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ABSTRACT
Markov state models (MSMs) are quantitative models of protein dynamics that are useful for uncovering the structural fluctua-
tions that proteins undergo, as well as the mechanisms of these conformational changes. Given the enormity of conformational
space, there has been ongoing interest in identifying a small number of states that capture the essential features of a protein. Gen-
erally, this is achieved by making assumptions about the properties of relevant features—for example, that the most important
features are those that change slowly. An alternative strategy is to keep as many degrees of freedom as possible and subse-
quently learn from the model which of the features are most important. In these larger models, however, traditional approaches
quickly become computationally intractable. In this paper, we present enspara, a library for working with MSMs that provides
several novel algorithms and specialized data structures that dramatically improve the scalability of traditional MSM methods.
This includes ragged arrays for minimizing memory requirements, message passing interface-parallelized implementations of
compute-intensive operations, and a flexible framework for model construction and analysis.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5063794

I. INTRODUCTION

Markov state models (MSMs)1–4 are a powerful tool for
representing the complexity of dynamics in protein con-
formational space. They have proven useful both as quan-
titative models of protein behavior5–8 and for producing
insights about the mechanism of protein conformational tran-
sitions.9–12 And, with the rise of special-purpose supercom-
puters,13,14 distributed computing platforms,15 and the dra-
matic increases in the power of consumer-grade proces-
sors [especially graphical processing units (GPUs)] the size of
molecular dynamics (MD) data sets that MSMs are built on
have grown in size commensurately.

With the increasing size of MD datasets, there is ongo-
ing and substantial interest in making more tractable mod-
els by distilling protein landscapes into a small number of

essential states. Typically this is achieved by making assump-
tions about the relevant features. In particular, existing MSM
libraries PyEMMA216 and MSMBuilder317–19 offer state-of-the-
art, modular components for the newest theoretical devel-
opments from the MSM community. These libraries empha-
size early conversion to coarse-grained models, particularly
through the use of time-lagged independent components
analysis (tICA),20–22 but also through deep learning23,24 or
explicit state-merging.25–28 All these approaches merge states
that are kinetically close to one another to build a more
interpretable model.

Kinetic coarse-graining is effective when the most inter-
esting process is also the slowest, for example, when study-
ing folding. However, physiologically relevant conformational
changes can also occur quickly. For example, the opening of
druggable cryptic allosteric sites can occur many orders of
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magnitude faster than the global unfolding process.29,30 Thus,
for biological questions where the underlying physical chem-
istry is irreducibly high-dimensional or the features in which
it is low-dimensional are not known, building models with
a large number of states is an effective strategy for ensur-
ing that important states are not overlooked. An alternative
approach to extracting insight from large MD datasets is to
retain the size and high dimensionality, and to manually learn
which features are relevant to the biological question. For
example, one approach to understanding sequence-function
relationships is to compare simulations of different sequences
to form hypotheses about which features are important, which
can then be used to propose experiments. This approach has
been successfully leveraged to, for example, understand the
determinants of protein stability,8 enzyme catalysis,7 and bio-
chemical properties.29 The downside of this approach is that
it is substantially more computationally demanding, due to the
much larger size of both the input features and the resulting
model.

In this paper, we present enspara, which implements
methods that improve the scalability of the MSM methods.
We implement a “ragged array” data structure that enables
memory-efficient in-memory handling of data with hetero-
geneous lengths, and develop tools which use sparse matri-
ces, vastly reducing memory usage of the models themselves
while speeding up certain calculations on them. We fur-
ther introduce clustering methods that can be parallelized
across multiple nodes in a supercomputing cluster using Mes-
sage Passing Interface (MPI), a user-friendly command-line
interface (CLI) for large clustering tasks, thread-parallelized
routines for information-theoretic calculations, and a new
framework for rapid experimentation with methods for esti-
mating MSMs.

