptual dimensions are obtained and the performance of a represen-
tative ASR algorithm on the same set of speakers is analyzed. This
work explores the relationship between these ratings and ASR perfor-
mance and reveals that ASR performance can be predicted from percep-
tual disturbances in dysarthric speech with articulatory precision
contributing the most to the prediction followed by prosody.
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1. Introduction

Producing clear and intelligible speech requires coordination among many subsystems,
including articulation, respiration, phonation, and resonance. Individuals with disrup-
tion to any of the involved physical or neurological processes required in speech pro-
duction suffer from a corresponding degradation in the quality of the speech they pro-
duce. This condition is called dysarthria and it can manifest itself in a variety of ways
such as hypernasality, atypical prosody, imprecise articulation, poor vocal quality, etc.
It is known that these perceptual degradations directly impact intelligibility; as a result,
intervention strategies by speech-language pathologists (SLPs) focus on correcting these
disturbances as a means of improving intelligibility in patients.

While a great deal of research has been devoted to characterizing the relationship
between perceptual inconsistencies and intelligibility judgments by listeners, this is a topic
that has yet to be addressed for automatic speech recognition (ASR) engines. In this
paper we are interested in exploring the relationship between perceptual speech quality
and performance of a state-of-the-art ASR engine. An accurate understanding and
modeling of this relationship can have a significant impact in two areas. First, these mod-
els can help algorithm designers customize ASR strategies such that they perform well
under conditions where users exhibit a great deal of variability in speech production. A
deeper understanding of this relationship can also result in objective outcome measures
for SLPs based on ASR performance. Reliable evaluation of dysarthric speech is a long-
standing problem. While evaluations are traditionally done by SLPs, studies have found
that the biases inherent in subjective evaluations result in poor inter- and intra-rater reli-
ability.1,2 As a result there is strong motivation for the development of improved methods
of objective speech intelligibility evaluation. To that end, in this paper we explore the
relation between the word error rate (WER) of an ASR system3 (an objective measure)
and subjective perceptual assessment along four perceptual dimensions (nasality, vocal
quality, articulatory precision, prosody) and a general impression of the dysarthria sever-
ity. Below we describe related work in this area, our methodology, the results of this
work, and discuss implications of the findings.
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2. Related work

There are two lines of research that are related to the work presented in this paper:
automated measures of pathological speech intelligibility and ASR methods customized
for dysarthric speech. A number of related objective methods have been used for intel-
ligibility assessment of dysarthric speech.4–6 Objective measures from the telecommuni-
cations literature, such as the speech intelligibility index7 or speech transmission index,8

have been applied to pathological speech; however, application of these methods is dif-
ficult due to the lack of a clean reference signal against which to test. With the recent
improvements to ASR systems, an obvious approach to speech intelligibility estimation
is to replace the human listener with an ASR system. Studies have found that ASR-
based methods can be used to effectively estimate the intelligibility deficits caused by
tracheoesophageal speech,9 cleft lip and palate,10 cancer of the oral cavity,11 head and
neck cancer,12 and laryngectomy.13

Intelligibility estimates by themselves, however, have very limited utility in a
clinical setting. It is often the case that clinicians are interested in evaluating speech
along different perceptual dimensions to construct a complete and comprehensive
understanding of the speech degradation and to customize treatment plans.14,15 While
some research has been done to model the relationship between these perceptual
dimensions and intelligibility scores,16 prior work has focused on scores from human
listeners and does not generalize to ASR. In fact, while the WER of ASR systems has
been found to be a useful tool for evaluating speech intelligibility, its efficacy for mea-
suring degradations in other perceptual dimensions outside of speech intelligibility is
largely unstudied.

