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Speech is perceived as a series of relatively invariant phonemes despite extreme variability in the

acoustic signal. To be perceived as nearly-identical phonemes, speech sounds that vary continu-

ously over a range of acoustic parameters must be perceptually discretized by the auditory system.

Such many-to-one mappings of undifferentiated sensory information to a finite number of discrete

categories are ubiquitous in perception. Although many mechanistic models of phonetic perception

have been proposed, they remain largely unconstrained by neurobiological data. Current human

neurophysiological methods lack the necessary spatiotemporal resolution to provide it: speech is

too fast, and the neural circuitry involved is too small. This study demonstrates that mice are capa-

ble of learning generalizable phonetic categories, and can thus serve as a model for phonetic per-

ception. Mice learned to discriminate consonants and generalized consonant identity across novel

vowel contexts and speakers, consistent with true category learning. A mouse model, given the

powerful genetic and electrophysiological tools for probing neural circuits available for them, has

the potential to powerfully augment a mechanistic understanding of phonetic perception.
VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5091776
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I. INTRODUCTION

A. Lack of acoustic invariance in phonemes

We perceive speech as a series of relatively invariant

phonemes despite extreme variability in the acoustic signal.

This lack of order within phonemic categories remains one

of the fundamental problems of speech perception.1 Plosive

stop consonants (such as /b/ or /g/) are the paradigmatic

example of phonemes with near-categorical perception2–4

without invariant acoustic structure.5,6 The problem is not

just that phonemes are acoustically variable, but rather that

there is a fundamental lack of invariance in the relation

between phonemes and the acoustic signal.6 Despite our

inability to find a source of invariance in the speech signal,

the auditory system learns some acoustic-perceptual map-

ping, such that a plosive stop like /b/ is perceived as nearly

identical across phonetic contexts. A key source of variabil-

ity is coarticulation, which causes the sound of a spoken con-

sonant to be strongly affected by neighboring segments, such

as vowels. Coarticulation occurs during stop production

because the articulators (such as the tongue or lips) have not

completely left the positions from the preceding phoneme,

and are already moving to anticipate the following pho-

neme.7,8 Along with many other sources of acoustic varia-

tion like speaker identity, sex, accent, or environmental

noise; coarticulation guarantees that a given stop consonant

does not have a uniquely invariant acoustic structure across

phonetic contexts. In other words, there is no canonical

acoustic /b/.2,7 Phonetic perception therefore cannot be a

simple, linear mapping of some continuous feature space to

a discrete phoneme space. Instead it requires a mapping that

flexibly uses evidence from multiple imperfect cues

depending on context.2,9 This invariant perception of pho-

nemes, despite extreme variability in the physical speech

signal, is referred to as the non-invariance problem.10

B. Generality of phonetic perception

The lack of a simple mapping between acoustic attrib-

utes and phoneme identity has had a deep influence on pho-

netics, in part motivating the hypothesis that speech is

mechanistically unique to humans,11 and the development of

non-acoustic theories of speech perception (most notably

motor theories7,9,12). However, it has been clear for more

than 30 years that at least some auditory components of

speech perception are not unique to humans, suggesting that

human speech perception exploits evolutionarily-preserved

functions of the auditory system.6,13–15 For example, nonhu-

man animals like quail,6,16 chinchillas,17 rats,18 macaques,19

and songbirds20 are capable of learning phonetic categories

that share some perceptual qualities with humans.21,22 This

is consistent with the idea that categorizing phonemes is just

one instance of a more general problem faced by all auditory

systems, which typically extract useable information from

complex acoustic environments by reducing them to a small

number of ‘auditory objects’ (for review, see Ref. 23).

C. Neurolinguistic theories of phonetic perception

Many neurolinguistic theories of phonetic perception

have been proposed,12,24–27 but neurophysiological evidence

to support them is limited. One broad class of models fol-

lows the paradigm of hierarchical processing first described

by Hubel and Weisel in the visual system.24,25,28 In these

models, successive processing stages in the auditory system

extract acoustic features with progressively increasing com-

plexity by combining the simpler representations present ina)Electronic mail: wehr@uoregon.edu
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preceding stages. Such hierarchical processing is relatively