II. RESULTS AND DISCUSSION
A. Ragged arrays

The most computation-intensive step in any molecu-
lar dynamics-based approach is actually generating the sim-
ulation data. One approach to mustering the computation
necessary to solve this problem is to harness the power of
distributed computing to generate many parallel simulations
on many computers. Indeed, one of the points where MSMs
excel is in unifying such parallel simulations into a single
model. An example of this is the distributed computing project
Folding@home.15 However, in these scenarios, individual tra-
jectories often substantially differ in their lengths. In Fold-
ing@home, the trajectory length distribution shows strong
positive skew, with a few trajectories one or more orders
of magnitude longer than the median trajectory. Historically,
atomic coordinates, as well as features computed on trajec-
tories, have been represented as “square” arrays of ntrajectories
× ntimepoints × nfeatures (or natoms × 3), which assumes uniform
trajectory length.16,31

To represent non-uniform trajectory lengths, a number
of approaches exist. One approach, found in MSMBuilder2,18

is to use a two-dimensional square array with the

“overhanging” timepoints filled with a null value. This is also
the solution provided by numpy,32 with its masked array object.
While this approach maintains the in-memory arrangement
that makes array slicing and indexing fast, it can dramati-
cally inflate the memory footprint of datasets with highly non-
uniform length distributions. The other approach, used by
the latest version of MSMBuilder,19 sacrifices speed for mem-
ory by building a python list of numpy arrays. While this is
more memory-efficient, it cannot easily be sliced, cannot eas-
ily take advantage of numpy’s vectorized array computations,
and can be very slow to read and write from disk via python’s
general-purpose pickle library.

In enspara, we introduce an implementation of the ragged
array, a data structure that relaxes the constraint that the
rows in a two-dimensional array be the same length [Fig. 1(a)].
The ragged array maintains an end-to-end concatenated
array of rows in memory. When the user requests access
to particular elements using a slice or array indices, the
object translates these array slices or element coordinates

FIG. 1. Ragged arrays compactly store non-uniform length data in memory. (a) A
schematic comparison between the memory footprint of a masked, uniform array
and our implementation of the ragged array interface. In the masked array, rows of
length lower than the longest row are padded with additional, null-valued elements
to preserve the uniformity of the array. In the ragged array, however, rows are
stored concatenated and memory is not expended. (b) A plot of memory used by
traditional and ragged arrays as a function of aggregate simulation time as trajec-
tories of increasing length are added from a previously published Folding@home
dataset.11
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appropriately to the concatenated array, uses these trans-
lated coordinates to index into the concatenated array, and
then reshapes the data appropriately and returns it to the
user. On trajectory the length distributions described, the
ragged array scales much better than the padded square array
[Fig. 1(b)], such as the square array used in MSMBuilder2 while
retaining the useful properties of an array which are lost in a
list-of-arrays representation.

B. SIMD clustering using MPI
Among the more expensive and worst-scaling steps in

the Markov state model construction processes is cluster-
ing, and substantial effort has been spent on improving the
speed of these calculations.33–35 The most popular clus-
tering algorithms for use in the MSM community are k-
means36 (generally composed of k-means++37 initialization
and Lloyd’s algorithm38 for refinement) for featurized data,
and k-hybrid18 (composed of k-centers39 initialization and
k-medoids40 refinement) for raw atomic coordinates. Both
of these algorithms scale roughly with O(nkdi), where n is
the number of observations, d is the number of features per
observation, k is the number of desired cluster centers, and
i is the number of iterations required to converge. Unfortu-
nately, with the possible exception of i, these numbers are
all generally very large. As discussed in Sec. II D, the num-
ber of clusters k must be large for some problems, proteins
are intrinsically high-dimensional objects (i.e., high d), and the
increasing speed of simulation calculations41 has increased
the number of timepoints that must be clustered, n, into the
millions.