Recently some work has been done on improving ASR performance for dys-
arthric speech. Christensen et al. carried out a study on applying training and adapta-
tion methods for improved recognition of dysarthric speech.17 They concluded that
while there was perceptual variation among dysarthric speakers, adaptation following
training improved the performance of the system to some extent. Similarly, Sharma
and Hasegawa-Johnson proposed a new acoustic model adaptation method for dys-
arthric speech recognition.18 While this method yielded improvement compared to
standard speaker adaptation techniques, its defect is the large variability among differ-
ent dysarthric speakers. These studies imply that if we can somehow characterize the
perceptual variability exhibited by dysarthric speakers, we can customize ASR strate-
gies based on this information. For example, different ASR strategies would likely be
required for a dysarthric speaker who exhibits a rapid speaking rate than for a dysarth-
ric speaker who exhibits imprecise articulation. As a first step, we must first understand
the relationship between these disturbances and ASR performance.

3. Methodology

3.1 Data acquisition

The dysarthric speech database we used was recorded in the Motor Speech Disorders
Lab at Arizona State University as a part of a larger ongoing study. We used 32 dys-
arthric speakers and clinically four categorizations of their diseases. The four categori-
zations are ataxic, mixed spastic-flaccid, hyperkinetic, and hypokinetic. Different cate-
gorizations have different perceptual symptoms of speech degradation; for example,
speakers diagnosed with hypokinetic can have a rapid articulation rate and rushes of
speech while other categorizations may not have.

Each speaker produced five sentences as described in Liss et al.19 Following
data acquisition, 15 students from the ASU Master’s SLP program (second year, sec-
ond semester), rated each speaker along five perceptual dimensions: severity, nasality,
vocal quality, articulatory precision, and prosody on a scale from 1 to 7 (from normal
to severely abnormal). Severity represents the annotator’s judgment about the general
quality of the produced speech. Nasality refers to the ability to control oral-nasal sepa-
ration during speech production. Vocal quality refers to the presence of noise in the
voicing. Articulatory precision refers to how well vowels and consonants are produced.
Prosody refers to pitch variation, speaking rate, stress, loudness variation, and
rhythm.20 Each annotator’s ratings were combined into a single set of ratings. We used
the Evaluator Weighted Estimator (EWE) to integrate ratings from the 15 students
into a single set of ratings by calculating a mean rating for each perceptual dimension,
weighted by individual reliability.21 The result was a final set of ratings where, for
each speaker, we had ensemble ratings for each of the five perceptual dimensions con-
sidered here.
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3.2 ASR for dysarthric speech

For each of the 32 dysarthric speakers we have 5 sentences with word-level transcrip-
tion and perceptual ratings for each of the 5 dimensions. In lieu of constructing a cus-
tom speech recognition engine, we elected to use a representative and robust ASR
algorithm for the study, the Google ASR engine.3 Google provides an Application
Programming Interface to interface with their algorithm. For all sentences of each of
the 32 speakers, we calculated the WER based on the results of the Google ASR
engine and ground truth transcription. The WER is calculated by the following
formula:

WER ¼ S þ I þD
N

; (1)

where S is the number of substitution errors, I is the number of insertion errors, D is
the number of deletion errors, and N is total number of words in a sentence. The
WER of one speaker is the average WER of his or her five sentences.

3.3 Statistical analysis

Following data acquisition, we initially analyzed the reliability of the combined EWE
ratings. For reliability, we use the ratings from a randomly sampled subset of L eval-
uators, and the ratings from a different subset of eight evaluators. We then calculate
the EWE of each subset of evaluators and find the mean absolute error (MAE)
between each set of ratings. In this reliability analysis, we treat the ratings from the
combined eight listeners as a “gold standard” against which we compare. It allows us
to evaluate the error between a single evaluator, the EWE of two evaluators, the EWE
of three evaluators, etc., against the EWE of the gold-standard.

The MAE is interpretable on a 7-point scale—for example, an MAE of 1
means that two sets of ratings fall within 1 of each other on a 7-point scale. We esti-
mate the MAE for increasing values of L from 1 evaluator to 7 evaluators. Since we
have a total of 15 evaluators, the largest that L can be is 7 because we require two
subsets of different evaluators.

We also analyzed the Pearson correlation coefficient between perceptual rat-
ings in each dimension and the WER rates. Specifically, after processing all 160 senten-
ces through the ASR engine, we obtained the WER for each speaker. We then calcu-
lated the correlation coefficient between the WERs and perceptual ratings for all five
dimensions of the 32 dysarthric speakers.

