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Abstract

Purpose of review—In this review I trace the origins, applications, limitations and future 

prospects for research on measurement item bias, or differential item functioning (DIF) in the 

context of health research. DIF arises in the context of using multiple item or symptom health 

instruments to rate the level of a particular condition, and describes the situation where not all 

persons at the same level at the same level of the underlying condition have the same probability 

of endorsing one or more symptoms. The presence of DIF can lead to biased assessment of group 

differences and confound risk factor and outcomes research.

Recent findings—The epidemiologic literature includes a great many applied, review, and 

methodological articles focusing on DIF. The preponderance of the literature appears in the areas 

of health-related quality of life, physical functioning, cognition, and mental health outcomes.

Summary—Epidemiologists and other researchers in the health sciences often rely upon multiple 

item rating scales or questionnaires to assess for the presence of or level of health conditions or 

states that are otherwise not directly observable. When population subgroups respond differently 

to a subset of the items, this is referred to as differential item functioning (DIF), and might be a 

source of bias.
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Introduction

Clinicians and researchers often make use of multiple item rating scales or questionnaires to 

assess for the presence of, or level of, health conditions or states that are otherwise not 
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directly observable. The process of assigning numbers to observations, and combining 

information across multiple items into a reduced number of summary statistics is 

measurement. Measurement procedures vary in complexity, from simple summation of 

numbers assigned to rating categories (i.e., true score theory or classical test theory) or more 

sophisticated methods based on statistical or psychometric models (e.g., item response 

theory). A number of challenges may present to the researcher working with assessment data 

and an implemented measurement procedure. Members of a particular sub-group (a focal 

group) may have lower scores than a reference group and such a finding is not predicted by 

substantive theory or knowledge. Or, decisions made on the basis of a measurement disfavor 

the focal group relative to the reference group, and this difference is not expected 

theoretically, and/or may be socially or politically undesirable. Or, measured values do not 

predict a criterion outcome similarly in the two groups. The researcher may begin to 

question whether the assessment instrument and/or measurement procedures are biased in 

one group relative to the other.

For example, consider screening for dementia with a mental status test. Mental status tests 

may contain items that involve reading, writing, and arithmetic operations. It may be 

reasonable to presume that persons with less exposure to formal education may not have the 

same opportunity to develop the skills necessary to perform well on such items. As a 

consequence, the meaning of low scores on the mental status test are confounded by level of 

educational attainment, and the magnitude of this bias may be dependent upon the 

proportion of items in the test that rely upon skills obtained during schooling, and the impact 

of this bias may depend upon the context of test use.

Researchers in educational assessment and psychology have developed a set of procedures 

for delving into these matters. In psychology, the procedures are encompassed within a field 

of inquiry called measurement or factorial invariance. Bontempo and Hofer (2007) provide 

an excellent review of the topic, and Bauer (2017) provides an excellent overview of the 

connections of measurement noninvariance and differential item functioning [1,2]. The 

range of measurement invariance questions that are considered include whether or not we 

are measuring the same domains with equal fidelity across groups. In educational research 

settings, the concern is typically focused on a single domain of measurement, and the 

questions are therefore limited to the fidelity of measurement of a single domain across 

groups. Fidelity is here used as a general term with no technical meaning, and is intended to 

imply a range of possible causes of group differences in the way people are assessed.

Because the research paradigms for investigating measurement differences in assessment 

instruments have a developmental history in psychology and in educational research, the 

language used and technical terms borrow from both traditions. For the uninitiated it can be 

a challenge to navigate the literature and recognize the terms, identify appropriate and useful 

procedures, and make sense of the research results owing to this variety of approaches. This 

is compounded by two popular sets of descriptors for levels of invariance in the 

psychological tradition, one due to Meredith (1993) [3] and another due to Vandenberg & 

Lance (2000) [4]. For example, in preparing this review I examined the literature for recent 

publications relevant to differential item functioning in epidemiologic, public health, and 

general health related journals and identified a number of synonyms used to describe what I 
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at least consider to be broadly equivalent concepts (Box A). Kim and Smith (2017) blend the 

psychological and educational traditions in an admirable way in their recent work examining 

measurement noninvariance in a depression measure among cancer patients [5].

