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Abstract

Functional neuroimaging techniques have transformed our ability to probe the neurobiological 

basis of behaviour and are increasingly being applied by the wider neuroscience community. 

However, concerns have recently been raised that the conclusions that are drawn from some 

human neuroimaging studies are either spurious or not generalizable. Problems such as low 

statistical power, flexibility in data analysis, software errors and a lack of direct replication apply 

to many fields, but perhaps particularly to functional MRI. Here, we discuss these problems, 
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outline current and suggested best practices, and describe how we think the field should evolve to 

produce the most meaningful and reliable answers to neuroscientific questions.

Neuroimaging, particularly using functional MRI (fMRI), has become the primary tool of 

human neuroscience1, and recent advances in the acquisition and analysis of fMRI data have 

provided increasingly powerful means to dissect brain function. The most common form of 

fMRI (known as blood-oxygen-level-dependent (BOLD) fMRI) measures brain activity 

indirectly through localized changes in blood oxygenation that occur in relation to synaptic 

signalling2. These changes in signal provide the ability to map activation in relation to 

specific mental processes, to identify functionally connected networks from resting fMRI3, 

to characterize neural representational spaces4 and to decode or predict mental function from 

brain activity5,6. These advances promise to offer important insights into the workings of the 

human brain but also generate the potential for a ‘perfect storm’ of irreproducible results. In 

particular, the high dimensionality of fMRI data, the relatively low power of most fMRI 

studies and the great amount of flexibility in data analysis contribute to a potentially high 

degree of false-positive findings.

Recent years have seen intense interest in the reproducibility of scientific results and the 

degree to which some problematic, but common, research practices may be responsible for 

high rates of false findings in the scientific literature, particularly within psychology but also 

more generally7–9. There is growing interest in ‘meta-research’ (REF 10) and a 

corresponding growth in studies investigating factors that contribute to poor reproducibility. 

These factors include study design characteristics that may introduce bias, low statistical 

power and flexibility in data collection, analysis and reporting — termed ‘researcher degrees 

of freedom’ by Simmons et al.8. There is clearly concern that these issues may be 

undermining the value of science — in the United Kingdom, the Academy of Medical 

Sciences recently convened a joint meeting with several other funders to explore these 

issues, and the US National Institutes of Health has an ongoing initiative to improve research 

reproducibility11.

In this Analysis article, we outline a number of potentially problematic research practices in 

neuroimaging that can lead to increased risk of false or exaggerated results. For each 

problematic research practice, we propose a set of solutions. Although most of the proposed 

solutions are uncontroversial in principle, their implementation is often challenging for the 

research community, and best practices are not necessarily followed. Many of these 

solutions arise from the experience of other fields with similar problems (particularly those 

dealing with similarly large and complex data sets, such as genetics) (BOX 1). We note that, 

although our discussion here focuses on fMRI, many of the same issues are relevant for 

other types of neuroimaging, such as structural or diffusion MRI.

Low statistical power

The analyses of Button et al.12 provided a wake-up call regarding statistical power in 

neuroscience, particularly by highlighting the point (that was raised earlier by Ioannidis7) 

that low power not only reduces the likelihood of finding a true result if it exists but also 

raises the likelihood that any positive result is false, as well as causing substantial inflation 
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of observed positive effect sizes13. In the context of neuroimaging, Button et al. considered 

only structural MRI studies. To assess the current state of statistical power in fMRI studies, 

we performed an analysis of sample sizes and the resulting statistical power of fMRI studies 

over the past 20 years.

To gain a perspective on how sample sizes have changed during this time period, we 

obtained sample sizes from fMRI studies using two sources. First, manually annotated 

sample-size data for 583 studies were obtained from published meta-analyses14. Second, 

sample sizes were automatically extracted from the Neurosynth database15 for 548 studies 

that were published between 2011 and 2015 (by searching for regular expressions reflecting 

sample size, such as ‘13 subjects’ and ‘n = 24’) and then manually annotated to confirm 

these automatic estimates and to distinguish single-group from multiple-group studies. The 

data and code that were used to generate all the figures in this paper are available through 

the Open Science Framework at https://osf.io/spr9a/. FIGURE 1a shows that sample sizes 

have steadily increased over the past two decades, with the median estimated sample size for 

a single-group fMRI study in 2015 at 28.5. A particularly encouraging finding from this 

analysis is that the number of studies with large samples (greater than 100) is rapidly 

increasing (from 8 in 2012 to 17 in 2015, in the studied sample), suggesting that the field is 

progressing towards adequately powered research. However, the median group size in 2015 

for fMRI studies with multiple groups was 19 subjects, which is below even the absolute 

minimum sample size of “20 observations per cell” that was proposed by Simonsohn and 

colleagues8.

To assess the implications of these results for statistical power, for each of the 1,131 sample 

sizes shown in FIG. 1a, we estimated the standardized effect size that would be required to 

detect an effect with 80% power (the standard level of power for most fields) for a whole-

brain linear mixed-effects analysis using a voxelwise 5% familywise error (FWE) rate 

threshold from random field theory16 (a standard thresholding level for neuroimaging 

studies). In other words, we found the minimum effect size that would have been needed in 

each of these studies for the difference to be considered statistically significant with an 80% 

probability, given the sample size. We then quantified the standardized effect size using 

Cohen’s d, which was computed as the mean effect divided by the standard deviation for the 

data.

To do this, we assumed that each study used a statistical map with t values in an MNI152 

template space with a smoothness of three times the voxel size (full width at half maximum), 

a commonly used value for smoothness in fMRI analysis. The MNI152 template is a freely 

available template that was obtained from an average T1 scan for 152 subjects with a 

resolution of 2 mm and a volume within the brain mask of 228,483 voxels, and is used by 

default in most fMRI analysis software. We assume that, in each case, there would be one 

active region, with voxelwise standardized effect size d; that is, we assume that, for each 

subject, all voxels in the active region are, on average, d standardized units higher in their 

activity than the voxels in the non-active region, and that the active region is 1,600 mm2 

(200 voxels). To calculate the voxelwise statistical significance threshold in this model 

statistical map, we used the function ptoz from the FSL17 (FMRIB Software Library) 

software package, which computes a FWE threshold for a given volume and smoothness 
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using the Euler characteristic derived from Gaussian random field theory18. This approach 

ensures that the probability of a voxel in the non-active brain region exceeding this 

significance threshold is controlled at 5%; the resulting significance threshold, termed zα, is 

5.12.