To address the poor scaling of clustering, the MSM com-
munity has developed a number of approaches to managing
this problem. One approach is to reduce the number of obser-
vations by subsampling data31 so that only every nth frame
is used. Another approach is to reduce the number of fea-
tures by including only certain atoms (as in Refs. 42, 43, and
8), using a dimensionality reduction algorithm like principal
components analysis (PCA),44,45 or creating a hand-tuned set
of order parameters (e.g., specific, relevant pairwise atomic
distances). Yet a third approach is to use tICA20,21 as a dimen-
sionality reduction, which has the benefit of reducing both the
number of features and the number of clusters needed to sat-
isfy the Markov assumption, but has the disadvantage that it
may obscure important fast motions and can be sensitive to
parameter choices (in particular the lag time).20

An alternative or complimentary approach to prepro-
cessing data to reduce input size is to parallelize the clus-
tering algorithms themselves so that many hundreds, rather
than many tens, of cores can be simultaneously utilized.
Message Passing Interface (MPI)46 is a parallel computing
framework that enables communication between comput-
ers that are connected by low-latency, high-reliability com-
puter networks, like those commonly encountered in aca-
demic cluster computing environments. This approach to
interprocess communication has enabled numerous success-
ful parallel applications including molecular dynamics codes
like GROMACS47,48 (among many others). This approach to

interprocess communication allows information to be shared
easily across a network between an arbitrary number of dis-
tinct computers. Thus, for a successfully MPI-parallelized pro-
gram, the amount of main memory and number of cores avail-
able is increased from what can be fit into one computer to
what can be fit into one supercomputing cluster—a difference
of one or two dozens of processors to hundreds of proces-
sors. However, because interprocess communication is poten-
tially many orders of magnitude slower than, for example, in
thread-parallelization, single-core algorithms must generally
be adjusted to scale well under these constraints.

In this work, we present low-communication, same-
instruction-multiple-data (SIMD) variants of clustering algo-
rithms that are popular in the MSM community, k-centers,
k-medoids, and k-hybrid.18 Specifically, data—atomic coor-
dinates/features and distances between coordinates and
medoids—are distributed between parallel processes which
can reside on separate computers, allowing more data to be
held in main memory, and allowing more processors in toto to
be brought to bear on the data.

The k-centers initialization algorithm39 repeatedly com-
putes the distance of all points to a particular point and then
identifies the maximum distance amongst all distances com-
puted this way. This introduces the need for communication
to (1) distribute the point to which distances will be com-
puted and (2) collectively identify which distance is largest. (1)
is solved trivially by the MPI scatter directive and (2) is solved
by computing local maxima and then distributing these max-
ima with MPI allgather. Implementation details of k-medoids
are somewhat more complex but follow a similar pattern. The
full code is available on our GitHub repository. In brief, during
each iteration, (1) all nodes must collaborate to choose a new
random centroid for each existing center—achieved by choos-
ing a random number on the highest-ranked node and MPI
scattering it to all other nodes—before (2) recomputing the
assignment of each frame that could possibly have changed its
state assignments. This step is potentially embarrassingly par-
allel in the number of frames assigned to the cluster. Finally,
(3) the costs (usually mean-squared distances from each point
to its cluster center) are computed and compared between
the new and old assignments, and the cheaper assignment is
accepted.

The performance characteristics of this implementa-
tion as a function of data input size is plotted in Figs. 2(a)
and 2(b), which show marked decreases in runtime as addi-
tional computers are added to the computation. In both
the k-centers and the k-medoid case, growth of run-
time as a function of data input size is roughly quadratic.
While this is expected for k-medoids, it may be surpris-
ing that k-centers also grow quadratically (see, for exam-
ple, Ref. 34). This is because we have chosen a fixed clus-
ter radius for k-centers (rather than a fixed number of
cluster centers). As new data (molecular dynamics trajec-
tories with different initial velocities) are added, both the
number of cluster centers and the number of data points
to which each center must be compared increases, appar-
ently roughly proportionally, leading to roughly quadratic
scaling.
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FIG. 2. SIMD reformulation of clustering algorithms allows greater scaling. (a) The
runtime of the parallelized k-centers code as a function of data input size. (b)
The runtime of the parallelized k-medoids code as a function of data input size. (c)
The load time of the parallel code as a function of input data size. Points represent
the average and error bars the standard deviation across three trials.