Differential Item Functioning

Differential item functioning is statistical evidence that a particular item performs differently 

in a focal group relative to a reference group. It is a term developed specifically to separate 

vernacular notions of item bias from statistical evidence [6]. DIF describes a statistical 

finding, and the more substantively interesting finding of item bias is reserved for instances 

of DIF where content experts adjudged the source of the DIF to be irrelevant to the construct 

being measured. It is recognized that the mere presence of a group mean difference on a 

particular item is insufficient evidence for DIF, because of the possibility that group mean 

differences in the level of the underlying construct being assessed exist. DIF was therefore 

operationalized as statistical evidence of a main group level effect conditional on the 

underlying level of the construct being measured [7].

There are a wide range of procedures described for obtaining such statistical evidence [8]. 

Millsap & Everson (1993) [9] reviewed many of these methods in use at the time of 

publication, and provided very strong evidence and a very strong recommendation for using 

what they termed “unobserved conditioning” methods versus “observed conditioning” 

methods. Briefly, what Millsap & Everson recommend is that a latent variable method be 

used to condition the level of the underlying construct being measured when attempting to 

detect group level effects on a particular item, rather than an observed variable. This implies 

that latent variable statistical models, rather than statistical models using observed variables 

(such as sum scores on a test) are preferred for detecting measurement bias. The reason is 

that attempts to detect DIF on a particular item when conditioning on a total test score suffer 

from Simpson’s Paradox, because potentially biased items are included in the observed total 

test score. On the other hand, unobserved conditioning methods, or latent variable 

approaches including those based in Item Response Theory, are not so limited. One of the 

pioneers in the field of Item Response Theory, Darrell Bock, commented that if the number 

of items in a test is very large, the use of observed variables (e.g., sum scores) as a 

conditioning variable may be appropriate [10]. However, situations in which a large number 

of items are available is more often encountered in educational assessment and achievement 

testing, and not so common in health research settings.

In the epidemiologic context, DIF can be viewed as a situation of confounding. DIF occurs 

when a grouping variable is a confounder of the relationship of the underlying construct and 

the item response. In Figure 1, I present a directed acyclic graph (DAG) illustrating an 

instance of DIF. An observed predictor variable x denoting a grouping variable (e.g., sex) 

causes differences in the underlying construct of interest (f, e.g., depression) and also, 

independent and in addition to the effect of the predictor in the underlying construct, is 

related to one particular item on the assessment instrument (y, e.g., tearfulness or crying). 

Finding that there was a direct effect of sex in tearfulness, independent of the effect of sex in 

underlying depression and of the effect of underlying depression in tearfulness, is sufficient 

evidence for concluding DIF exists with respect to tearfulness and sex. Describing the effect 
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as one indicating item bias would require articulating that cultural standards discourage men, 

on average or as a group, from exhibiting or admitting to tearfulness or crying behavior.

It is worth pointing out that the heuristic of conceptualizing DIF as confounding should not 

set limits on the potential meaning and scope of DIF. DIF can also be thought of as or appear 

as effect modification if the relationship between the item and the latent trait differs 

according to levels of a third variable (referred to as non-uniform or crossing DIF). The third 

variable that disrupts the measurement of U via y need not be categorical, and indeed DIF 

can be more generally thought of as multidimensionality [11]. That is, variability in the item 

response is attributable to more than a single underlying and potentially unobserved variable.

Item Response Theory

Due to Millsap & Everson’s (1993) [9] admonition regarding observed variable conditioning 

methods for detecting DIF, I will focus on DIF detection methods based on conditioning the 

group level difference for a unobserved or latent variable. The most important of these for 

DIF detection work is that of item response theory (IRT) [12]. IRT encompasses a wide 

variety of statistical models, which vary in their applicability for response variables of 

different scales (binary, ordinal, continuous) and character of the underlying latent 

variable(s). I will describe the general aspects of theory for binary variables with a single 

and presumed continuous normal underlying latent variable, but the reader should recognize 

that there are many extensions of this basic model [13,14].