The statistical power is defined as the probability that the local maximum peak of activation 

in the active region exceeds this significance threshold. This probability was computed using 

a shifted version of the distribution of local maxima expected under the null hypothesis19, 

with shift of d·√n to reflect a given effect size d and sample size n. The effect size needed to 

exceed the significance threshold in each of the studies was found by selecting the effect size 

d that results in statistical power equal to 0.80, as computed in the previous step.

FIGURE 1b shows the median effect sizes that are needed to establish significance, with 

80% power and an α value of 0.05. Despite the decreases in these hypothetical required 

effect sizes over the past 20 years, in 2015 the median study was only sufficiently powered 

to detect relatively large effects of greater than ~0.75 (FIG. 1b). Given that many studies will 

be assessing group differences or brain activity–behaviour correlations (which will 

inherently have lower power than do average group-activation effects), this represents an 

optimistic lower bound on the powered effect size.

Indeed, the analysis presented in BOX 2 demonstrates that typical effect sizes observed in 

task-related BOLD imaging studies fall considerably below this level. Briefly, we analysed 

BOLD data from 186 individuals who were imaged using fMRI while performing motor, 

emotion, working-memory and gambling tasks as part of the Human Connectome Project 

(HCP)20. Assessing effect sizes in fMRI requires the definition of an independent region of 

interest (ROI) that captures the expected activated volume within which the effect size can 

be measured. Although there are several approaches to defining regions21,22, we created 

masks defined by the intersection between functional activation (identified through searches 

on Neurosynth as regions consistently active in studies examining the effects of ‘motor, 

‘emotion, ‘gambling’ and ‘working memory’ tasks) and anatomical masks (defined using the 

Harvard-Oxford probabilistic atlas23, on the basis of the published ROIs from the HCP23). 

Within these intersection masks, we then determined the average task-related increases in 

BOLD signal — and the effect size (Cohen’s d) — that were associated with each different 

task. Additional details are provided in BOX 2. The figure in BOX 2, which lists the 

resulting BOLD signal changes and inferred effect sizes, demonstrates that realistic effect 

sizes — that is, BOLD changes that are associated with a range of cognitive tasks — in 

fMRI are surprisingly small: even for powerful tasks such as the motor task, which evokes 

median BOLD signal changes greater than 4%, 75% of the voxels in the masks have a 

standardized effect size d smaller than 1. For tasks evoking weaker activation, such as 

gambling, only 10% of the voxels in our masks demonstrated standardized effect sizes larger 

than 0.5. Thus, the average fMRI study remains poorly powered for capturing realistic 

effects, especially given that data from the HCP are of particularly high quality and thus the 

present estimates of effect size are probably greater than what would be found with most 

standard fMRI data sets.
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Solutions.

When possible, all sample sizes should be justified by an a priori power analysis. A number 

of tools are available to enable power analyses for fMRI; for example, Neuropower24 and 

Fmripower25 (see Further information). However, one must be cautious in extrapolating 

from effect sizes that are estimated from small studies, because they are almost certainly 

inflated. When previous data are not available to support a power analysis, one can instead 

identify the sample size that would support finding the minimum effect size that would be 

theoretically informative (for example, on the basis of the results from BOX 2). The use of 

heuristic sample-size guidelines (for example, those that are based on sample sizes used in 

previously published studies) is likely to result in a misuse of resources, either by collecting 

too many or (more likely) too few subjects.

The larger sample sizes that will result from the use of power analysis will have important 

implications for researchers: given that research funding will probably not increase to 

accommodate these larger samples, fewer studies may be funded, and researchers with fewer 

resources may have a more difficult time performing research that meets these standards. 

This would hit trainees and junior researchers particularly hard, and the community needs to 

develop ways to address this challenge. We do not believe that the solution is to admit 

weakly powered studies simply on the basis that the researchers lacked the resources to use a 

larger sample. This situation is, in many ways, similar to the one that was faced in the field 

of genetics, which realized more than a decade ago that weakly powered genetic association 

studies were unreliable; the field moved to the use of much larger samples with high power 

to detect even very small associations and began to enforce replication. This has been 

accomplished through the development of large-scale consortia, which have amassed 

samples in the tens or hundreds of thousands (BOX 1). There are examples of successful 

consortia in neuroimaging, including the 1000 Functional Connectomes Project and its 

International Neuroimaging Data-Sharing Initiative (INDI)3,26, and the ENIGMA 

(Enhancing Neuro Imaging Genetics by Meta-Analysis) consortium27. With such consortia 

come inevitable challenges of authorship and credit28, but here again we can look to other 

areas of research that have met these challenges (for an example, see REF. 29).

In some cases, researchers must necessarily use a statistically insufficient sample size in a 

study, owing to limitations in the specific sample (for example, when studying a rare patient 

group). In such cases, there are three already commonly used options to improve power. 