To further investigate the mapping from perceptual ratings to WER and
which perceptual dimension contributes the most to WER, we built an ‘1-norm-con-
strained linear regression model with the values of the four perceptual ratings (nasality,
vocal quality, articulatory precision, and prosody22) as input and the WER as out-
put.23 We changed the value of the regularization coefficient such that the model
selects a different number of features ranging from 1 to 4. Leave-one-speaker-out cross
validation was used to find the weights of the linear regression model. In this model,
we normalized the independent variables (ratings) to zero mean, unit variance, and cal-
culated the final feature weights by averaging the absolute value of weights of all 32
models. We computed the correlation coefficients of predicted WERs for the test sam-
ples of the 32 folds and the WERs from the Google ASR engine.

4. Results and discussion

4.1 Data description

Detailed information for all the speakers in the dataset is included.30 For each speaker,
we list the dysarthria subtype, gender, age, an average rating on a 1–7 scale for each
perceptual dimension, and a listing of perceptual symptoms. The perceptual symptoms

Table 1. Correlations among five perceptual dimensions. “S,” “N,” “VQ,” “AP,” and “P” are abbreviations of
the five perceptual dimensions.

S N VQ AP P

Severity 1.00
Nasality 0.79 1.00
Vocal quality 0.91 0.69 1.00
Articulatory precision 0.91 0.83 0.75 1.00
Prosody 0.84 0.61 0.73 0.73 1.00
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for each speaker were annotated by a speech language pathologist carefully listening to
each speaker and listing the most degraded perceptual qualities of the resulting speech
based on her judgement.24

In Table 1 we show the correlations between each of the five dimensions and
in Fig. 1 we show a histogram of ratings for each perceptual dimension. The 32 speak-
ers used in this study were sampled from a much larger dysarthria database. We aimed
to sample the evaluation scale for each perceptual dimension such that the distribution
of ratings for each perceptual dimension was approximately the same. As Fig. 1 shows,
most of the samples come from the middle of the rating scale so as not to bias the
observed correlations.

4.2 Data reliability

It is well accepted in the literature that the intra-rater agreement for auditory percep-
tual evaluation can be low.1,2 Although the tasks are fundamentally different,25 this
can be observed when comparing the descriptions the SLP provided to the EWE rat-
ings from the evaluators. For example, for speakers M10 and M11, the SLP noted
irregular prosody; however M10’s prosody was rated a 5.5, and M11’s prosody was
rated a 2.4.

Average ratings from multiple listeners are a common way to reduce
variability.21 In Table 2 we show the MAE for an increasing number of raters. We see
that the combined EWE ratings yield significantly lower MAE values when compared
against individual ratings. In fact, the MAE was reduced by almost a factor of 3 (to a
value of 0.51). It is important to note that we actually combine 15 ratings when explor-
ing the relationship between the perceptual dimensions and the WER, therefore the
MAE is likely to be lower than the MAE for the 7 raters shown in Table 2.

4.3 Relationship between WER and perceptual dimensions

We first show the scatter plots and correlation coefficients of WERs and evaluators’
perceptual ratings in Fig. 2. The results demonstrate that articulatory precision has the
highest correlation coefficient with WERs while nasality and vocal quality have the
lowest correlation coefficient. This is not surprising since subjective assessment of the
articulatory precision provides a measure of the deviation from standard pronunciation
on which the ASR engine is trained. Since it is often the case that ASR engines de-
emphasize voicing information, it also makes sense that vocal quality degradation does
not correlate as strongly with WER. Indeed, degradation of vocal quality does not
greatly impact traditional ASR features such as Mel Frequency Cepstral Coefficient.26

Among the other three perceptual dimensions, severity has the highest correlation coef-
ficient (close to articulatory precision). This too makes sense since severity encompasses
perceptual information in different dimensions, including articulatory precision.

Fig. 1. (Color online) Histograms of ratings for the five perceptual dimensions. The X axis is the perceptual rat-
ings from 1 to 7 and the Y axis is the percentage of speakers falling into each bin.

Table 2. The reliability of the combined EWE ratings: The average MAE for increasing numbers of evaluators
with 1�r confidence.