A further advantage of a parallelized algorithm is that, if
configured correctly, it can also decrease load times. In the
traditional high-performance computing (HPC) environment
used in many academic settings, data typically reside on a sin-
gle central, “head” node and are distributed to “worker” nodes
via a network file system (NFS). The NFS can transfer data to
any particular worker node only as quickly as the network
allows, which is generally orders of magnitude slower than
the rate at which it can be loaded from disk into memory.
However, if network topology allows nodes to independently
communicate with the head node (and hence filesystem), the
network bottleneck is reduced or removed and load times can
be substantially decreased, as shown in Fig. 2(c). While load
times do not dominate the overall runtime of the algorithms
we discuss here, low load times are desirable since many forms
of misconfiguration can only be detected after data have been
loaded.

C. Flexible, well-scaling clustering CLI
In this section, we illustrate how enspara can be used

to analyze an MD dataset using our clustering command-line
interface (CLI), and use the flexibility enspara offers to com-
pare the usefulness of different ways of clustering the same
MD trajectories.

Clustering, or assigning frames of the trajectory to dis-
crete states, is the first step in analyzing most MD datasets
using MSM technology. In enspara, we focus on offering
mechanisms for clustering large datasets into many states,
since other libraries already offer excellent mechanisms for

reducing data size using various preprocessing strategies
like tICA. For this purpose, enspara provides a command-
line application, in addition to a clustering application pro-
gramming interface (API), which handles some common tasks
[Figs. 3(a)–3(c)]. This clustering application can take trajecto-
ries in formats accepted by MDTraj [Fig. 3(a)] or numpy arrays of
numerical features [Fig. 3(c)], supports several different dis-
tance metrics, provides easy support for clustering different
topologies into shared state spaces [Fig. 3(b)], and supports
execution under MPI.

In enspara, we have implemented many of these options
because different choices for cluster size/number, clustering
algorithm, and cluster distance metric can dramatically impact
MSM’s predictive power. As an example, in Fig. 3(d), we investi-
gate the effect of clustering algorithm (k-centers vs. k-hybrid)
and cluster number on the ability of an MSM to retrodict a
previously described biochemical thiol labeling assay.29,30 In
this case, the MSM’s ability to sufficiently represent the pro-
tein’s state space is positively related to the number of clus-
ters used to represent the state space. Interestingly, k-centers
appear to perform better than k-hybrid in this case. This may
be related to the fact that these exposed states are high energy
and hence rare, giving rise to a tendency in k-medoids to lump
these rare states in with more populous adjacent states.

Because of this potential need for very large state spaces,
it is often necessary to handle a large amount of data. In
part, this challenge is a computer scientific one, which can be
addressed by new parallel algorithms, such as that described
in Sec. II. In addition to efficient algorithms, however, there
are also software engineering concerns like effective memory
management. Our CLI places an emphasis on these large clus-
tering tasks and large state spaces, and hence scales better
than existing codes that place an emphasis on smaller state
spaces (Fig. 4). For purposes of reference, clustering of the
TEM-1 dataset used all 2026 protein heavy atoms across 90.5
µs total simulation time saved every 100 ps and the Gq dataset
used all 2655 protein heavy atoms across 20.5 µs saved every
10 ps. All these values trade off against one another, however,
meaning that if every 10th frame were used to cluster the Gq
dataset, 205 µs of data could be clustered on a single node (and
up to 1.03 ms on 5 nodes using MPI).