well-supported by experimental data. For example, the

responses of neurons in primary auditory cortex (A1) to

speech sounds are more diverse than those in inferior colli-

culus29 (but see Ref. 30). While phoneme identity can be

classified post hoc from population-level activity in A1,31–33

neurons in secondary auditory cortical regions explicitly

encode higher-order properties of speech sounds.34–38

Another class of models proposes that phonemes have

no positive acoustic “prototype,” and that we instead learn

only the acoustic features useful for telling them apart.26

Theoretically, these discriminative models provide better

generalization and robustness to high variance.39 Theories

based on discrimination rather than prototype-matching have

a long history in linguistics,40 but have rarely been imple-

mented as neurolinguistic models. A possible neural imple-

mentation of discriminative perception is that informative

contrast cues could evoke inhibition to suppress competing

phonetic percepts, similar to predictive coding.26,41,42

Neurophysiological evidence supports the existence of dis-

criminative predictive coding, but its specific implementa-

tion is unclear.43,44

These two very different classes of models illustrate a

major barrier faced by phonetic research: both classes can

successfully predict human categorization performance,

making it difficult to empirically validate or refute either of

them using psychophysical experiments alone. Mechanistic

differences have deep theoretical consequences—for exam-

ple, the characterizations made by the above two classes of

models regarding what phonemes are precisely oppose one

another: are they positive acoustic prototypes, or sets of neg-

ative acoustic contrasts? Perceptually, do listeners identify

phonemes, or discriminate between them? Neurobiological

evidence regarding how the brain actually solves these cate-

gorization problems could help overcome this barrier.

D. The utility of a mouse model for speech research

Neurolinguistic research in humans faces several limita-

tions that could be overcome using animal models.

First, most current human neurophysiological methods

lack the spatiotemporal resolution to probe the fine spatial

scale of neuronal circuitry and the millisecond timescale of

speech sounds. A causal, mechanistic understanding of com-

putation in neural circuits is also greatly aided by the ability

to manipulate individual neurons or circuit components,

which is difficult in humans. Optogenetic methods available

in mice provide the ability to activate, inactivate, or record

activity from specific types of neurons at the millisecond

timescales of speech sounds.

Second, it is difficult to isolate the purely auditory com-

ponent of speech perception in humans. Humans can use

contextual information from syntax, semantics or task struc-

ture to infer phoneme identity.45,46 It is also difficult to rule

out the contribution of multimodal information,47 or of

motor simulation predicted by motor theories. Certainly,

these and other non-auditory strategies are used during nor-

mal human speech perception. Nevertheless, speech percep-

tion is possible without these cues, so any

neurocomputational theory of phonetic perception must be

able to explain the purely auditory case. Animal models

allow straightforward isolation of purely auditory phonetic

categorization without interference from motor, semantic,

syntactic, or other non-auditory cues.

Third, it is difficult to control for prior language experi-

ence in humans. Experience-dependent effects on phonetic

perception are present from infancy.48 It can therefore be

challenging to separate experience-driven effects from

innate neurocomputational constraints imposed by the audi-

tory system. Completely language-naive subjects (such as

animals) allow the precise control of language exposure, per-

mitting phonetics and phonology to be disentangled in

neurolinguistics.

Animal models of phonetic perception are a useful way

to avoid these confounds and provide an important alterna-

tive to human studies for empirically grounding the develop-

ment of neurolinguistic theories. The mouse is particularly

well-suited to serve as such a model. A growing toolbox of

powerful electrophysiological and optogenetic methods in

mice has allowed unprecedented precision in characterizing

neural circuits and the computations they perform.

E. The utility of phonetics for auditory neuroscience

Conversely, auditory neuroscience stands to benefit

from the framework provided by phonetics for studying how

sound is transformed to meaning. Understanding how com-

plex sounds are encoded and processed by the auditory sys-

tem, ultimately leading to perception and behavior, remains

a challenge for auditory neuroscience. For example, it has

been difficult to extrapolate from simple frequency/ampli-

tude receptive fields to understand the hierarchical organiza-

tion of complex feature selectivity across brain areas. A

great strength of neuroethological model systems such as the

songbird is that both the stimulus (e.g., the bird’s own song)

and the behavior (song perception and production) are well

understood. This has led to significant advances in under-

standing the hierarchical organization and function of the

song system.49,50 The long history of speech research in

humans has produced a deep understanding of the relation-

ships between acoustic features and phonetic perception.51

These insights have enabled specific predictions about what

kinds of neuronal selectivity for features (and combinations

of features) might underlie phonetic perception.1 Although

recognizing human speech sounds is not a natural ethologi-

cal behavior for mice, phonetics nevertheless provides a

valuable framework for studying how the brain encodes and

transforms complex sounds into perception and behavior.

Here we trained mice to discriminate between pitch-

shifted recordings of naturally produced consonant-vowel

(CV) pairs beginning with either /g/ or /b/. Mice demon-

strated the ability to generalize consonant identity across

novel vowel contexts and speakers, consistent with true cate-

gory learning. To our knowledge, this is the first demonstra-

tion that any animal can generalize consonant identity across

both novel vowel contexts and novel speakers. These results

indicate that mice can solve the non-invariance problem, and
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suggest that mice are a suitable model for studying phonetic

perception.