1 evaluator 1.45 6 0.48
2 evaluator 0.93 6 0.21
3 evaluator 0.82 6 0.22
4 evaluator 0.71 6 0.20
5 evaluator 0.59 6 0.12
6 evaluator 0.55 6 0.13
7 evaluator 0.51 6 0.11
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In analyzing Fig. 2 notice that there are some outliers. For example, in the
severity plot we see a speaker with a subjective severity score below 4 but with an
unusually high WER of over 0.8. The high WER is largely because the speaker stops
and repeats himself multiple times. Human listeners do not perceive this as problematic
during subjective evaluation; however the ASR engine has difficulties in dealing with
this. In the prosody dimension there is also an outlier where the prosody rating is
high, but the WER is lower than expected. In listening to this speaker, we notice that
he has very good articulatory precision and long periods of normal rhythm, followed
by short bursts of increased speaking rate. This gives the impression that overall pros-
ody is greatly disturbed; however the ASR engine is able to correctly identify the
words when the rate is not rapidly changing because the articulation is so clear.

In addition to the correlation analysis, we also constructed a regression model
to find a mapping from the normalized evaluators’ ratings (zero-mean, unit variance)
along the four perceptual dimensions to the WER. We construct four different models
with a varying number of perceptual dimensions considered for each model (we refer
to these as features in the model). For each model, ‘1-weighted regression is conducted
using four features: nasality, vocal quality, articulatory precision, and prosody; how-
ever, the value of the regularization coefficient is set such that only the desired number
of features is selected (between 1 and 4). For each model, we determine the averaged
absolute value of the four weights and the correlation coefficient between predicted
WERs and true WERs. The result is shown in Fig. 3. The absolute values of the
regression weights provide an estimate of the relative importance of a perceptual
dimension to predicting the WER. This analysis further confirms our previous finding
that articulatory precision is clearly most important in predicting ASR performance.
Following articulatory precision, prosody is the second most important (since it is the
second feature selected).

The correlation coefficient between predicted WERs using a regression model
and the true WERs remains almost constant when using different numbers of features.

Fig. 2. (Color online) Scatter plots and correlation coefficients of WERs and evaluators’ perceptual ratings.

Fig. 3. Absolute weights of the regression models and the correlation coefficient between predicted and actual
WERs.
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This is consistent with the highest correlation between WERs and articulatory preci-
sion rating. Here, articulatory precision also dominates the prediction of WERs. Other
studies have revealed similar relationships for dysarthric speech. Mengistu et al.
showed that there exists a relationship between acoustic measures and ASR accuracy
for dysarthric speech.27 However, they draw this conclusion from a relatively small
database of only nine speakers. De Bodt et al. investigated the linear relationship
between overall intelligibility (by humans) and assessment of different perceptual
dimensions of dysarthric speech.16 Consistent with our results, they also found that
articulatory precision contributes the most to overall intelligibility. Our previous stud-
ies19,28 have shown the importance of different aspects of prosody information (such as
rhythm, speaking rate) for understanding dysarthric speech. Also, the work by Nanjo
and Kawahara demonstrated that when speaking rate information is considered, the
performance of an ASR system can be improved.29

5. Conclusion

In this paper, we explored the relationship between subjective perceptual assessment of
five perceptual dimensions and the WER of Google’s ASR engine on dysarthric speech
produced by 32 dysarthric speakers of varying dysarthria subtype and of varying sever-
ity. There are two principal contributions in this paper. First, we revealed the potential
of using ASR performance as a proxy for assessing articulatory precision since the cor-
relations between that dimension and ASR performance is high. Second, we showed
that ASR performance can be predicted from perceptual disturbances in dysarthric
speech. Understanding this relationship is a first step to accurately adapting ASR strat-
egies for dysarthric speech. A natural extension of this work is to consider the subjec-
tive assessments on finer resolution subjective dimensions (e.g., rate, pitch variability,
loudness variability instead of prosody). These dimensions would allow us to assess
directionality instead of simply using the scale considered here. For example, we could
consider a scale that ranges from “very slow” to “very fast” for rate. A more specific
subjective evaluation would also allow us to assess finer resolution ASR errors, includ-
ing insertion errors, deletion errors, and substitution errors.

