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Abstract

Vector autoregressive models characterize a variety of time series in which linear combinations of 

current and past observations can be used to accurately predict future observations. For instance, 

each element of an observation vector could correspond to a different node in a network, and the 

parameters of an autoregressive model would correspond to the impact of the network structure on 

the time series evolution. Often these models are used successfully in practice to learn the 

structure of social, epidemiological, financial, or biological neural networks. However, little is 

known about statistical guarantees on estimates of such models in non-Gaussian settings. This 

paper addresses the inference of the autoregressive parameters and associated network structure 

within a generalized linear model framework that includes Poisson and Bernoulli autoregressive 

processes. At the heart of this analysis is a sparsity-regularized maximum likelihood estimator. 

While sparsity-regularization is well-studied in the statistics and machine learning communities, 

those analysis methods cannot be applied to autoregressive generalized linear models because of 

the correlations and potential heteroscedasticity inherent in the observations. Sample complexity 

bounds are derived using a combination of martingale concentration inequalities and modern 

empirical process techniques for dependent random variables. These bounds, which are supported 

by several simulation studies, characterize the impact of various network parameters on estimator 

performance.
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I. Autoregressive Processes in High Dimensions

Imagine recording the times at which each neuron in a biological neural network fires or 

“spikes”. Neu-ron spikes can trigger or inhibit spikes in neighboring neurons, and 

understanding excitation and inhibition among neurons provides key insight into the 
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structure and operation of the underlying neural network [1], [2], [3], [4], [5], [6], [7]. A 

central question in the design of this experiment is “for how long must I collect data before I 
can be confident that my inference of the network is accurate ?” Clearly the answer to this 

question will depend not only on the number of neurons being recorded, but also on what we 

may assume a priori about the network. Unfortunately, existing statistical and machine 

learning theory give little insight into this problem.

Neural spike recordings are just one example of a non-Gaussian, high-dimensional 

autoregressive process, where the autoregressive parameters correspond to the structure of 

the underlying network. This paper examines a broad class of such processes, in which each 

observation vector is modeled using an exponential family distribution. In general, 

autoregressive models are a widely-used mechanism for studying time series in which each 

observation depends on the past sequence of observations. Inferring these dependencies is a 

key challenge in many settings, including finance, neuroscience, epidemiology, and 

sociology. A precise understanding of these dependencies facilitates more accurate 

predictions and interpretable models of the forces that determine the distribution of each new 

observation.

Much of the autoregressive modeling literature focuses on linear auto-regressive models, 

especially with independent Gaussian noise innovations (see e.g. [8], [9], [10], [11]). 

However, in many settings linear Gaussian models with signal-independent noise are 

restrictive and fail to capture the data at hand. This challenge arises, for instance, when 

observations correspond to count data -e.g., when we collect data by counting individual 

events such as neurons spiking. Another example arises in epidemiology, where a common 

model involves infection traveling stochastically from one node in a network to another 

based on the underlying network structure in a process known as an “epidemic cascade” 

[12], [13], [14], [15]. These models are used to infer network structure based on the 

observations of infection time, which is closely related to the Bernoulli autoregressive model 

studied in this paper. Further examples arise in a variety of applications, including vehicular 

traffic analysis [16], [17], finance [18], [19], [20], [21], social network analysis [22], [23], 

[24], [25], [26], biological neural networks [1], [2], [3], [4], [5], [6], [7], power systems 

analysis [27], and seismology [28], [29].

Because of their prevalence across application domains, time series count data (cf [30], [31], 

[32], [33], [34]) and other non-Gaussian autoregressive processes (cf. [35], [36], [37]) have 

been studied for decades. Although a substantial fraction of the this literature is focused on 

univariate time series, this paper focuses on multivariate settings, particularly where the 

vector observed at each time is high-dimensional relative to the duration of the time series. 

In the above examples, the dimension of the each observation vector would be the number of 

neurons in a neural network, the number of people in a social network, or the number of 

interacting financial instruments.

This paper focuses on estimating the parameters of a particular family of time series that we 

call the vector generalized linear autoregressive (GLAR) model which incorporates both 

non-linear dynamics and signal-dependent noise innovations. We adopt a regularized 

likelihood estimation approach that extends and generalizes our previous work on Poisson 
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inverse problems (cf [38], [39], [40], [41]). While similar algorithms have been proposed in 

the above-mentioned literature, little is known about their sample complexity or how 
inference accuracy scales with the key parameters such as the size of the network or number 
of entities observed, the time spent collecting observations, and the density of edges within 
the network or dependencies among entities.

In this paper, we conduct a detailed investigation of the GLAR model. In addition, we 

examine our results for two members of this family: the Bernoulli autoregressive and the 

log-linear Poisson autoregressive (PAR) model. The PAR model has been explicitly studied 

in [42], [43], [44] and is closely related to the continuous-time Hawkes point process model 

[45], [46], [47], [48], [49] and the discrete-time INGARCH model [50], [51], [52], [53]. 

However, that literature does not contain the sample complexity results presented here. The 

INGARCH literature is focused on low-dimensional settings, typically univariate, whereas 

we are focused on the high-dimensional setting where the number of nodes or channels is 

high relative to the number of observations. Additionally, existing sample complexity 

bounds for Hawkes processes [48] focus on a linear (as opposed to log-linear) model with 

samples collected after reaching the stationary distribution. The log-linear model is largely 

used in practice both for numerical reasons and modeling efficacy for real world data. We 

note that linear models can predict inadmissible negative event rates, whereas the log-linear 

model enforces the feasibility of the predicted model. The log-linear and linear models 

exhibit very different behaviors in their properties and stationary distributions, making this 

work a significant step forward from the analysis of linear models. The extension of these 

prior investigations to the high-dimensional, non-stationary setting is non-trivial and requires 

the development of new theory and methods.