II. RESULTS

A. Generalization performance

We began training 23 mice to discriminate between CV

pairs beginning with either /b/ or /g/ in a two-alternative

forced choice task. CV tokens were pitched-shifted up into

the mouse hearing range [Figs. 1(a) and 1(b)]. Each mouse

began training with a pair of tokens (individual recordings)

in a single vowel context (i.e., /bI/ and /gI/) from a single

speaker, and then advanced through stages that progressively

introduced new tokens, vowels, and speakers [Figs. 1(c) and

1(d), see Sec. IV]. Training was discontinued in 13 (56.5%)

of these mice because their performance on the first stage

was not significantly better than chance after two months.

The remaining ten (43.5%) mice progressed through all the

training stages to reach a final generalization task, on aver-

age in 14.9 (r 6 7.8) weeks [Fig. 1(e)]. This success rate and

training duration suggests that the task is difficult but

achievable.

We note that this training time is similar to that reported

previously for rats (14 6 0.3 weeks18). Previous studies have

not generally reported success rates. Human infants also

vary in the rate and accuracy of their acquisition of phonetic

categories,53 so we did not expect perfect accuracy from

every mouse. The cause of such differences in ability is itself

an opportunity for future study.

Generalization is an essential feature of categorical per-

ception. By testing whether mice can generalize their pho-

netic categorization to novel stimuli, we can distinguish

whether mice actually learn phonetic categories or instead

just memorize the reward contingency for each training

token. Four types of novelty are possible with our stimuli:

new tokens from the speakers and vowel contexts used in the

training set, new vowels, new speakers, and new vowels

from new speakers [colored groups in Fig. 2(a)]. In the final

generalization stage, we randomly interleaved tokens from

each of these novelty classes on 20% of trials, with the

remaining 80% consisting of tokens from the training set.

FIG. 1. Stimuli and task design. (a) Spectrograms of stimuli. Left: Example of an original recording of an isolated CV token (/gI/). Center: the same token

pitch-shifted upwards by 10� (3.3 octaves) into the mouse hearing range. Right: Recording of the pitch-shifted token presented in the behavior box. Stimuli

retained their overall acoustic structure below 34 kHz (the upper limit of the speaker frequency response). For spectrograms of all 161 tokens see

Supplemental Information.52 (b) Power spectra (dB, Welch’s method) of tokens in (a). Black: Original (left frequency axis), red: Pitch-shifted (right frequency

axis), blue: Box Recording (right frequency axis). (c) Mice initiated a trial by licking in a center port and responded by licking on one of two side ports.

Correct responses were rewarded with water and incorrect responses were punished with a mildly-aversive white noise burst. (d) The difficulty of the task was

gradually expanded by adding more tokens (squares), vowels (labels), and speakers (rows) before the mice were tested on novel tokens in a generalization

task. (e) Mice (colored lines) varied widely in the duration of training required to reach the generalization phase. Mice were returned to previous levels if they

remained at chance performance after reaching a new stage.
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We interleaved novel tokens with training tokens for two

reasons: (1) to avoid a sudden increase in task difficulty,

which can degrade performance, and (2) to minimize the

possibility that mice could learn each new token by widely

separating them in time (on average, generalization tokens

were repeated only once every five days).

We looked for four hallmarks of generalization: (1)

mice should be able to accurately categorize novel tokens,

(2) performance should reflect the quality of the acoustic-

phonetic criteria learned in training, (3) performance on

novel tokens should be correspondingly worse for tokens

that differ more from those in the training set, and (4) accu-

rate categorization of novel tokens should not require addi-

tional reinforcement.

All ten mice were able to categorize tokens of all gener-

alization types with an accuracy significantly greater than

chance. We estimated the impact of each generalization class

on performance as a fixed factor nested within each mouse

as a random factor in a mixed-effects logistic regression (see

Sec. IV). The predicted accuracy for each generalization

class is shown in Table I, each providing an estimate of the

difficulty of that class after accounting for the random effects

of individual mice.

Performance on all generalization types was strongly

and positively correlated with performance on the training

set [Fig. 2(b), adj. R2¼ 0.74, F(4, 5)¼ 7.4, p< 0.05]. If mice

were “overfitting,” that is, memorizing the training tokens

rather than learning categories, then we would expect the

opposite (i.e., above some threshold, mice that performed

better on the training set would perform correspondingly

worse on the generalization set). It appears instead that better

prototypes or decision boundaries learned in the training

stages allowed better generalization to novel tokens.

Mice were better at some types of generalization than

others [Fig. 2(c)]. The estimates of their relative difficulty

[Fig. 2(c)] provide a ranking of the perceptual novelty of the

stimulus classes based on their similarity to the training

tokens. From easiest to hardest, these were: novel token,

novel vowel, novel speaker (which was not significantly

more difficult than novel vowel), novel speaker þ vowel.

The effects of generalizing to novel vowels and novel speak-

ers were not significantly different from each other, but pair-

wise comparisons between each of the other types of

generalization were (Tukey’s method, all p< 0.001, also see

confidence intervals in Table I).