Acknowledgment

This research was supported in part by the National Institutes of Health, National
Institute on Deafness, and Other Communicative Disorders Grants Nos. 2R01DC006859
(J.M.L.) and 1R21DC012558 (J.M.L. and V.B.).

References and links
1S. A. Borrie, M. J. McAuliffe, and J. M. Liss, “Perceptual learning of dysarthric speech: A review of
experimental studies,” J. Speech Lang., Hear. Res. 55(1), 290–305 (2012).

2J. M. Liss, S. M. Spitzer, J. N. Caviness, and C. Adler, “The effects of familiarization on intelligibility
and lexical segmentation in hypokinetic and ataxic dysarthria,” J. Acoust. Soc. Am. 112(6), 3022–3030
(2002).

3J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne, C. Chelba, M. Cohen, M. Kamvar, and B. Strope,
“Your word is my command: Google search by voice: A case study,” in Advances in Speech Recognition
(Springer, New York, 2010), pp. 61–90.

4V. Berisha, S. Sandoval, R. Utianski, J. Liss, and A. Spanias, “Characterizing the distribution of the
quadrilateral vowel space area,” J. Acoust. Soc. Am. 135(1), 421–427 (2014).

5S. Steven, V. Berisha, R. Utianski, J. Liss, and A. Spanias, “Automatic assessment of vowel space area,”
J. Acoust. Soc. Am. 134(5), EL477–EL483.

6V. Berisha, J. Liss, S. Steven, R. Utianski, and A. Spanias, “Modeling pathological speech perception
from data with similarity labels,” in IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2014), pp. 915–919.

7ANSI S3.5-1997, American National Standard: Methods for Calculation of the Speech Intelligibility Index
(Acoustical Society of America, New York, 1997).

8T. Houtgast and H. J. M. Steeneken, “Evaluation of speech transmission channels by using artificial sig-
nals,” Acta Acust. Acust. 25(6), 355–367 (1971).

9M. Schuster, E. N€oth, T. Haderlein, S. Steidl, A. Batliner, and F. Rosanowski, “Can you understand
him? Let’s look at his word accuracy-automatic evaluation of tracheoesophageal speech,” in IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2005), pp. 61–64.

10A. Maier, E. N€oth, E. Nkenke, and M. Schuster, “Automatic assessment of children’s speech with cleft
lip and palate,” in Proceedings of the 5th Slovenian and 1st International Conference on Language
Technologies (IS-LTC 2006) (2006), pp. 31–35.

11A. K. Maier, M. Schuster, A. Batliner, E. N€oth, and E. Nkenke, “Automatic scoring of the intelligibility
in patients with cancer of the oral cavity,” in INTERSPEECH (2007), pp. 1206–1209.

12A. Maier, T. Haderlein, F. Stelzle, E. N€oth, E. Nkenke, F. Rosanowski, A. Sch€utzenberger, and M.
Schuster, “Automatic speech recognition systems for the evaluation of voice and speech disorders in head
and neck cancer,” EURASIP J. Audio, Speech, Music Process. 2010, 1 (2010).

Tu et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4967208] Published Online 15 November 2016

J. Acoust. Soc. Am. 140 (5), November 2016 Tu et al. EL421

http://dx.doi.org/10.1044/1092-4388(2011/10-0349)
http://dx.doi.org/10.1121/1.1515793
http://dx.doi.org/10.1121/1.4829528
http://dx.doi.org/10.1121/1.4826150
http://dx.doi.org/10.1155/2010/926951
http://dx.doi.org/10.1121/1.4967208


13M. Schuster, T. Haderlein, E. N€oth, J. Lohscheller, U. Eysholdt, and F. Rosanowski, “Intelligibility of
laryngectomees’ substitute speech: Automatic speech recognition and subjective rating,” Euro. Arch.
Oto-Rhino-Laryngol. Head Neck 263(2), 188–193 (2006).