First, researchers can choose to collect a much larger amount of data from each individual 

and present results at the individual level rather than at the group level30,31 — although the 

resulting inferences cannot then be generalized to the population as a whole. Second, 

FURTHER INFORMATION
AsPredicted: https://aspredicted.org/
Fmripower: http://fmripower.org/
Human Connectome Project: https://www.humanconnectome.org/
NeuroPower: http://neuropowertools.org/
Neurosynth: http://neurosynth.org/
NeuroVault: http://neurovault.org/
Open Science Framework: https://osf.io/
Organization for Human Brain Mapping (OHBM) Committee on Best Practices in Data Analysis and Sharing (COBIDAS): http://
www.humanbrainmapping.org/COBIDAS
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researchers can use more-liberal statistical thresholding procedures, such as methods 

controlling the false discovery rate (FDR). However, it should be noted that the resulting 

higher power comes at the expense of more false-positive results and should therefore be 

used with caution; any results must be presented with the caveat that they have an inflated 

false-positive rate. Third, researchers may restrict the search space using a small number of a 

priori ROIs or an independent ‘functional localizer’ to identify specific ROIs for each 

individual. It is essential that these ROIs (or a specific functional localizer strategy) be 

explicitly delineated before any analyses. This is important because it is always possible to 

develop a post hoc justification for any specific ROI on the basis of previously published 

papers — a strategy that results in an ROI that seems to be independent but that actually has 

a circular definition and thus leads to meaningless statistics and inflated type I errors. By 

analogy to the idea of HARKing (hypothesizing after results are known; in which results of 

exploratory analyses are presented as having been hypothesized from the beginning)32, we 

refer to the latter practice as SHARKing (selecting hypothesized areas after results are 

known). We would only recommend the use of restricted search spaces if the exact ROIs and 

hypotheses are pre-registered33,34.

Finally, we note the potential for Bayesian methods to make the best use of small, 

underpowered samples. These approaches stabilize low-information estimates, converging 

them towards anticipated values that are characterized by prior distributions. Although 

Bayesian methods have not been widely used in the whole-brain setting, owing to the 

computational challenge of specifying a joint model over all voxels, newer graphics 

processing units (GPUs) may provide the acceleration that is needed to make these methods 

practical35. These methods also require the specification of priors, which often remains a 

challenge: priors should reflect typical or default knowledge, but if they are poorly set they 

could overwhelm the data, simply returning the default result.

Flexibility and exploration in data analysis

The typical fMRI analysis workflow contains a large number of pre-processing and analysis 

operations, each with choices to be made about parameters and/or methods (BOX 3). Carp36 

applied 6,912 analysis workflows (using the SPM37 (Statistical Parametric Mapping) and 

AFNI38 (Analysis of Functional NeuroImages) software packages) to a single data set and 

quantified the variability in resulting statistical maps. This approach revealed that some 

brain regions exhibited more substantial variation across the different workflows than did 

other regions. This issue is not unique to fMRI; for example, similar issues have been raised 

in genetics39. These ‘researcher degrees of freedom’ can lead to substantial inflation of type 

I error rates8 — even when there is no intentional ‘P-hacking, and only a single analysis is 

ever conducted9.

Exploration is key to scientific discovery, but rarely does a research paper comprehensively 

describe the actual process of exploration that led to the ultimate result; to do so would 

render the resulting narrative far too complex and murky. As a clean and simple narrative has 

become an essential component of publication, the intellectual journey of the research is 

often obscured. Instead, reports may engage in HARKing32. Because HARKing hides the 

number of data-driven choices that are made during analysis, it can strongly overstate the 
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actual evidence for a hypothesis. There is arguably a great need to support the publication of 

exploratory studies without forcing those studies to masquerade as hypothesis-driven 

science, while realizing that such exploratory findings (like all scientific results) will 

ultimately require further validation in independent studies.

Solutions.

We recommend pre-registration of methods and analysis plans. The details to be pre-

registered should include planned sample size, specific analysis tools to be used, 

specification of predicted outcomes, and definition of any specific ROIs or localizer 

strategies that will be used for analysis. The Open Science Framework and AsPredicted (see 

Further information) provide established platforms for pre-registration; the former assigns an 

embargo period during which the registration remains private, obviating some concerns 

about ideas being disclosed while still under investigation. In addition, some journals now 

provide the ability to submit a ‘Registered Report’ in which hypotheses and methods are 

reviewed before data collection, and the study is guaranteed publication regardless of the 

outcome40 (for examples of such reports, see REFS 41,42; for a list of journals offering the 

Registered Report format, see https://osf.io/8mpji/wiki/home/ ). Exploratory analyses 

(including any deviations from planned analyses) should be clearly distinguished from 

planned analyses in the publication. Ideally, results from exploratory analyses should be 

confirmed in an independent validation data set.

Although there are concerns regarding the degree to which flexibility in data analysis may 

result in inflated error rates, we do not believe that the solution is to constrain researchers by 

specifying a particular set of methods that must be used. Many of the most interesting 

findings in fMRI have come from the use of novel analysis methods, and we do not believe 

that there will be a single best workflow for all studies; in fact, there is direct evidence that 

different studies or individuals will probably benefit from different workflows43. We believe 

that the best solution is to allow flexibility but require that all exploratory analyses be clearly 

labelled as such, and strongly encourage validation of exploratory results (for example, 

through the use of a separate validation data set).

Multiple comparisons

The most common approach to neuroimaging analysis involves mass univariate testing in 

which a separate hypothesis test is performed for each voxel. In such an approach, the false-

positive rate will be inflated if there is no correction for multiple tests. A humorous example 

of this was seen in the now-infamous ‘dead salmon’ study that was reported by Bennett et at.
44 in which ‘activation’ was detected in the brain of a dead salmon but disappeared when the 

proper corrections for multiple comparisons were performed.

FIGURE 2 presents a similar example in which random data can be analysed (incorrectly) to 

lead to seemingly impressive results, through a combination of failure to adequately correct 

for multiple comparisons and circular ROI analysis. We generated random simulated fMRI 

data for each of 28 simulated participants (based on the median sample size for studies from 

2015, as found in the analysis shown in FIG. 1). For each simulated participant, each voxel 

within an MNI152 mask was assigned a random statistical value from a Gaussian 
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distribution (with a mean ± standard deviation of 1000 ± 100); each value represented a 

comparison between an ‘activation’ condition and a ‘baseline’ condition. We then spatially 

smoothed each of the resulting 28 images with a 6 mm Gaussian kernel, based on the 

common smoothing level of three times the voxel size. A univariate analysis was performed 

using FSL to assess the correlation between the ‘activation’ in each voxel and the simulated 

behavioural regressor across subjects, and the resulting statistical map was thresholded at P 
< 0.001 and with a 10-voxel minimum cluster extent threshold (which is a commonly used 

heuristic correction that has been shown by Eklund et at.45 to result in highly inflated levels 

of false positives). This approach revealed a cluster of false-positive activation in the 

superior temporal cortex in which the simulated fMRI data are highly correlated with the 

simulated behavioural regressor (FIG. 2).