The fundamental conceptual unit of IRT is the item characteristic curve (ICC, also known as 

the item response function or trace line). The ICC is a cumulative probability plot recording 

the increasing probability of endorsing a symptom (or responding correctly to an individual 

item in a testing situation) as the level of the underlying trait (θ) presumed to be measured 

by the symptom increases (e.g., depression, cognitive ability). The functional form of the 

ICC is presumed to be cumulative normal. Figure 2 displays a hypothetical ICC. The scale 

of the underlying trait (θ) reflects the customary assumption that the latent dimension is 

distributed normally with mean zero and unit variance. The ICC embodies several 

assumptions of IRT; in fact, the normal ogive shape of the ICC is one of the assumptions of 

IRT [15].

IRT assumes that a latent, unobservable ability or trait describes the probability of 

responding correctly to an item, and that persons with more ability have a greater likelihood 

of responding correctly to the item (or endorsing the symptom as the case may be). Many, 

but not all, IRT models assume this latent trait is continuous normal [16]. Other assumptions 

of IRT include the notion that the probability of responding correctly to an item, conditional 

on level of the underlying trait, is independent from responses to other items on the test 

(conditional or local independence) [15].

Another key notion in IRT is the conceptual and statistical separation of characteristics of 

persons and characteristic symptoms (or test items). This can be represented symbolically 

with the item response function
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P(yij = 1|θi) = Pi(θ) = F{aj(θ − bj)} (1)

which states the probability of the ith individual endorsing the jth symptom (yij=1 vs. yij=0) 

is a function of the discrepancy between the person’s level on the underlying latent trait (θi) 

and the level of difficulty or severity measured by the symptom (bj). This function is 

modified by the strength of association between the symptom and the underlying trait, the 

so-called discrimination parameter (aj). Discrimination refers to the ability of the item to 

identify persons of high versus low levels on the trait. Highly discriminating items describe 

steeper item response functions and are better able to separate persons. Parameters aj and bj 

are characteristics of the item, and θi is a characteristic of an individual. If an item is ordinal, 

the probability that a person responds in category c or higher can be expressed as P(yij≥c|θi) 

= F{aj(θ−bcj)} where bcj is a threshold for item j specific to the boundary between category 

c and c−1.

The parameterization of the item response theory function (equation 1) represents a linear 

model (within a non-linear transformation given by F) of the form [a(θ−b)]. This is the 

equation of a line in point-slope form. In epidemiology we more often encounter linear 

equations in intercept slope form, e.g., P(yij=1|θi) = F{B0 + B1θ}, where B0 would represent 

a constant or intercept term, and B1 the slope with respect to underlying ability. A little 

algebra demystifies the point-slope IRT form when we realize that the slopes in the two 

formulations are equivalent, with a = B1 and b = −B1/B0. It is also worth noting that the IRT 

formulation sometimes includes a constant transformation [Da(θ−b)] where D is scaling 

constant, the use of which was motivated by a desire to make parameter estimated under a 

probit and logit transformation comparable [17].

The functional link between the item and person parameters and the response probability 

[F(•)] are conventionally the logit link or the normal probability link. Historically, the 

logistic form of the item response function was adopted due to the intense computational 

demands of the normal probability model [17]. Modern estimation algorithms and advances 

in computer processing speed have made estimation under the normal probability model a 

viable option for item response curve analysis. Although in the not so distant past estimation 

of IRT model parameters required specialized software, procedures are now available in 

major general purpose statistical software packages including Stata [18], SAS [19] and 

several packages are available in the R programming environment [20]. Item response theory 

is also a general form of a more general structural equations model (SEM), specifically a 

confirmatory factor analysis, as long as the non-normal nature of the response variables are 

properly modeled [21–23]. Therefore, software for conducting SEM can also be used to 

estimate the parameters of an IRT model (e.g., Mplus [24], Stata/SEM, R/lavaan [25], 

among others). Unfortunately, as will be described in greater detail, procedures for 

identifying DIF are under-developed in general purpose statistical software packages, and 

applied researchers must use specialty software or user-written programs and algorithms.
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DIF in the context of IRT

Simply, DIF in the context of IRT implies that an item response function is different with 

respect to a third variable, usually a variable indicating group membership. An example is 

shown in Figure 3. In Figure 3, I have drawn two item characteristic curves for a single 

binary item, one for a reference group and another for a focal group. The lines are non-

overlapping, and the distance between the two lines is proportional across the range of the 

underlying latent trait. If the lines were plotted on a logit-transformed y-axis, they would be 

parallel. This is an example of what is called uniform DIF. This is kind of DIF that is 

illustrated in Figure 1 as well. The grouping variable influences the item response 

independent of (and uniformly across levels of) the underlying latent trait. This kind of DIF 

is also referred to as b-DIF, because it is the b parameter (equation 1) that is different 

between the reference and focal group.