14M. R. McNeil, Clinical Management of Sensorimotor Speech Disorders (Thieme, New York, 2009).
15K. Bunton, R. D. Kent, J. R. Duffy, J. C. Rosenbek, and J. F. Kent, “Listener agreement for auditory-

perceptual ratings of dysarthria,” J. Speech, Lang., Hear. Res. 50(6), 1481–1495 (2007).
16M. S. De Bodt, M. E. Hern�andez-D�ıaz Huici, and P. H. Van De Heyning, “Intelligibility as a linear com-

bination of dimensions in dysarthric speech,” J. Commun. Disorders 35(3), 283–292 (2002).
17H. Christensen, S. Cunningham, C. Fox, P. Green, and T. Hain, “A comparative study of adaptive, auto-

matic recognition of disordered speech,” in INTERSPEECH (2012).
18H. V. Sharma and M. Hasegawa-Johnson, “Acoustic model adaptation using in-domain background

models for dysarthric speech recognition,” Comput. Speech Lang. 27(6), 1147–1162 (2013).
19J. M. Liss, L. White, S. L. Mattys, K. Lansford, A. J. Lotto, S. M. Spitzer, and J. N. Caviness,

“Quantifying speech rhythm abnormalities in the dysarthrias,” J. Speech, Lang., Hear. Res. 52(5),
1334–1352 (2009).

20A. E. Aronson and J. R. Brown, Motor Speech Disorders (WB Saunders Company, St. Louis, MO,
1975).

21M. Grimm, K. Kroschel, E. Mower, and S. Narayanan, “Primitives-based evaluation and estimation of
emotions in speech,” Speech Commun. 49(10), 787–800 (2007).

22Severity is not included because it strongly correlates with other features.
23K. P. Murphy, Machine Learning: A Probabilistic Perspective (MIT Press, Cambridge, MA, 2012).
24The prompt for the SLP was “Please describe the most degraded perceptual qualities of the speech from

each speaker.”
25We asked the student evaluators to evaluate all five perceptual dimensions on a scale of 1–7, whereas the

SLP was asked to describe the dimensions they deemed most degraded.
26M. Benzeghiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fissore, P. Laface, A.

Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens, “Automatic speech recognition and speech vari-
ability: A review,” Speech Commun. 49(10), 763–786 (2007).

27K. T. Mengistu, F. Rudzicz, and T. H. Falk, “Using acoustic measures to predict automatic speech rec-
ognition performance for dysarthric speakers,” in 7th International Workshop on Models and Analysis of
Vocal Emissions for Biomedical Applications, 2011, pp. 75–78.

28Y. Jiao, V. Berisha, M. Tu, and J. Liss, “Convex weighting criteria for speaking rate estimation,” IEEE/
ACM Trans. Audio, Speech, Lang. Process. 23(9), 1421–1430 (2015).

29H. Nanjo and T. Kawahara, “Speaking-rate dependent decoding and adaptation for spontaneous lecture
speech recognition,” in IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP) (2002), Vol. 1, pp. 1–725.

30See supplementary material at http://dx.doi.org/10.1121/1.4967208 for all speaker information in the
dataset.

Tu et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4967208] Published Online 15 November 2016

EL422 J. Acoust. Soc. Am. 140 (5), November 2016 Tu et al.

http://dx.doi.org/10.1007/s00405-005-0974-6
http://dx.doi.org/10.1007/s00405-005-0974-6
http://dx.doi.org/10.1044/1092-4388(2007/102)
http://dx.doi.org/10.1016/S0021-9924(02)00065-5
http://dx.doi.org/10.1016/j.csl.2012.10.002
http://dx.doi.org/10.1044/1092-4388(2009/08-0208)
http://dx.doi.org/10.1016/j.specom.2007.01.010
http://dx.doi.org/10.1016/j.specom.2007.02.006
http://dx.doi.org/10.1109/TASLP.2015.2434213
http://dx.doi.org/10.1109/TASLP.2015.2434213
http://dx.doi.org/10.1121/1.4967208
http://dx.doi.org/10.1121/1.4967208

	s1
	l
	n1
	n2
	s2
	s3
	s3A
	s3B
	d1
	s3C
	s4
	s4A
	t1
	s4B
	s4C
	f1
	t2
	f2
	f3
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30