The problem of multiplicity in neuroimaging analysis was recognized very early, and the 

past 25 years have seen the development of now well-established and validated methods for 

correction of FWE and FDR in neuroimaging data46. However, recent work45 has suggested 

that even some very well-established inferential methods (specifically, certain ones that are 

based on the spatial extent of activations) can produce inflated type I error rates in certain 

settings, for instance when the cluster-forming threshold is too low.

There is an ongoing debate between neuroimaging researchers who feel that conventional 

approaches to multiple-comparison correction are too lax and allow too many false 

positives47 and those researchers who feel that thresholds are too conservative and risk 

missing most of the interesting effects48. In our view, the deeper problem is the inconsistent 

application of principled correction approaches49. Many researchers freely combine different 

approaches and thresholds in ways that produce a high number of undocumented researcher 

degrees of freedom8, rendering reported P values uninterpretable.

To assess this more directly, we examined the 100 most recent results for the PubMed query 

(“fMRI” AND brain AND activation NOT review[PT] AND human[MESH] AND 

english[la]), performed on 23 May 2016; of these, 66 reported whole-brain task fMRI results 

and were available in full text (for a full list of these papers and annotations, see 

mailto:https://osf.io/spr9a/). Only 3 of the 66 analysed papers presented fully uncorrected 

results, with 4 others presenting a mixture of corrected and uncorrected results; this suggests 

that corrections for multiple comparisons are now standard. However, there is evidence that 

researchers may engage in ‘method shopping’ for techniques that provide greater sensitivity, 

at a potential cost of increased error rates. Notably, 9 of the 66 papers used the FSL or SPM 

software packages to perform their primary analysis, but then used the AlphaSim or 

3dClustSim tools from the AFNI software package (7 papers) or other simulation-based 

approaches (2 papers) to correct for multiple comparisons. This is concerning, because both 

FSL and SPM offer well-established methods that use Gaussian random field theory or non-

parametric analyses to correct for multiple comparisons. Given the substantial degree of 

extra work (for example, software installation and file reformatting) that is involved in using 

multiple software packages, the use of a different tool raises some concern that this might 

reflect analytic P-hacking. This concern is further amplified by the finding that, until very 

recently, AlphaSim and its adaptation 3dClustSim had slightly inflated type I error rates45. 

Sadly, whereas non-parametric methods (such as permutation tests) are known to provide 
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more accurate control over FWE rates than do parametric methods46,50 and are applicable 

for nearly all models, they were not used in any of these papers.

Solutions.

To balance type I and type II error rates in a principled way, we suggest a dual approach of 

reporting corrected whole-brain results and (for potential use in later meta-analyses) sharing 

the unthresholded statistical map (preferably z values) through a repository that allows 

viewing and downloading (such as NeuroVault51) (for an example of this practice, see REF. 

52; for shared data, see http://neurovault.org/collections/122/ ). Any use of non-standard 

methods for correction of multiple comparisons (for example, using tools from different 

packages for the main analysis and the multiple-comparison correction) should be justified 

explicitly (and reviewers should demand such justification). Signals can be detected in the 

images using either voxelwise or clusterwise inference. With either method, multiple testing 

can be accounted for with FWE or (typically more sensitive but less specific) FDR error rate 

measures, although clusterwise and any FDR inferences need to be interpreted with care, as 

they allow more false-positive voxels than does voxelwise FWE correction.

Alternatively, one can abandon the mass univariate approach altogether. Multivariate 

methods that treat the entire brain as the measurement (such as the analysis in REF 53) and 

graph-based approaches that integrate information over all edges (such as the approach in 

REF 54) avoid the multiple-testing problem. However, these approaches present the 

challenge of understanding the involvement of individual voxels or edges in an effect55 and 

raise other interpretation issues.

Software errors

As the complexity of a software program increases, the likelihood of undiscovered bugs 

quickly reaches certainty56. This implies that the software that is used for fMRI analysis is 

likely to contain bugs. Most fMRI researchers use one of several open-source analysis 

packages for pre-processing and statistical analyses; many additional analyses require 

custom programs. Because most researchers writing custom code are not trained in software 

engineering, there is insufficient attention to good software-development practices that could 

help to catch and prevent errors. This issue came to the fore recently, when a 15-year-old 

bug was discovered in the AFNI program 3dClustSim (and the older AlphaSim), which 

resulted in slightly inflated type I error rates45,57 (the bug was fixed in May 2015). Although 

small in this particular case, the impact of such bugs could be widespread; for example, 

PubMed Central lists 1,362 publications mentioning AlphaSim or 3dClustSim published 

before 2015 (query [(AlphaSim OR 3DClustSim) AND 1992:2014[DP]] performed on 14 

July 2016). Similarly, the analyses presented in a preprint of the present article contained 

two software errors that led to different results being presented in the final version of the 

paper. The discovery of these errors led us to perform a code review and to include software 

tests to reduce the likelihood of remaining errors. Although software errors will happen in 

commonly used toolboxes as well as in-house code, they are much more likely to be 

discovered in widely used packages owing to the increased scrutiny of their many more 

users. It is very likely that consequential bugs exist in custom software that has been built for 
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individual projects but that, owing to the limited user base, those bugs will never be 

unearthed.

Solutions.

Researchers should avoid the trap of the ‘not invented here’ philosophy: when the problem 

at hand can be solved using software tools from a well-established project, these should be 

chosen instead of re-implementing the same method in custom code. Errors are more likely 

to be discovered when code has a larger user base, and larger projects are more likely to 

follow better software-development practices. Researchers should learn and implement good 

programming practices, including the judicious use of software testing and validation. 