In the case of uniform DIF and a binary test item (Figure 3), we see that a randomly selected 

person from the focal group would need to have a higher level of the underlying latent trait 

(θ) in order to have a 50% probability of endorsing the symptom than would a randomly 

selected person from the reference group. We can also appreciate that if we were to use the 

number of symptoms endorsed as an indicator of a person’s level on the underlying trait 

(e.g., a classical test theory sum score) we would underestimate the level of the latent trait 

for members of the focal group.

In Figure 4, I illustrate what is called non-uniform or crossing DIF: DIF that is non-

proportional across levels of the underlying latent trait. If the lines in Figure 4 were plotted 

on a logit-transformed y-axis, the lines would be non-parallel. The ICCs in Figure 4 display 

both b-DIF (the difficulty parameters are different across group) and a-DIF (the 

discrimination, or a, parameters are different across group). Non-uniform DIF is sometimes 

called crossing DIF because the ICCs, being non-parallel, will cross at some point along the 

ability axis. Because the item discrimination parameter can be seen as a transformation of 

the correlation between the latent trait and the propensity to endorse the item [22], we can 

say that there is a group difference in the factor loading of the item illustrated in Figure 4, 

being lower in the focal group than in the reference group.

In the case of non-uniform DIF and a binary test item (Figure 4), we see that a randomly 

selected person from the focal group would need to have a higher level of the underlying 

latent trait (θ) in order to have a 50% probability of endorsing the symptom than would a 

randomly selected person from the reference group. We can also appreciate that while on 
average if we were to use the number of symptoms endorsed as an indicator of a person’s 

level on the underlying trait (e.g., a classical test theory sum score) we would underestimate 

the level of the latent trait for members of the focal group, the degree of underestimation 

varies as a function of the underlying level of the latent trait.

There is no consensus in the field as to how to quantify the magnitude of DIF. Teresi (2006) 

[26] reviews these and identifies a broad class of magnitude measures that focus on the size 

of the parameter estimating a group effect or the areas between two group item characteristic 

curves, and impact measures that describe differences on total trait estimate or scale score 
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that are due to DIF. Crane and colleagues [27] remind us that it can be useful to examine the 

impact of DIF with graphical methods such as boxplots illustrating the spread of individual 

differences in latent trait estimates with and without accommodation of detected DIF. This 

strategy can be especially useful when the latent trait estimate or test score is used in a high 

stakes situation such as case identification. Hays and colleagues offer a nice example of 

methods for evaluating DIF impact [28]. Finally, Verdam and colleagues extend this 

discussion to general cases involving items and third variables confounding measurement to 

ordinal and continuous cases, and to the evaluation of measurement bias in multidimensional 

latent constructions [29].

Methods for the detection of DIF

Unfortunately, there exists a great flexibility in the designs, definitions, and analytical modes 

set against the detection of DIF, and this situation requires one to read the DIF literature with 

a considerable degree of skepticism [30]. Manuscripts describing new methodological 

advancements in DIF detection are quite common, and perhaps this is something to be 

expected in an evolving field of inquiry.

Recently, Teresi and Jones (2013) [8] compiled an exhaustive review of measurement bias 

and differential item functioning, including a review of software tools used to identify DIF 

detailed in an appendix. Less attention was given to the algorithm used to identify DIF using 

those tools. By algorithm, I am referring to the data management decisions, constraints set 

on the analysis and inference steps, and the order of operations used to carry out a DIF 

detection procedure. The algorithm used in applied research is rarely specified in sufficient 

detail to allow replication. In the absence of simulation studies that compare complete 

algorithms, the applied researcher is left with little guidance on optimal methods.