D. Sparse matrix integration
Building a Markov state model with tens of thousands of

states presents some methodological challenges. One of these
is the representation of the transition counts and transition
probability matrices. Most straightforwardly, this is achieved
using dense arrays, such as the array or matrix classes avail-
able in numpy, and this is the strategy employed by extant MSM
softwares, MSMBuilder318,19,31 and PyEMMA.16 The problem with
this representation is that the memory usage of these matrices
grows with the square of the number of states in the model. To
make matters worse, the computational cost of the eigende-
composition that is typically required to calculate a model’s
stationary distribution (equilibrium probabilities) and princi-
pal relaxation modes grows with the cube of the number of
elements in the matrix.49
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FIG. 3. enspara offers a flexible, well-scaling, and multipurpose clustering CLI.
(a) A CLI invocation clustering trajectories with a shared topology with the k-hybrid
algorithm using backbone RMSD, stopping k-centers at 3 Å, and with 20 rounds
of k-medoids refinement. (b) A CLI invocation clustering trajectories with differing
topologies by a small subset of shared atoms using the k-centers algorithm to dis-
cover 1000 states. (c) A CLI invocation clustering euclidean distances between
feature vectors representing frames stored in a group of numpy NPY-format files
using k-hybrid. (d) An MSM’s ability to predict the results of an experimental mea-
surement of solvent exposure as a function of number of clusters. Dashed lines are
models constructed using euclidean distance between vectors of residue sidechain
solvent accessible surface area, whereas solid lines use backbone RMSD. Blue
traces used k-centers, and red traces used k-hybrid. The experimental measure-
ment is a previously published29 biochemical labeling assay that classifies a
residue as exposed, buried, or transiently exposing. Residues exposure class was
predicted as “buried” if no state exists where the residue was exposed, “exposed”
if the residue is never buried, and “transient” if the residue populates both exposed
and buried states in the MSM. The y-axis represents the fraction of these residues
that were classified correctly. Error bars represent the standard deviation of three
trials (k-centers are deterministic and have no error bars).

To address the computational challenges posed by tradi-
tional arrays, enspara has been engineered to support sparse
arrays wherever possible. Sparse arrays have been supported

FIG. 4. The CLI provided by enspara has favorable memory and performance
characteristics. (a) Runtime as a function of data input size for the enspara clus-
ter CLI on the TEM-1 and Gq datasets, and the MSMBuilder CLI on the TEM-1
dataset. For TEM-1/MSMBuilder and Gq/enspara, the final point represents
the largest data size that can be run without exceeding available memory. (b)
Process-allocated memory usage as a function of data input size for the enspara
cluster CLI on the TEM-1 and Gq datasets, and the MSMBuilder CLI on the TEM-
1 dataset. Apparent memory use by enspara appears to stop growing after 32
GB because, on the computer system tested (see Sec. IV), the operating system
allocates double the necessary RAM to enspara. Where MSMBuilder runs out
of RAM loading ∼16 GB, enspara is capable of using almost all of the available
64 GB RAM. (c) Number of clusters as a function of data input size for TEM-1 and
Gq datasets. The change in runtime growth of the Gq dataset around 26 GB of
data loaded is a consequence of the slowdown in state discovery as new data are
added. For (a) and (b), error bars represent the standard deviation of three trials.

by MSMBuilder in the past, but were dropped with version 3.
PyEMMA also makes heavy use of dense arrays, although there
is some support for sparse arrays. Sparse arrays, rather than
growing strictly with the square of the number of states, grow
linearly in the number of non-zero elements in the array. In
the worst case where every element of the transition counts
matrix is non-zero (i.e., every possible transition between
pairs of states is observed) this becomes the dense case. How-
ever, this is very unusual: the number of observed transi-
tions is generally several orders of magnitude smaller than
the number of possible transitions [Fig. 5(a)]. By implement-
ing routines that support scipy’s sparse matrices, it becomes
possible to keep much larger Markov state models in mem-
ory [Fig. 5(b)] and analyze those models much more quickly
[Fig. 5(c)].
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FIG. 5. The performance characteristics of sparse and dense matrices represent-
ing the same MSM. (a) The mean number of transitions per state in a transition
counts matrix as a function of the number of states in the model. Any pair of states
with an observed transition between them has a nonzero entry in the transition
counts matrix and consumes memory in both sparse and dense cases. In contrast,
a sparse matrix does not require memory for zero elements of the transition counts
matrix. (b) The runtime of an eigendecomposition as a function of the number of
states in a model. (c) The memory footprint of the transition probability matrix as a
function of the number of states in a model.