Validation methodologies (such as comparing with another existing implementation or using 

simulated data) should be clearly defined. Custom analysis code should always be shared on 

manuscript submission (for an example, see REF. 58). It may be unrealistic to expect 

reviewers to evaluate code in addition to the manuscript itself, although this is standard in 

some journals such as the Journal of Statistical Software. However, reviewers should request 

that the code be made available publicly (so others can evaluate it) and, in the case of 

methodological papers, that the code is accompanied with a set of automated software tests. 

Finally, researchers need to acquire sufficient training on the implemented analysis methods, 

particularly so that they understand the default parameter values of the software (such as 

cluster-forming thresholds and filtering cut-offs), as well as the assumptions on the data and 

how to verify those assumptions.

Insufficient study reporting

For the reader of a paper to know whether appropriate analyses have been performed, the 

methods must be reported in sufficient detail. Some time ago, we published an initial set of 

guidelines for reporting the methods typically used in an fMRI study59. Unfortunately, 

reporting standards in the fMRI literature remain poor. Carp60 and Guo et al.61 analysed 241 

and 100 fMRI papers, respectively, for the reporting of methodological details, and both 

found that some important analysis details (such as interpolation methods and smoothness 

estimates) were rarely described. Consistent with this, in 22 of the 66 papers that we 

discussed above, it was impossible to identify exactly which multiple-comparison correction 

technique was used (beyond generic terms such as ‘cluster-based correction’), because no 

specific method or citation was provided. The Organization for Human Brain Mapping 

(OHBM) has recently addressed this issue through its 2015–2016 Committee on Best 

Practices in Data Analysis and Sharing (COBIDAS), which has issued a new, detailed set of 

reporting guidelines62 (BOX 4).

In addition, claims in the neuroimaging literature are often asserted without corresponding 

statistical support. In particular, failures to observe a statistically significant effect can lead 

researchers to proclaim the absence of an effect — a dangerous and almost invariably 

unsupported acceptance of the null hypothesis. ‘Reverse inference’ claims, in which the 

presence of a given pattern of brain activity is taken to imply a specific cognitive process 

(for example, “the anterior insula was activated, suggesting that subjects experienced 

empathy”), are rarely grounded in quantitative evidence63. Furthermore, claims of ‘selective’ 
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activation in one brain region or experimental condition are often made when activation is 

statistically significant in one region or condition but not in others. This false assertion 

ignores the fact that “the difference between ‘significant’ and ‘not significant’ is not itself 

statistically significant” (REF. 64); such claims require appropriate tests for statistical 

interactions65.

Solutions.

Authors should follow accepted standards for reporting methods (such as the COBIDAS 

standard for MRI studies), and journals should require adherence to these standards. Every 

major claim in a paper should be directly supported by appropriate statistical evidence, 

including specific tests for significance across conditions and relevant tests for interactions. 

Because the computer code is often necessary to understand exactly how a data set has been 

analysed, releasing the analysis code is particularly useful and should be standard practice.

Lack of independent replications

There are surprisingly few examples of direct replication in the field of neuroimaging, 

probably reflecting both the expense of fMRI studies and the emphasis of most top journals 

on novelty rather than informativeness. Although there are many basic results that are clearly 

replicable (for example, the presence of activity in the ventral temporal cortex that is 

selective for faces over scenes, or systematic correlations within functional networks in the 

resting state), the replicability of weaker and less neurobiologically established effects (for 

example, group differences and between-subject correlations) is nowhere near as certain. 

One study66 attempted to replicate 17 studies that had previously found associations 

between brain structure and behaviour. Only 1 of the 17 attempts showed stronger evidence 

for an effect as large as the original effect size than for a null effect, and 8 out of 17 showed 

stronger evidence for a null effect. This suggests that replicability of neuroimaging findings 

(particularly brain-behaviour correlations) is exceedingly low, as has been demonstrated in 

other fields, such as cancer biology67 and psychology68.

It is worth noting that, although the cost of conducting a new fMRI experiment is a factor 

limiting the feasibility of replication studies, there are many findings that can be replicated 

using publicly available data. Resources such as the FCP-INDI26, the Consortium for 

Reliability and Reproducibility69, OpenfMRI70 or the HCP20 provide MRI data that are 

suitable for attempts to replicate many previously reported findings. These resources can 

also be used to answer questions about sensitivity of a particular finding to the data analysis 

tools used36. However, even in the cases when replications are possible using publicly 

available data, they are still few and far between, because the academic community tends to 

put greater emphasis on novelty of findings rather than on their replicability.

Solutions.

The neuroimaging community should acknowledge replication reports as scientifically 

important research outcomes that are essential in advancing knowledge. One effort to 

acknowledge this is the OHBM Replication Award, which is to be awarded for the first time 

in 2017 for the best neuroimaging replication study in the previous year. In addition, in cases 
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of especially surprising findings, findings that could have influence on public health policy 

or medical treatment decisions, or findings that could be tested using data from another 

existing data set, reviewers should consider requesting replication of the finding by the 

group before accepting the manuscript.

Towards the neuroimaging paper of the future

In this Analysis article, we have outlined a number of problems with current practice and 

made suggestions for improvements. Here, we outline what we would like to see in the 

neuroimaging paper of the future, inspired by related work in the geosciences71.

Planning.

The sample size for the study would be determined in advance using formal statistical power 

analysis. The entire analysis plan, including exclusion and inclusion criteria, software 

workflows (including contrasts and multiple-comparison methods) and specific definitions 

for all planned regions of interest, would be formally pre-registered.

Implementation.

All code for data collection and analysis would be stored in a version-control system and 

would include software tests to detect common problems. The repository would use a 

continuous integration system to ensure that each revision of the code passes appropriate 

software tests. The entire analysis workflow (including both successful and failed analyses) 

would be completely automated in a workflow engine and packaged in a software container 

or virtual machine to ensure computational reproducibility. All data sets and results would 

be assigned version numbers to enable explicit tracking of provenance. Automated quality 

control would assess the analysis at each stage to detect potential errors.

Validation.

For empirical papers, all exploratory results would be validated against an independent 

validation data set that was not examined before validation. For methodological papers, the 

approach would follow best practices for reducing overly optimistic results72. Any new 

method would be validated against benchmark data sets and compared with other state-of-

the-art methods.