As an illustration of the potential for differential results with various software approaches 

and detection algorithms, Yang and colleagues (2011) [31] reported on the parallel detection 

of DIF in a single data set by different teams using different IRT-based DIF detection 

procedures. Four different algorithms encompassing different software combinations and 

algorithm implementations were studied. Evaluated procedures included Item Response 

Theory Likelihood Ratio Differential Item Functioning (IRTLRDIF/MULTILOG [32,33]), 

Differential Functioning of Items and Tests/MULTILOG (DFIT/MULTILOG [32,34]), 

DIFwithPAR/PARSCALE [35,36], and the Mplus/Multiple Indicator, Multiple Causes 

model [37]. Yang and colleagues found that agreement as to which items displayed DIF was 

far from perfect, with kappa coefficients ranging from 0.43 to 0.84 across the different 

algorithm pairs.

It may be surprising that, given a common general understanding of DIF (unequal item 

characteristic curves) and a common general analytic framework (item response theory) that 

discrepancies as great as observed in Yang et al (2011) [31] would be observed. But the 

implementation of DIF detection algorithms is not a standardized set of procedures. In her 

editorial summarizing a set of articles also approaching DIF in a common data set that 

appeared in a special issue of Medical Care in 2006, Teresi identified many sources of 

potential discrepancy [26]. Identified elements included dimensionality (the number and 
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structure of the underlying trait being evaluated), purification (defined below), types and 

kind of DIF identified (uniform, non-uniform), availability of effect size statistics 

(magnitude, impact). I expand upon the list of important analytic considerations that face the 

analyst when embarking upon a DIF analysis in Table 1.

A good number of simulation studies have been published that compare the accuracy of 

different methods [38–45]. While this is clearly a high priority area for future research, again 

the applied researcher must be very cautious in reading the methodological literature for 

clues as to which of the available methods may be advantageous for the context of the 

planned analysis. The need for caution is underscored by the variety of considerations listed 

in Table 1, as well as for all those considerations omitted. What is critical to evaluate is the 

accuracy of a proposed algorithm for detecting DIF. This algorithm includes the IRT 

estimation approach, the method used to detect DIF, and all of the analytic decisions that go 

along with detecting DIF: the choice or method of anchor item selection, the use of multiple 

comparisons correction, the statistical criteria used to flag items with DIF, the use of a 

purification procedure, the procedure (e.g., forwards, backwards) for working through an 

item set, etc. Readers must scrutinize published simulation studies carefully before using 

such studies to choose methodologies.

What to do about DIF

The main implication of DIF is that, when detected, sum scores on the instrument are not 

comparable across group. Dropping items that demonstrate DIF is one extreme way to 

handle DIF. This is often unpalatable in epidemiologic and other health research settings, as 

our instruments are relatively short and the offending item may assess a relatively important 

aspect of the construct of interest. If dropping the item with DIF is not an option, separate 

calibration with IRT methods is an acceptable way to address the DIF. Now that IRT 

estimation procedures are available in general purpose statistical software packages, this is 

probably the preferred option.

Another option is to conduct the substantive analysis within a general latent variable 

modeling framework [46]. Analysts may include direct effects, group-specific thresholds, or 

group-by-latent variable interactions [45] as indicated by a DIF analysis, and proceed to 

address the substantive research question within a general latent variable modeling 

framework. The advantage of this approach is the population parameters of interest can be 

estimated while modeling unobservable constructs as latent variables, which should provide 

more accurate estimate of standard errors and higher quality inferences. Methods that 

involve two steps (estimating a trait value, and treating it as fixed in a second substantively 

motivated regression analysis) might return overly optimistic standard errors.