Although the effect of each generalization type on per-

formance was significantly different between mice

[Likelihood Ratio Test, v2(14)¼ 407.22, p � 0.001], they

were highly correlated (see Table I). The relative consis-

tency of novelty type difficulty across mice [i.e., the correla-

tion of fixed effects, Fig. 2(c)] is striking, but our results

cannot distinguish whether it is due to the mice or the stim-

uli: it is unclear whether the acoustic/phonetic criteria

learned by all mice are similarly general, or whether the

“cost” of each type of generalization is similar across an

array of possible acoustic/phonetic criteria.

FIG. 2. Generalization accuracy by novelty class. Mice generalized stop con-

sonant discrimination to novel CV recordings. (a) Four types of novelty are

possible with our stimuli: novel tokens from the speakers and vowels used in

the training set (red), novel vowels (blue), novel speakers (purple), and novel

speakers þ novel vowels (orange). Tokens in the training set are indicated in

black. Colors same throughout. (b) Mice that performed better on the training

set were better at generalization. Each point shows the performance for a sin-

gle mouse on a given novelty class, plotted against that mouse’s performance

on training tokens presented on during the generalization phase (both aver-

aged across the entire generalization phase). Lines show linear regression for

each novelty class. (c) Mean accuracy for each novelty class (gray lines indi-

cate individual mice, thick black line is mean of all mice). (d) Mean accuracy

for individual mice (colored bars indicate each novelty class). Error bars in

(d) are 95% binomial confidence intervals. Mice were assigned one of two

sets of training tokens, black and white boxes in (d).

TABLE I. Impact of each generalization class on performance. Accuracy

values provide an estimate of the difficulty of that class after accounting for

the random effects of individual mice. Accuracies are logistic GLMM coef-

ficients transformed from logits, and model coefficients are logit differences

from training set accuracy, which was used as an intercept. Correlation val-

ues are between fixed effects (novelty classes) across random effects (mice).

*Indicates significance ðpð> jzjÞ � 0:001Þ.

Accuracy 95% Wald CI Corr

Learned 0.767* [0.748, 0.785]

Token 0.739* [0.713, 0.763] 0.50

Vowel 0.678* [0.655, 0.701] 0.81 0.91

Speaker 0.666* [0.651, 0.680] 0.98 0.68 0.92

VowþSpk 0.637* [0.624, 0.651] 0.98 0.64 0.90 1
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True generalization requires that one set of discrimination

criteria can be successfully applied to novel cases without

reinforcement. It is possible that the mice were instead able to

rapidly learn the reward contingency of novel tokens during

the generalization stage. If mice were learning rapidly rather

than generalizing, this would predict that novel token perfor-

mance (1) would be indistinguishable from chance on the first

presentation, and (2) would increase relative to performance

on already-learned tokens with repeated presentations.

Performance on the first presentation of novel tokens was

significantly greater than chance (Fig. 3, all mice, all tokens

from all novelty classes: one-sided binomial test, n¼ 1410,

Pcorrect¼ 0.61, lower 95% CI (Confidence Interval)¼ 0.588,

p � 0.001; all mice, worst novelty class: n¼ 458,

Pcorrect¼ 0.581, lower 95% CI¼ 0.541, p< 0.001). This dem-

onstrates that mice were able to generalize immediately with-

out additional reinforcement. Although performance on novel

tokens did increase with repetition, so did performance on

training tokens (Fig. 3). We noted that performance on all

tokens (both novel and previously learned tokens) transiently

dropped after each transition between task stages, suggesting

a non-specific effect of an increase in task difficulty. To dis-

tinguish an increase in performance due to learning from an

increase due to acclimating to a change in the task, we com-

pared performance on generalization and training tokens over

the first 40 presentations of each token. If the mice were learn-

ing the generalization tokens, the increase in performance

with repeated presentations should be significantly greater

than that of the already trained tokens.

Performance was well fit by a logistic regression of cor-

rect/incorrect responses from each mouse against the novelty

of a token (trained vs novel tokens), and the number of times

it had been presented (Fig. 3). The effect of the number of

presentations on accuracy was not significantly different for

novel tokens compared to trained tokens [interaction

between novelty and the number of presentations: Wald test,

z¼ 1.239, 95% CI¼ (�0.022, 0.1), p¼ 0.215]. This was also

true when the model was fit with the generalization types

themselves rather than trained vs novel tokens [most signifi-

cant interaction, generalization to novel speakers x number

of presentations: Wald test, z¼ 1.425, 95% CI¼ (�0.018,

0.117), p¼ 0.154] and with different numbers of repetitions

[10: z¼�0.219, 95% CI¼ (�0.161, 0.13), p¼ 0.827; 20:

z¼�0.521, 95% CI¼ (�0.116, 0.068), p¼ 0.602]. This

indicates that the asymptotic increase in performance on

novel tokens was a general effect of adapting to a change in

the task rather than a learning period for the novel stimuli.