Dissemination.

All results would be clearly marked as either hypothesis-driven (with a link to the 

appropriate pre-registration) or exploratory. All analyses performed on the data set 

(including those analyses that were not deemed useful) would be reported. The paper would 

be written using a literate programming technique in which the code for figure generation is 

embedded within the paper and the data depicted in figures are transparently accessible. The 

paper would be distributed along with the full codebase to perform the analyses and the data 

necessary to reproduce the analyses, preferably in a container or virtual machine to enable 

direct reproducibility. Unthresholded statistical maps and the raw data would be shared via 

appropriate community repositories, and the shared raw data would be formatted according 
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to a community standard, such as the Brain Imaging Data Structure (BIDS)73, and annotated 

using an appropriate ontology to enable automated meta-analysis.

Conclusion

We have outlined what we see as a set of problems with neuroimaging methodology and 

reporting, and have suggested approaches to address them. It is likely that the reproducibility 

of neuroimaging research is no better than that of many other fields in which it has been 

shown to be surprisingly low. Given the substantial amount of research funds that are 

currently invested in neuroimaging research, we believe that it is essential that the field 

address the issues raised here, to ensure that public funds are spent effectively and in ways 

that advance our understanding of the human brain. We have also laid out what we see as a 

road map for how neuroimaging researchers can overcome these problems, laying the 

groundwork for a scientific future that is transparent and reproducible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Linear mixed-effects analysis
An analysis in which some measured independent variables are treated as randomly sampled 

from the population, in contrast to a traditional fixed-effects analysis, in which all predictors 

are treated as fixed and known.

Familywise error (FWE).
The probability of at least one false positive among multiple statistical tests.

Random field theory
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The theory describing the behaviour of geometric points on a random topological space.

Euler characteristic
A topological measure that is used to describe the set of thresholded voxels in the context of 

random field theory.

False discovery rate (FDR).
The expected proportion of false positives among all significant findings when performing 

multiple statistical tests.

Functional localizer
An independent scan that is used to identify regions on the basis of their functional response; 

for example, for the responses of face-responsive regions to faces.

Bayesian methods
An approach to statistical analysis focusing on updating beliefs via probability distributions 

and symmetrically comparing candidate models.

Mass univariate testing
An approach to the analysis of multivariate data in which the same model is fit to each 

element of the observed data (for example, each voxel).

Permutation tests
Also known as randomization tests. Approaches for testing statistical significance by 

comparing to a null distribution that is obtained by rearranging the labels of the observed 

data.

‘Not invented here’ philosophy
The philosophy that any solution to a problem that was developed by someone else is 

necessarily inferior and must be re-engineered from scratch.

Interpolation
The operation by which a function is applied to the sampled data to obtain estimates of the 

data at positions where data have not been sampled.

Software container
A self-contained software tool that encompasses all of the necessary software and 

dependencies to run a particular program.
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Box 1 |

Lessons from genetics

The study of genetic influences on complex traits has been transformed by the advent of 

whole-genome methods and by the subsequent use of stringent statistical criteria, 

independent replication, large collaborative consortia and complete reporting of statistical 

results. Previously, ‘candidate’ genes would be selected on the basis of known or 

presumed biology, and a handful of variants genotyped (many of which would go 

unreported) and tested in small studies. An enormous literature proliferated, but these 

findings generally failed to replicate74. The transformation brought about by genome-

wide association studies (GWAS) applied in very large populations was necessitated by 

the stringent statistical significance criteria required by simultaneous testing of several 

hundred thousand genetic loci and an emerging awareness that any effects of common 

genetic variants are generally very small (<1% phenotypic variance). To realize the very 

large sample sizes required, large-scale collaboration and data sharing were embraced by 

the genetics community. The resulting cultural shift has rapidly transformed our 

understanding of the genetic architecture of complex traits and, in a few years, has 

produced many hundreds more reproducible findings than in the previous 15 years75. 

Routine sharing of single-nucleotide polymorphism (SNP)-level statistical results has 

facilitated routine use of meta-analysis, as well as the development of novel methods of 

secondary analysis76.

This relatively rosy picture contrasts markedly with the situation in ‘imaging genetics’ — 

a burgeoning field that has yet to embrace the standards commonly followed in the 

broader genetics literature and that remains largely focused on individual candidate-gene 

association studies, which are characterized by numerous researcher degrees of freedom. 

To illustrate, we examined the first 50 abstracts matching a PubMed search for ‘fMRI’ 

and ‘genetics’ (excluding reviews, studies of genetic disorders and non-human studies) 

that included a genetic association analysis (for list of search results, see https://osf.io/

spr9a/ ). Of these, the majority (43 out of 50) reported analysis of a single candidate gene 

or a small number (5 or fewer) of candidate genes; of the remaining 7, only 2 reported a 

genome-wide analysis, with the rest reporting analyses using biologically inspired gene 

sets (3) or polygenic risk scores (2). Recent empirical evidence also casts doubt on the 

validity of candidate-gene associations in imaging genomics. A large GWAS of whole-

brain and hippocampal volumes77 identified two genetic associations that were replicated 

across two large samples that each contained more than 10,000 individuals. Strikingly, 

the analysis of a set of candidate genes that were previously reported in the literature 

showed no evidence for any association in this very well-powered study77. The more 

general lessons for imaging from GWAS seem clear: associations of common genetic 

variants with complex behavioural phenotypes are generally very small (<1% of 

phenotypic variance) and thus require large, homogeneous samples to be able to identify 

them robustly. As the prior odds for an association between any given genetic variant and 

a novel imaging phenotype are generally low, and given the large number of variants that 

are simultaneously tested in a GWAS (necessitating a corrected P-value threshold of 

~10−8), adequate statistical power can only be achieved by using sample sizes in the 
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many thousands to tens of thousands. Finally, results need to be replicated to ensure 

robust discoveries.
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Box 2 |

Effect-size estimates for common neuroimaging experimental paradigms

The aim of this analysis is to estimate the magnitude of typical effect sizes of blood-

oxygen-level-dependent (BOLD) changes in functional MRI (fMRI) signal that are 

associated with common psychological paradigms. We focus on four experiments 

conducted by the Human Connectome Project (HCP): an emotion task, a gambling task, a 

working-memory (WM) task and a motor task (detailed below). We chose data from the 

HCP for its diverse set of activation tasks and for its large sample size, which enables 

computation of stable effect-size estimates. The data and code used for this analysis are 

available at https://osf.io/spr9a/.