E. Fast and MSM-ready information theory routines
Recent studies50–52 have demonstrated the usefulness of

information theory, and mutual information (MI) in particular,
for identifying and understanding the salient features of con-
formational ensembles. MI is a nonlinear measurement of the
statistical non-independence of two random variables. MI is
given by

MI(X,Y) =
∑
y∈Y

∑
x∈X

P(x, y) log
P(x, y)
P(x)P(y)

, (1)

where P(x) is the probability that random variable X takes on
value x, P(y) is the probability that random variable Y takes on
value y, and P(x, y) is the joint probability that random vari-
able X takes on value x and that random variable Y takes on
value y.

Historically, the joint distribution P(x, y) is estimated by
counting the number of times that combination of features
appeared in each frame.50,51 This computation can become a
bottleneck when it must be computed over hundreds or thou-
sands of different features and for datasets with hundreds of
thousands or millions of observations. This is because it is
highly iterative (which is notoriously slow in many higher-level
programming languages, including python) and because the
number of joint distributions that must be calculated grows
with the square of the number of features to be tracked. Con-
sequently, in the worst case, this involves examining every

frame of a trajectory n2 times, where n is the number of
random variables of interest.

In enspara, we take two overlapping approaches to
address the problem of the poor scalability of pairwise MI
calculations. The first approach is to use the joint distribu-
tion implied by the equilibrium probabilities of a Markov state
model, rather than by counting co-occurrences from full tra-
jectories. Specifically, the joint probability P(x, y) is estimated
by

∑
s∈Sπ(s), where π(s) is the equilibrium probability of state

s from the MSM and S is the set of states where x = X and
y = Y. This works by reducing the number of individual obser-
vations, usually by orders of magnitude. Existing codes51,53

either do not provide the option to compute MI with weighted
observations or require a specific object-based framework to
do so.54

Our second approach is to implement a fast joint counts
calculation routine. This routine is both thread-parallelized
and much faster than the equivalent numpy routine even on a
single core. This approach is needed because, in some cases
(e.g., Ref. 51), information from a Markov state model can-
not be trivially substituted for frame-by-frame calculations.
To address this case, we also implement a function using
cython55 and OpenMP56 that takes a trajectory of n fea-
tures and returns a four-dimensional joint counts array with
dimension n × n × sn × sn, where sn is the number of val-
ues each feature n can take on. The value of returning this
four-dimensional joint counts matrix is that it renders the
problem embarrassingly parallel in the number of trajectories:
this function can be run on each trajectory totally indepen-
dently, and the resulting joint counts matrices can be summed
before being normalized to compute joint probabilities. We
recommend combining this with a pipelining software like
Jug.57

Additionally, in this package, we include a reference
implementation of Correlation of All Rotameric and Dynam-
ical States (CARDS) framework.51 In brief, this method takes
a series of molecular dynamics trajectories and computes
the mutual information (MI) between all pairs of dihedral
angle rotameric states, and between all pairs of dihedral angle
order/disorder states. A dihedral angle is considered disor-
dered if it frequently hops between rotameric states. This
implementation parallelizes across cores on a single machine
using the thread-parallelization described in Sec. II E.

F. Flexible and interoperable model fitting
and analysis

With enspara, a major goal is maximal flexibility. This
means loosely coupled, function-based components and the
use of widely accepted datatypes for input and output of these
functions. This helps us maximize interoperability with exist-
ing MSM softwares, other python libraries, and prototypes of
novel analysis strategies in the future.