In summary, the behavior of the mice is consistent with

an ability to generalize some learned acoustic criteria to novel

stimuli. It is unlikely that the mice rapidly learned the novel

tokens because (1) performance on the first presentation of

novel tokens was significantly above chance, (2) performance

on subsequent presentations of novel tokens did not improve

compared to trained tokens, and (3) learning each token would

have to take place over unrealistically long timescales: there

were an average of 2355 trials (five days) between the first

and second presentation of each novel token.

B. Training set differences

One strength of studying phonetic perception in animal

models is the ability to precisely control exposure to speech

sounds. To test whether and how the training history

impacted the pattern of generalization, we divided mice into

two cohorts trained with different sets of speech tokens. In

the first cohort (n¼ 6 mice), mice were trained with tokens

from speakers 1 and 2 [speaker number in Fig. 4(a)],

whereas the second cohort (n¼ 4 mice) were trained with

speakers 4 and 5.

The two training cohorts had significantly different pat-

terns of which tokens were accurately categorized [Fig. 4(a),

Likelihood-Ratio test, regression of mean accuracy on

tokens with and without token x cohort interaction:

v2
161; p� 0:001]. Put another way, accuracy patterns were

markedly similar within training cohorts: cohort differences

accounted for fully 40.6% of all accuracy variance (sum of

squared-error) between tokens.

Mice from the second training cohort were far more

likely to report novel tokens as a /g/ than the first cohort

[Fig. 4(b)], an effect that was not significantly related to their

overall accuracy [b¼ 0.351, t(8)¼ 2.169, p¼ 0.062]. Since

the only difference between these mice were the tokens they

were exposed to during training (they were trained contem-

poraneously in the same boxes), we interpret this response

bias as the influence of the training tokens on whatever

acoustic cues the mice had learned in order to perform the

generalization task. This suggests that the acoustic properties

of training set 2 caused the /g/ “prototype” to be overbroad.

We searched for additional sub-cohort structure with

hierarchical clustering [Ward’s Method, dendrogram in Fig.

FIG. 3. Learning curve for novel tokens. Performance for both novel and

training set tokens dropped transiently and recovered similarly after the tran-

sition to the generalization stage. Presentation 0 corresponds to the transition

to the generalization stage. The final ten trials before the transition are

shown in the gray dashed box. Mean accuracy and 95% binomial confidence

intervals are collapsed across mice for novel (red, all novelty classes com-

bined) or learned (black) tokens, by number of presentations in the generali-

zation task. Logistic regression of binomial correct/incorrect responses fit to

log-transformed presentation number (lines, shading is smoothed standard

error).

1172 J. Acoust. Soc. Am. 145 (3), March 2019 Jonny L. Saunders and Michael Wehr



4(b)]. Within each training cohort, there appeared to be two

additional clusters of accuracy patterns. Though our sample

size was too small to meaningfully interpret these clusters,

they raise the possibility that even when trained using the

same set of sounds mice might learn multiple sets of rules to

distinguish between consonant classes.

C. Acoustic-behavioral correlates

Humans can flexibly use several acoustic features such

as burst spectra and formant transitions to discriminate

plosive consonants, and we wondered to what extent mice

were sensitive to these same features.

One dominant acoustic cue for place of articulation in

stop consonants is the transition of the second formant fol-

lowing the plosive burst.1,54,55 Formant transitions are com-

plex and dependent on vowel context, but tokens for a given

place of articulation cluster around a line—or “locus

equation”—relating F2 frequency at release to its mid-vowel

steady-state1,54 [Fig. 5(a)]. If mice were sensitive to this cue,

the distance from both locus equation lines should influence

responses. For example, a /g/ token between the locus equa-

tion lines should have a greater rate of misclassification than

a token at an equal distance above the red /g/ line. Therefore,

we tested how classification depended on the difference of

distances from each line (/g/ distance–/b/ distance, which we

refer to as “locus difference”).

Mean responses to tokens (ranging from 100% /g/ to

100% /b/) were correlated with locus differences [black line,

Fig. 5(b)]. However, it is important to note that this correla-

tion does not necessarily demonstrate that mice relied on this

acoustic cue. Because multiple acoustic features are corre-

lated with consonant identity, performance that is correlated

with one such cue would also be correlated with all the

others. The mice learned some acoustic property of the con-

sonant classes, and since the acoustic features are all highly

correlated with one another, they are all likely to correlate

with mean responses. To distinguish whether mice specifi-

cally relied on F2 locus distance, we therefore measured the

marginal effect of this acoustic cue within a consonant class.