Briefly, the processing of data from the HCP was carried out in four main steps:

Step 1: subject selection

The analyses are performed on the 500-subject release of the HCP data, which is freely 

available at www.humanconnectome.org. We selected 186 independent subjects from the 

HCP data on the basis that all subjects have results for all four tasks and no subjects are 

genetically related.

Step 2: group analyses

The first-level analyses, which summarize the relation between the experimental design 

and the measured time series for each subject, were obtained from the HCP20. The 

processing and analysis pipelines for these analyses are shared together with the data. 

Here, we perform second-level analyses — that is, an assessment of the average effect of 

the task on BOLD signal over subjects — using the FMRIB Software Library (FSL) 

program flame1 (REF. 17), which performs a linear mixed-effects regression at each 

voxel, using generalized least squares with a local estimate of random effects variance. 

This analysis averages over subjects, while separating within-subject and between-subject 

variability, to ensure control of unobserved heterogeneity.

The following specific contrasts were tested:

• Motor: tongue, hand and foot movements versus rest

• Emotion: viewing faces with a fearful expression versus viewing neutral faces

• Gambling: monetary reward versus punishment

• Working memory: ‘2-back’ versus ‘0-back’

Step 3: create masks

The masks used for the analyses are the intersections of anatomical and a priori 

functional masks for each contrast. The rationale behind this is to find effect sizes in 

regions that are functionally related to the task but restricted to certain anatomical 

regions. We created the functional masks using Neurosynth15 by performing forward-

inference meta-analysis using the search terms ‘motor’, ‘emotion’, ‘gambling’ and 

‘working memory’, with false discovery rate control at 0. 01 (the default threshold on 
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Neurosynth). The resulting functional mask identifies voxels that are consistently found 

to be activated in studies that mention each of the search terms in their abstract.

For the anatomical masks, we used the Harvard-Oxford probabilistic atlas23 at P > 0. 

Regions were chosen for each task, based on the published a priori hypothesized regions 

from the HCP78. The size of the masks was assessed by the number of voxels in the 

mask, and the structures contained in the anatomical masks for each of the tasks were as 

follows:

• Motor: precentral gyrus (preCG), supplementary motor cortex (SMC), left 

putamen (LPut) and right putamen (RPut)

• Working memory: middle frontal gyrus (MFG)

• Emotion: left amygdala (LAmy) and right amygdala (RAmy)

• Gambling: left nucleus accumbens (LNAc) and right nucleus accumbens 

(RNAc)

Step 4: compute effect size

The intersection masks created above were used to isolate the regions of interest (ROIs) 

in the second-level-analysed BOLD signal data. From these mask-isolated data sets, the 

size of the task-related effect (Cohen’s d) was computed for each relevant region (see the 

figure). The FSL program Featquery computes the percentage BOLD change for each 

voxel within the masks.

The figure shows the distributions of the observed BOLD signal-change estimates and 

effect-size estimates for common experimental paradigms, across voxels within each ROI 

(the numbers in parentheses denote the number of voxels in the ROI). The box plots 

inside the violins represent the interquartile range (first quartile to third quartile), and the 

black dots show median values. The results show that, whereas some tasks show very 

large BOLD signal changes on average, the effect-size estimates computed across 

subjects are relatively modest, with none reaching the level of d = 0.8, which is 

customarily taken to define a ‘large’ effect
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Box 3 |

Flexibility in functional MRI data analysis

In the early days of functional MRI (fMRI) analysis, it was rare to find two laboratories 

that used the same software to analyse their data, with most using locally developed 

custom software. Over time, a small number of open-source analysis packages have 

gained prominence (Statistical Parametric Mapping (SPM), FMRIB Software Library 

(FSL), and Analysis of Functional NeuroImages (AFNI) being the most common), and 

now most laboratories use one of these packages for their primary data processing and 

analysis. Within each of these packages, there is a great deal of flexibility in how data are 

analysed; in some cases, there are clear best practices, but in others there is no consensus 

regarding the optimal approach. This leads to a multiplicity of analysis options. In the 

table, we outline some of the major choices involved in performing analyses using one of 

the common software packages (FSL). Even for this non-exhaustive list from a single 

analysis package, the number of possible analysis workflows — 69,120 — exceeds the 

number of papers that have been published on fMRI since its inception more than two 

decades ago.

It is possible that many of these alternative pipelines could lead to very similar results, 

although the analyses of Carp36 suggest that many of them may lead to considerable 

heterogeneity in the results. In addition, there is evidence that choices of pre-processing 

parameters may interact with the statistical modelling approach (for example, there may 

be interactions between head motion modelling and physiological noise correction) and 

that the optimal pre-processing pipeline may differ across subjects (for example, 

interacting with the amount of head motion)43.