Limits of addressing DIF

It is important to realize that even after removing items with DIF or separately calibrating in 

two groups to address DIF, this is no guarantee that all undesirable measurement properties 

of the measurement instrument will be resolved. An example previously mentioned is 

screening for dementia with a mental status test. Education level DIF has been described for 
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mental status test items that involve reading, writing, and arithmetic operations [47]. Lower 

education is also associated with poorer predictive performance of mental status tests for 

clinical ratings of dementia (higher sensitivity, lower specificity relative to higher education 

groups [48]). Removing or separately calibrating items that have DIF may not improve the 

predictive validity of the mental status screening test for clinical dementia, and might make 

things worse. It depends on whether dementia is truly more prevalent among persons with 

low education, and depends upon whether the DIF correction has a large impact around the 

area of the underlying trait that is relevant to the decision-making point on screening, and 

the adequacy with which the relationship between education and dementia is properly 

specified in the predictive model.

Future directions and recommendations for applied researchers

There are many exciting new developments in the theory of DIF and in DIF detection 

procedures. Chief among these may be the use of hybrid models that use latent class or 

mixture models along with more traditional multiple group or covariate based DIF detection 

[49]. A motivation here could be that all members of a sub-sample (e.g., males) may not be 

equally subject to the same cultural influences that impact item response probabilities (e.g., 

crying, tearfulness). Research along these lines may open up opportunities for DIF detection 

and amelioration to have increased relevance to individual level inference. Other exciting 

innovations include the recent generality of moderated nonlinear factor analysis (MNLFA) 

for DIF detection [2].

For the applied researcher, I will conclude with the following recommendation set for 

engaging in data analysis activities with the goal of evaluating an assessment method for 

DIF. The steps are little more than a request for responsible data analysis, with clear 

specification of methods and procedures to assure readers of the accuracy and statistical 

power of the algorithm used:

1. Reproducible data analysis. As is consistent with movements in epidemiology 

and other fields [50], the data analysis that performs the DIF detection should be 

based within a reproducible workflow. Data analysis is at the stage where a 

reproducible work flow is a core feature of the responsible conduct of research.

2. Algorithm specification and ideally, automation. Implementing a DIF detection 

algorithm can include iterative data analysis steps and multiple decision points. 

The decision points begin before IRT and DIF detection analysis begins, in the 

form of decisions for dealing with sparse data (e.g., empty response categories in 

one or more groups). During DIF detection, reams of data analysis output may be 

generated. A robust algorithm will at least document and at best automate the 

processing of handling variables, gathering interim results, and decision making 

regarding the presence and absence of DIF. This is an essential component of a 

reproducible workflow. In our own group we have developed tools to facilitate 

this process in the form of Stata modules1 governing Mplus MIMIC and multiple 

group confirmatory factor analysis approaches to DIF detection.
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3. Contextualized algorithm validation. Before engaging in the primary 

substantive analysis, data analysts should evaluate their planned algorithm for 

accuracy (or type-I error level) and statistical power in a Monte Carlo simulation 

framework. The simulation framework should match the planned analysis in 

terms of the sample size, number of items, expected number of items with DIF, 

expected magnitude of DIF. This is exactly the approach one would use to 

determine adequate sample size to conduct an analysis and test a hypothesis in a 

study design context. However, in the context of DIF detection the stakes are 

higher. DIF analyses are usually exploratory, as the causes and direction of 

differential item functioning are challenging for experts to identify a priori. The 

precise algorithm a data analyst may wish to use with the kind of outcome 

measure planned in the target analysis. To avoid proposing to modify assessment 

tools on the basis of results obtained using untested procedures in inadequate 

samples, DIF analysts need to provide themselves and their audience assurance 

that the methods employed are robust and appropriate for the target sample. In 

this digital age long and detailed appendices (or even better, public software 

repositories) provide a platform to easily share code and advance the field 

through dissemination of good procedures. Reviewers and editors should insist 

on this evidence.

Conclusion

The characterization, detection, and amelioration of bias is a fundamental activity for 

epidemiology [51]. Measurement non-invariance and differential item functioning is an 

important source of systematic measurement error that can lead to improper inferences and 

bad judgements. The rapid pace of developments in computer hardware and software on the 

one hand put the tools necessary to identify measurement non-invariance into the hands of 

applied researchers, but on the other hand offer a bewildering array of options with no 

widely accepted and stereotyped modes of analysis [30] which can lead to incomparable 

results. By embracing behaviors consistent with the responsible conduct of quantitative 

research, applied epidemiologists have the opportunity to advance the science of 

measurement in health research and beyond.
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Box A.