This is shown by the slopes of the red and blue lines in Fig.

5(b). For example, is a /g/ token that is further away from

the blue /b/ line more likely to be identified as a /g/ than one

very near the /b/ line? Mean responses to /g/ tokens were

negatively correlated with locus distance [Mean response /g/

to /b/ between 0 and 1, b¼�0.028 kHz, 95% CI¼ (�0.035,

�0.022), p � 0.001]. In other words, tokens that should

have been more frequently confused with /b/ were actually

more likely to be classified as /g/. Note the red points at

locus distance of zero in Fig. 5(b): these tokens have an

equal distance from both the /b/ and /g/ locus equation proto-

types but are some of the most accurately categorized /g/

tokens. /b/ tokens obeyed the predicted direction of locus

distance [b¼ 0.049, 95% CI¼ (0.039, 0.06), p� 0.001], but

the effect was very small: moving one standard deviation

(r/b/¼ 1.618 kHz) towards the /g/ line only changed

responses by 7.9%. These results suggest that mice did not

rely on F2 transitions to categorize these consonants.

We repeated this analysis separately for each training

cohort to test whether the two cohorts could have developed

different acoustic templates that better explained their

response patterns. We derived cohort-specific locus-equation

lines and distances using only the tokens from each of their

respective training sets. These models were qualitatively

similar to the model that included all tokens and mice and

did not improve the model fit [Cohort 1: /g/: b¼�0.051,

95%CI¼ (�0.064, �0.038), /b/: b¼ 0.041, 95%CI¼ (0.022,

0.059); Cohort 2: /g/: b¼�0.022, 95%CI¼ [�0.031,

�0.014), /b/: b¼ 0.055, 95%CI¼ (0.042, 0.069)].

FIG. 4. Patterns of individual and group variation. (a) Mean accuracy (color,

scale at top) for each mouse (columns) on tokens grouped by consonant,

speaker, and vowel (rows). The different training sets (cells outlined with

black boxes) led to different patterns of accuracy on the generalization set.

(b) Ward clustering dendrogram, colored by cluster. (c) Training set cohorts

differed in bias but not mean accuracy.
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We conclude that while our stimulus set had the

expected F2 formant transition structure, this was unable to

explain the behavioral responses we observed both globally

and within training cohorts. There are, of course, many more

possible acoustic parameterizations to test, but the failure of

F2 transitions to explain our behavioral data is notable

because of its perceptual dominance in humans and its com-

mon use in parametrically synthesized speech sounds. This

demonstrates one advantage of using natural speech sounds:

mice trained on synthesized speech that varied parametri-

cally only on F2 transitions would likely show sensitivity to

this cue, but this does not mean that mice show the same fea-

ture sensitivity when trained with natural speech. Preserving

the complexity of natural speech stimuli is important for

developing a general understanding of auditory category

learning.

III. DISCUSSION

These results demonstrate that mice are capable of

learning and generalizing phonetic categories. Indeed, this is

the first time to our knowledge that mice have been trained

to discriminate between any classes of natural, non-species-

specific sounds. Thus, mice join a number of model organ-

isms that have demonstrated categorical learning with

speech sounds,6,17–22 making a new suite of genetic and elec-

trophysiological tools available for phonetic research.

Two subgroups of our mice that were trained using dif-

ferent sets of speech tokens demonstrated distinct patterns of

consonant identification, presumably reflecting differences

in underlying acoustic prototypes. The ability to precisely

control exposure to speech sounds provides an opportunity

to probe the neurocomputational constraints that govern the

possible solutions to consonant identification.

Here, we opted to use naturally recorded speech tokens

in order to demonstrate that mice could perform a “hard

version” of phonetic categorization that preserves the full

complexity of the speech sounds and avoids a priori assump-

tions about the parameterization of phonetic contrasts.

Although our speech stimuli had the expected F2 formant

transition structure, that did not explain the response patterns

of our mice. This suggests that the acoustic rules that mice

learned are different from those that would be learned from

synthesized speech varying only along specifically chosen

parameters.

Future experiments using parametrically synthesized

speech sounds are a critical next step and will support a qual-

itatively different set of inferences. Being able to carefully

manipulate reduced speech sounds is useful to probe the

acoustic cue structure of learned phonetic categories, but the

reduction in complexity that makes them useful also makes

it correspondingly more difficult to probe the learning and

recognition mechanisms for a perceptual category that is

defined by multiple imperfect, redundant cues. It is possible

that the complexity of natural speech may have caused our

attrition rate to be higher, and task performance lower, than

other sensory-driven tasks. Neither of those concerns, how-

ever, detracts from the possibility for the mouse to shed

mechanistic insight on phonetic perception. Indeed, error tri-

als may provide useful neurophysiological data about how

and why the auditory system fails to learn or perceive pho-

netic categories.