One important way we achieve flexibility in enspara is
by constructing an API that accepts widely used datatypes,
rather than datatypes that are unique to enspara. This is most
important for our analysis functions, which accept parameters
of MSMs rather than MSM objects themselves. For example,
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mutual information calculations (see Sec. II E) that use equi-
librium probabilities from an MSM accept a vector of probabil-
ities rather than an MSM object. (Note also that any function
that accepts a RaggedArray will also accept a numpy array.32) A
crucial consequence of this API pattern is that enspara’s MSM
analysis routines are interoperable with both PyEMMA’s and
MSMBuilder’s MSM objects. It also allows integration with sim-
ple, hand-crafted models, as it was used to do in Zimmerman
et al.58

Another way we achieve flexibility is to preference
function-based semantics over object-based semantics. A
successful and prominent API pattern for machine learning
tasks was promulgated by scikit-learn,53 which represents
various machine learning tasks (clustering, featurization, etc.)
as objects. While this nicely contains the logic and complexi-
ties of each algorithm inside a fairly uniform API, it also makes
the behavior of these algorithms difficult to modify with novel
approaches, since new ideas must either be integrated into
the existing object completely or the object must be entirely
duplicated. An object can also obscure state from the user,
hindering comprehension, modification, or reuse of code. To
address this in enspara, wherever object interfaces exist, they
are thin wrappers for chains of function calls. Consequently,
an interested user can then easily intercept control flow to
inject new behavior.

A noteworthy example of this in enspara is our seman-
tic for estimating transition probability matrices. Estimating a
transition probability matrix from observed state transitions
is a crucial step in building an MSM, yet there is not a uni-
form procedure for accomplishing this that works in all cases.
Many different estimators exist, and more are in active devel-
opment.31,58–66 Perhaps the simplest procedure to estimate
the transition probability matrix, T, is to row-normalize the
transition count matrix, C,

Tnormalize
ij =

Cij∑
k Cik

, (2)

where Tij is the probability of observing a transition from state
i to j and Cij is the number of times such a transition was
observed. While this method is simple, it can and often does
generate a non-ergodic state space. In an effort to address this
difficulty and to condition the MSM to be well-behaved, one
can include an additional pseudocount ĉ before estimation

Tpseudo
ij =

Cij + ĉ∑
k (Cik + ĉ)

, (3)

which ensures ergodicity.58 A more dramatic conditioning
comes when forcing the counts matrix to obey detailed bal-
ance by averaging forward and reverse transitions

Ctranspose
ij =

Cij + Cji

2
, (4)

Ttranspose
ij =

Ctranspose
ij∑

k C
transpose
ik

. (5)

Yet a third proposed way of estimating an MSM is to
find the maximum likelihood estimate for T subject to the

constraint that it satisfies detailed balance.2,31 Framed as a
Bayesian inference, the transition probabilities are solved as
the most likely given a transition counts matrix, such that

TMLE
ij = argmaxP

(
T∗ij |C

)
. (6)

Additionally, there exist more sophisticated schemes of
estimation, such as those that draw on inspiration from
observable operator models,62 and projected MSMs.67 While it
is beyond the scope of this article to review this area of study
in exhaustive detail, we hope these few examples demonstrate
the variety and importance of estimators. This poses a major
challenge to writing a framework that can readily estimate a
transition probability matrix; estimators are an active area of
research, and a flexible framework that allows users to quickly
modify an existing estimator or try a new one would be of
great utility.

To address this difficulty, we treat fitting methods as
simple functions, which we call builders, that take a tran-
sition counts matrix and return transition and equilibrium
probabilities. These built-in functions, along with our MSM
object can be used to quickly fit an MSM using commonly
used approaches [Fig. 6(a)]. Alternatively, for users who wish
to slightly modify existing MSM estimation methods, the
function-level interface provides fine-grained control over
the steps in fitting an MSM [Fig. 6(b)]. Finally, for users who
wish to prototype entirely new MSM estimation methods,
any function or callable object is accepted as a builder, as
long as it accepts a transition counts matrix C as input and

FIG. 6. (a) An example usage of the high-level, object-based API to fit a Markov
state model. (b) An example usage of enspara’s low-level, function-based API to
fit a Markov state model. (c) A custom method that fits a Markov state model and
is interoperable with enspara’s existing API.
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returns a 2-tuple of transition probabilities and equilibrium
probabilities.