Processing step Reason Options [suboptions] Number of 
plausible 
options

Motion correction Correct for head motion 
during scanning

• ‘Interpolation’ [linear or 
sinc]
• ‘Reference volume’ 
[single or mean]

4

Slice timing 
correction

Correct for differences in 
acquisition timing of 
different slices

‘No’, ‘before motion 
correction’ or ‘after motion 
correction’

3

Field map 
correction

Correct for distortion owing 
to magnetic susceptibility

‘Yes’ or ‘no’ 2

Spatial smoothing Increase SNR for larger 
activations and ensure 
assumptions of GRF theory

‘FWHM’ [4 mm, 6 mm or 
8 mm]

3

Spatial 
normalization

Warps an individual brain to 
match a group template

‘Method’ [linear or 
nonlinear]

2

High-pass filter Remove low-frequency 
nuisance signals from data

‘Frequency cut-off’ [100 s 
or 120 s]

2

Head motion 
regressors

Remove remaining signals 
owing to head motion via 
statistical model

‘Yes’ or ‘no’ [if yes: 
6/12/24 parameters or 
single time point 
‘scrubbing’ regressors]

5
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Processing step Reason Options [suboptions] Number of 
plausible 
options

Haemodynamic 
response

Account for delayed nature 
of haemodynamic response 
to neuronal activity

• ‘Basis function’ [‘single-
gamma’ or ‘double-
gamma’]
• ‘Derivatives’ [‘none’, 
‘shift’ or ‘dispersion’]

6

Temporal 
autocorrelation 
model

Model for the temporal 
autocorrelation inherent in 
fMRI signals

‘Yes’ or ‘no’ 2

Multiple-
comparison 
correction

Correct for large number of 
comparisons across the brain

‘Voxel-based GRF’, 
‘cluster-based GRF’, 
‘FDR’ or ‘non-parametric’

4

Total possible 
workflows

69,120

FDR, false discovery rate; FWHM, full width at half maximum; GRF, Gaussian random field; SNR, signal-to-

noise ratio.
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Box 4 |

Guidelines for transparent methods reporting in neuroimaging

The Organization for Human Brain Mapping (OHBM) Committee on Best Practices in 

Data Analysis and Sharing (COBIDAS) report provides a set of best practices for 

reporting and conducting studies using MRI. It divides practice into seven categories and 

provides detailed checklists that can be consulted when planning, analysing and writing 

up a study. The text below lists these categories with summaries of the topics that are 

covered in the checklists.

Acquisition reporting

• Subject preparation: mock scanning; special accommodations; experimenter 

personnel

• MRI system description: scanner; coil; significant hardware modifications; 

software version

• MRI acquisition: pulse sequence type; imaging type; essential sequence and 

imaging parameters; phase encoding parameters; parallel imaging method and 

parameters; multiband parameters; readout parameters; fat suppression; 

shimming; slice order and timing; slice position procedure; brain coverage; 

scanner-side pre-processing; scan duration; other non-standard procedures; T1 

stabilization; diffusion MRI gradient table; perfusion (arterial spin labelling 

(ASL) MRI or dynamic susceptibility contrast MRI)

• Preliminary quality control: motion monitoring; incidental findings

Pre-processing reporting

• General: intensity correction; intensity normalization; distortion correction; 

brain extraction; segmentation; spatial smoothing; artefact and structured 

noise removal; quality control reports; intersubject registration

• Temporal or dynamic: motion correction

• Functional MRI: T1 stabilization; slice time correction; function-structure 

(intra-subject) co-registration; volume censoring; resting-state functional MRI 

feature

• Diffusion: gradient distortion correction; diffusion MRI eddy current 

correction; diffusion estimation; diffusion processing; diffusion tractography

• Perfusion: ASL; dynamic susceptibility contrast MRI

Statistical modelling and inference

• Mass univariate analyses: variable submitted to statistical modelling; spatial 

region modelled; independent variables; model type; model settings; inference 

(contrast, search region, statistic type, P-value computation, multiple-testing 

correction)
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• Functional connectivity: confound adjustment and filtering; multivariate 

method (for example, independent component analysis); dependent variable 

definition; functional connectivity measure; effectivity connectivity model; 

graph analysis algorithm

• Multivariate modelling and predictive analysis: independent variables; 

features extraction and dimension reduction; model; learning method; training 

procedure; evaluation metrics (discrete response, continuous response, 

representational similarity analysis, significance); fit interpretation

Results reporting

• Mass univariate analysis: effects tested; extracted data; tables of coordinates; 

thresholded maps; unthresholded maps; extracted data; spatial features

• Functional connectivity: independent component analyses; graph analyses 

(null hypothesis tested)

• Multivariate modelling and predictive analysis: optimized evaluation metrics

Data sharing

• Define data-sharing plan early: material shared; URL (access information); 

ethics compliance; documentation; data format

• Database for organized data: quality control procedures; ontologies; 

visualization; de-identification; provenance and history; interoperability; 

querying; versioning; sustainability plan (funding)

Reproducibility

• Documentation: tools used; infrastructure; workflow; provenance trace; 

literate programming; English language version.

• Archiving: tools availability; virtual appliances

• Citation: data; workflow
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Figure 1 |. Sample-size estimates and estimated power for functional MRI studies.
a | A summary of 1,131 sample sizes over more than 20 years, obtained from two sources, is 

shown: 583 sample sizes were obtained by manual extraction from published meta-analyses 

by David et al.14, and 548 sample sizes were obtained by automated extraction from the 

Neurosynth database15 with manual verification (for a version with all data points depicted, 

see Supplementary information S1 (figure)). These data demonstrate that sample sizes have 

steadily increased over the past two decades, with a median estimated sample size of 28.5 as 

of 2015. b | Using each of the sample sizes from the left panel, we estimated the 

standardized effect sizes that would have been required to detect an effect with 80% power 

for a whole-brain linear mixed-effects analysis using a voxelwise 5% familywise error rate 

threshold from random field theory16 (for details, see the main text). The median effect size 

that the studies in 2015 were powered to find was 0.75. Data and code to generate these 

figures are available at https://osf.io/spr9a/.
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Figure 2 |. Small samples, uncorrected statistics and circularity can produce misleadingly large 
effects.
A seemingly impressive brain-behaviour association can arise from completely random data 

through the use of statistics uncorrected for multiple comparisons and circular region-of-

interest analyses that capitalize on the large sampling error that arises from small samples. 

With the informal P < 0.001 and cluster size k >10 thresholding, the analysis revealed a 

cluster in the superior temporal gyrus (upper panel); the signal extracted from that cluster 

(that is, using circular analysis) showed a very strong correlation between the functional 
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MRI (fMRI) data and behavioural data (lower panel). For details of the analysis, see the 

main text. A computational notebook for this example is available at https://osf.io/spr9a/.
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