We hope in future experiments to directly test predic-

tions made by neurolinguistic models regarding phonetic

acquisition and discrimination. For example, one notable

model proposes that consonant perception relies on

combination-sensitive neurons that selectively respond to

specific combinations of acoustic features.1 This model pre-

dicts that mice trained to discriminate stop consonants would

have neurons selective for the feature combinations that

drive phoneme discrimination, perhaps in primary or higher

auditory cortical areas. Combination-selective neurons have

been observed in A1,56,57 and speech training can alter the

response properties of A1 neurons in rats,18 but it is unclear

whether speech training induces combination-selectivity that

would facilitate phonetic discrimination.

The ability to record from hundreds of neurons in awake

behaving animals using tetrode electrophysiology or 2-

photon calcium imaging presents exciting opportunities to

test predictions like these. Should some candidate population

of cells be found with phonetic selectivity, the ability to

FIG. 5. Acoustic-Behavior Correlates. F2 Onset-Vowel transitions do not

explain observed response patterns. (a) Locus equations relating F2 at burst

onset and vowel steady state (sustained) for each token (points), split by

consonant [colors, same as (b)]. (b) As the difference of a token’s distance

from the ideal /g/ and /b/ locus equation lines increased (x axis, greater dis-

tance from /g/, smaller distance from /b/ in panel b), /b/ tokens obeyed the

predicted categorization, while /g/ tokens did not (slopes of colored lines).
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optogenetically activate or inactivate specific classes of neu-

rons (such as excitatory or inhibitory cell types, or specific

projections from one region to another) could shed light on

the circuit computations and transformations that confer that

selectivity.

IV. METHODS

A. Animals

All procedures were performed in accordance with National

Institutes of Health guidelines, as approved by the University of

Oregon Institutional Animal Care and Use Comittee.

We began training 23 C57BL/6 J mice to discriminate

and generalize stop consonants in CV pairs. Thirteen mice

failed to learn the task (see Sec. IV C, below). Ten mice

(43.5%) progressed through all training stages and reached

the generalization task in an average 14.9 (r¼ 7.8) weeks.

Mean age at training onset was 8.1 (r¼ 2) weeks, and at dis-

continuation of training was 50.6 (r¼ 11.2) weeks. Sex did

not significantly affect the probability of passing or failing

training (Fisher’s Exact Test: p¼ 0.102), neither did the par-

ticular behavioral chamber used for training (p¼ 0.685) nor

age at the start of training (Logistic regression: z¼ 1.071,

p¼ 0.284). Although this task was difficult, our training time

(14 6 0.3 weeks as in Ref. 18), and accuracy (generalization:

76%,6 training tokens only: 84.1%18) are similar to compara-

ble experiments in other animals.

B. Speech stimuli

Speech stimuli were recorded in a sound-attenuating

booth with a head-mounted microphone attached to a

Tascam DR-100mkII handheld recorder sampling at 96 kHz/

24 bit. Each speaker produced a set of three recordings

(tokens) of each of 12 CV pairs beginning with either /b/ or /

g/, and ending with /I/, /o/, /a/, /æ/, /e/, /u/. To reduce a slight

hiss that was present in the recordings, they were denoised

using a Daubechies wavelet with two vanishing moments in

MATLAB. The typical human hearing range is 20 Hz–20 kHz,

whereas the mouse hearing range is 1–80 kHz.70 The F0 of

our recorded speech sounds ranged from 100 to 200 Hz,

which is well below the lower frequency limit of the mouse

hearing range. We therefore pitch shifted all stimuli upwards

by 10 x (3.3 octaves) in MATLAB.58 This shifted all spectral

information equally upwards into an analogous part of

mouse hearing range while preserving temporal information

unaltered. Spectrograms of all 161 tokens used in this study

are shown in Supplemental Information.52

Tokens from five speakers (one male: speaker 1

throughout; four females: speakers 2–5 throughout) were

used. Three vowel contexts (/æ/, /e/, and /u/) were not

recorded from one speaker. It is unlikely that this had any

effect on our results, as our primary claims are based on the

ability to generalize at all, rather than generalization to

tokens from a particular speaker. Tokens were normalized to

a common mean amplitude, but were otherwise unaltered to

preserve natural variation between speakers—indeed, pre-

serving such variation was the reason for using naturally

recorded rather than synthesized speech.

Formant frequency values were measured manually using

Praat.59 F2 at onset was measured at its center as soon as it

was discernible, typically within 20 ms of burst onset, and at

vowel steady-state, typically 150–200 ms after burst onset.