III. CONCLUSION
In this work, we have presented enspara, a library

for building Markov state models at scale. We introduced
an implementation of the ragged array, which dramatically
improved the memory footprint of MSM-associated data. We
developed a low-communication, parallelized version of the
classic k-centers and k-medoids clustering algorithms, which
simultaneously reduce runtime and load time while vastly
increasing the ceiling on memory use for those algorithms by
allowing execution on multiple computers simultaneously. In
addition, enspara has turn-key sparse matrix usage. Finally, we
implement a function-based API for MSM estimators which
greatly increases the flexibility of MSM estimation to enable
rapid experimentation with different methods of fitting. Taken
together, these features make enspara the ideal choice of
MSM library for many-state, large-data MSM construction and
analysis.

IV. METHODS
A. Source code and documentation

The source code to enspara is available on GitHub
at https://github.com/bowman-lab/enspara, where installa-
tion instructions can also be found. In brief, it can be down-
loaded from GitHub and installed using setup.py.

Documentation takes two forms, docstrings and a docu-
mentation website. Individual functions and objects are docu-
mented as docstrings, which indicate parameters and return
values, and briefly describe each functions role. The library
as a whole is documented at https://enspara.readthedocs.io,
which gives a high-level description of the library’s func-
tionality, as well as providing worked-through examples of
enspara’s use.

Finally, at https://enspara.readthedocs.io/tutorial, we
give an in-depth tutorial example analyzing data from a public
dataset.

B. Libraries and hardware
Eigenvector/eigenvalue decomposition experiments

were performed on a Ubuntu 16.04.5 (xenial) workstation with
an Intel i7-5820K CPU (central processing unit) @ 3.30 GHz (12
cores) with 32 GB of RAM using SciPy version 1.1.0 and numpy
1.13.3. Probabilities were represented as 8-byte floating point
numbers.

Thread parallelization experiments were performed on
the same hardware using OpenMP 4.0 (2013.07) with gcc 5.4.0
(2016.06.09) and cython 0.26 in Python 3.6.0, distributed by
Continuum Analytics in conda 4.5.11.

Clustering scaling experiments were performed on iden-
tical computers running CentOS Linux release 7.3.1611 (Core)
with Intel Xeon E5-2697 v2 CPUs @ 2.70 GHz and 64 GB of
RAM linked to a head node with two Intel 10-Gigabit X540-AT2
ethernet adapters and nfs-utils 1.3.0. We used the mpi4py68–70

and Python 3.6.0 with Open MPI 2.0.2. Clustering used as a dis-
tance metric the root-mean square deviation (RMSD) function
provided in the MDTraj 1.9.1.35

C. Simulation data
For example simulation data, we used a previously pub-

lished 90.5 µs TEM-1 β-lactamase dataset11 and a 122.6 µs
Gq dataset.71 As described previously, simulations were run
at 300 K with the GROMACS software package47,48 using the
Amber03 force field72 and TIP3P73 explicit solvent. Data were
generated using the Folding@home distributed computing
platform.15

D. Residue labeling analysis
Residue labeling behavior for residues A150, L190, S203,

A232, A249, I260, and L286 was measured in Bowman et al.29

and for S243 in Porter et al.30 “Exposed” residues label almost
immediately, “pocket” or “transiently-labeling” residues label
on the order of 10−3 or 10−4 s−1, and buried residues label on
the order over days.

Residue labeling behavior was predicted according to the
procedure described in Ref. 30. In brief, sidechain atoms’ sol-
vent exposure to a 2.8 Å probe was calculated (using the
Shrake-Rupley74 algorithm implemented by MDTraj35) for the
representative structure for each MSM state, and the residue
was called as exposed if its exposed area exceeded 2 Å2.
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