Commonly Used Synonyms for Differential Item Functioning

Factorial invariance

Item bias, Item response bias

Invariance, non-invariance

Factorial invariance

Measurement bias

Measurement (non-)invariance

Measurement confounding

Metric invariance

Scalar invariance

Systematic measurement error
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Figure 1. DAG illustrating a basic kind of DIF.
This figure illustrates a basic kind of DIF, where a covariate or predictor (x) has a direct 

relationship with an item (y) even after controlling for how the covariate or predictor relates 

to the underlying construct (f).
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Figure 2. Item characteristic curve
Figure 2 displays a hypothetical item characteristic curve (ICC) for a binary test item. The y-

axis indicates the probability of a randomly selected person from the population endorsing 

the symptom or responding correctly to the test item. The x-axis indicates the level of the 

underlying or latent trait presumed to cause the item response. The scale of the x-axis 

reflects the conventional normal distribution assumption for the latent trait.
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Figure 3. Item characteristic curves for a single binary item in two groups illustrating uniform 
differential item functioning
Figure 3 displays a hypothetical item characteristic curves for two groups. Within a non-

linear transformation, the two lines are parallel. This is indicative of uniform differential 

item functioning.
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Figure 4. Item characteristic curves for a single binary item in two groups illustrating non-
uniform differential item functioning
Figure 4 displays a hypothetical item characteristic curves for two groups. The two ICCs are 

not parallel, even within a non-linear transformation. This is indicative of non-uniform 

differential item functioning.
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Table 1.

Features and considerations of DIF detection alaorithms

Anchor items Anchor items are items that are identified prior to the main DIF analysis and are constrained to have no DIF in the DIF 
detection procedure. These could be items identified before data analysis that -- on the basis of theory, substantive 
knowledge, prior research, or empirically based on preliminary analysis -- the data analyst assumes will not demonstrate 
DIF in the analysis. A priori chosen anchors also helps protect against the problem of constant bias. Constant bias refers to 
the situation where all items in the test function differentially and in a similar fashion for members of the focal group 
relative to the reference group [7]. DIF detection methods will fail to find any items with DIF in such situations, in the 
absence of declared anchors.

Purification When the DIF detection algorithm involves a stepwise procedures and separate DIF detection and IRT calibration 
(estimation of the latent trait value), it may be appropriate to update the IRT ability estimate on the basis of modified item 
parameters given items identified with DIF continually throughout the detection algorithm.

Multiple 
comparisons 
correction

Depending on the algorithm, DIF detection may involve testing multiple hypotheses. As such, it seems reasonable to 
consider using significance thresholds that account for this multiplicity. Some algorithms have been described that use 
Bonferroni correction, Benjamini-Hochberg false discovery procedures, and no correction. There is little guidance in the 
field supported by simulation studies as to which or how multiple comparisons correction should be used. The best answer 
for one procedure might not be the best answer for another algorithm.

Forward vs 
backward 
identification of 
items with DIF

Most DIF detection algorithms proceed in a forward stepwise fashion. That means, initial models assume all items are 
invariant across group and obtain test statistics or other misfit indicators for each item in the test (excluding anchors, as 
appropriate). Given the well-known challenges with stepwise selection in regression models, it is surprising that there is not 
a preference for backwards selection [52,53].

Covariates Some methods for DIF detection allow for the inclusion of covariates [26]. In the context of educational and achievement 
testing, it is plausible that the absence of covariate handling is to be expected due to homogeneity of tested samples (e.g., 
high school seniors taking a college admissions test). In the context of epidemiology, where heterogeneity of tested 
samples might be expected to be greater, the absence of covariate handling can be a critical issue for consideration of an 
appropriate method. In the absence of covariate handling other strategies such as matching and weighting could be used to 
control for confounding.

Flagging rules Some methods of DIF detection will identify items with DIF on the basis of statistical significance, change in model fit, or 
effect size of the detected DIF, or even a combination of these factors. Insofar as the need and character of multiple 
comparisons correction is not clearly understood, a standard nomenclature and benchmarks for effect size have not been 
adopted, and different estimation methods offer different approaches to model fit, this is an important area for the 
emergence of discrepancies across approaches.
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