C. Training

We trained mice to discriminate between CV pairs

beginning with /b/ or /g/ in a two-alternative forced choice

task. Training sessions lasted approximately 1 h, five days a

week. Each custom-built sound-attenuating training chamber

contained two free-field JBL Duet speakers for stimulus pre-

sentation with a high-frequency rolloff of 34 kHz, and a

smaller 15� 30 cm plastic box with three “lick ports.” Each

lick port consisted of a water delivery tube and an IR beam-

break sensor mounted above the tube. Beam breaks triggered

water delivery by actuating a solenoid valve. Water-

restricted mice were trained to initiate each trial with an

unrewarded lick at the center port, which started playback of

a randomly selected stimulus, and then to indicate their stim-

ulus classification by licking at one of the ports on either

side. Tokens beginning with /g/ were always on the left, with

/b/ on the right. Two cohorts were trained on two separate

sets of tokens. Training set 1 started with speaker 1 [Fig.

4(a)] and had speaker 2 introduced on the fourth stage,

where Training set 2 started training with speaker 5 and had

speaker 4 introduced on the fourth stage. Correct classifica-

tions received � 10 lL water rewards, and incorrect classifi-

cations received a 5 s time-out that included a mildly

aversive 60 dB sound pressure level (SPL) white noise burst.

Training advanced in stages that progressively increased

the number of tokens, vowel contexts, and speakers. Mice

first learned a simple pure-tone frequency discrimination

task to familiarize them with the task and shape their behav-

ior; the tones were gradually replaced with the two CV

tokens of the first training stage. CV discrimination training

proceeded in five stages outlined in Table II. Mice automati-

cally graduated from each stage when 75% of the preceding

300 trials were answered correctly. In a few cases, a mouse

was returned to the previous stage if its performance fell to

chance for more than a week after graduating. Training was

discontinued after two to three months if performance in the

first stage never rose above chance. Mice that reached the

final training stage were allowed to reach asymptotic perfor-

mance, and then advanced to a generalization task.

In the generalization task, stimuli from the set of all pos-

sible speakers, vowel contexts, and tokens (140 total, not

including the stage 5 stimulus set) were randomly presented

on 20% of trials and the stage 5 stimulus set was used on the

remaining 80%. Training tokens were drawn from a uniform

random distribution so that each was equally likely to occur

during both the stage 5 training and generalization phases.

Novel tokens were drawn uniformly at random by their gen-

eralization class, but since there were unequal numbers of

tokens in each class (Novel token only: 16 tokens, Novel

Vowel: 36, Novel Speaker: 54, Novel Speaker þ Vowel:

54), tokens in each class had an unequal number of presenta-

tions. We note that the logistic regression analysis with
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restricted maximum likelihood that we used is robust to

unequal sample sizes.60

D. Data analysis

Data were excluded from days on which a mouse had a

>10% drop in accuracy from their mean performance on the

previous day (44/636¼ 7% of sessions). Anecdotally, mice

are sensitive to environmental conditions (e.g., thunder-

storms), so even though all efforts were made to minimize

variation between days, even the best performing mice had

“bad days” where they temporarily fell to near-chance per-

formance and exhibited strong response bias. We thus

assume these “bad days” were the result of temporary envi-

ronmental or other performance issues, and were unrelated

to the difficulty of the task itself.

All analyses were performed in R [R version 3.5.1

(2018–07-02)]61 using RStudio (1.1.456).62 Generalization

performance was modeled using a logistic generalized linear

mixed model (GLMM) using the R package “lme4.”63

Binary correct/incorrect responses were fit hierarchically to

models of increasing complexity (see Table III), with a final

model consisting of the generalization class [as in Fig. 2(a):

training tokens, novel tokens from the speakers and vowels

in the training set, novel speaker, novel vowel, and novel

speaker and vowel] as a fixed effect with random slopes and

intercepts nested within each mouse as a random effect.

There was no evidence of overdispersion (i.e., deviance �
degrees of freedom, or less than � two times degrees of free-

dom), and the profile of the model showed that the deviances

by each fixed effect were approximately normal.

Accordingly, we report Wald confidence intervals. We also

computed bootstrapped confidence intervals, which had only

minor disagreement with the Wald confidence intervals and

agreed with our interpretation in the text.

Clustering was performed with the “cluster”64 package.

Ward clustering split the mice into two notable clusters,

which are plotted in Fig. 4.

We estimated locus equations relating F2 onset and F2

vowel using total least squares linear regression. The locus

equations of the /b/ and /g/ tokens accounted for 97.3% and

95.9% of the variance in the F2 measurements of our tokens,

respectively.

Spectrograms in Fig. 1(a) were computed with the

“spectrogram” function in MATLAB 2017b, and power spectra

in Fig. 1(b) were computed with the “pwelch” function in

MATLAB 2018b with the same window and overlap as Fig.

1(a) spectrograms.

The remaining analyses are described in the text and

used the “binom,”65 “reshape,”66 and “plyr”67 packages.

Data visualization and tabulation was performed with the

“ggplot2”68 and “xtable”69 packages.
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