In this paper, we develop performance guarantees for the vector GLAR model that provide 

sample complexity guarantees in the high-dimensional setting under lowdimensional 

structural assumptions such as sparsity of the underlying autoregressive parameters. In 

particular, our main contributions are the following:

• Formulation of a maximum penalized likelihood estimator for vector GLAR 

models in highdimensional settings with sparse structure.

• Mean-squared-error (MSE) bounds on the proposed estimator as a function of 

the problem dimension, sparsity, and the number of observations in time for 

general GLAR models. These mean-squared error bounds are identical to the 

bounds in the linear Gaussian setting (see e.g. [8], [54]) up to log and constant 

factors.

• Application of our general result to obtain sample complexity bounds for 

Bernoulli and Poisson GLAR models.

• Analysis techniques for generalized linear models that adapt to signal-dependent 

noise that simultaneously leverage martingale concentration inequalities, 

empirical risk minimization analysis, and covering arguments for high-

dimensional regression.

Hall et al. Page 3

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A. Comparison to Gaussian Analysis

There has been a large body of work providing theoretical results for certain high-

dimensional models under low-dimensional structural constraints (see e.g. [55], [41], [56], 

[57], [58], [59], [60], [61], [49]). The majority of prior work has focused on the setting 

where samples are independent and/or follow a Gaussian distribution. In the GLAR setting, 

however, non-Gaussianity and temporal dependence among observations can make such 

analyses particularly challenging and beyond the scope of much current research in high-

dimensional statistical inference (see [62] for an overview).

This problem is substantially harder than the Gaussian case from a technical perspective 

because we can not exploit linearity and spectral properties of linear Gaussian time-series. In 

our case we have signal-dependent noise, and we can not exploit the same linear spectral 

properties. One of the important steps is to prove a restricted eigenvalue/restricted strong 

convexity condition for high-dimensional models (see e.g. [8], [63], [10]). In the Gaussian 

linear auto-regressive setting, the restricted eigenvalue/strong convexity convexity condition 

reduces studying the covariance structure of Gaussian design matrices. The greatest 

technical challenge associated with non-linear time series models with signal-dependent 

noise is proving a restricted eigenvalue/strong convexity condition. Much of the technical 

work in this manuscript focuses on proving strong convexity of the objective function over 

the domain of Xt for all t.

To further expand on this point, consider momentarily a LASSO estimator of the 

autoregressive parameters. In the classical LASSO setting, the accuracy of the estimate 

depends on characteristics of the Gram matrix associated with the design or sensing matrix. 

This matrix may be stochastic, but it is usually considered independent of the observations 

and performance guarantees for the estimator depend on the assumption that the matrix 

obeys certain properties (e.g., the restricted eigenvalue condition [8], [63], [10]). In our 

setting, however, the “design” matrix is a function of the observed data, which in turn 

depends on the true underlying network or autoregressive model parameters. Thus a key 

challenge in the analysis of a LASSO-like estimator in the GLAR setting involves showing 

that the data- and network-dependent Gram matrix exhibits properties that ensure reliable 

estimates.

Perhaps the most closely related prior work in the high-dimensional setting is [8]. In [8], 

several performance guarantees are provided for different linear Gaussian problems with 

dependent samples including the Gaussian autoregressive model. Since [8] deals exclusively 

with linear Gaussian models, they exploit many properties of linear systems and Gaussian 

random variables that cannot be applied to non-Gaussian and nonlinear autoregressive 

models. In particular, compared to standard autoregressive processes with Gaussian noise, in 

the GLAR setting the conditional variance of each observation is dependent on previous data 

instead of being a constant equal to the noise variance. Works such as [41], [55], [64] 

provide results for non-Gaussian models but still rely on independent observations. 

Weighted LASSO estimators for Hawkes processes address some of these challenges in a 

continuous-time setting [48]. As we show after stating the main results, we achieve the same 

mean-squared error bounds for non-linear time series up to log and constant factors whilst 

avoiding the restrictive linear Gaussian assumptions.
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The remainder of the paper is structured as follows: Section II introduces the generalized 

linear autoregressive model and Section III presents the novel risk bounds associated with 

the regularized maximum likelihood estimator of the process. We then use our theory to 

examine two special cases (the Poisson and Bernoulli models) in Sections III–A and III–B, 

respectively. The main proofs are provided in Section IV, while supplementary lemmas are 

deferred to the appendix. Finally, Section V contains a discussion of our results, their 

implications in different settings, and potential avenues for future work.

II. Problem Formulation

In this paper we consider the generalized linear autoregressive model:

Xt + 1, m Xt p νm + am
* ⊤Xt , (1)

where Xt+1, m is the mth variate of Xt+1 where 1 ≤ m ≤ M, Xt t = 0
∞  are M-variate vectors and 

a* ∈ [αmin, αmax]M is an unknown parameter vector, ν ∈ [νmin, νmax]M is a known, 

constant offset parameter, and p is an exponential family probability distribution. 

Specifically, X ~ p(θ) means that the distribution of the scalar X is associated with the 

density p(x|θ) = h(x) exp[ϕ(x)θ − Z(θ)], where Z(θ) is the so-called log partition function, 

ϕ(x) is the sufficient statistic of the data, and h(x) is the base measure of the distribution. 

Distributions that fit such assumptions include the Poisson, Bernoulli, binomial, negative 

binomial and exponential. According to this model, conditioned on the previous data, the 

elements of Xt are independent of one another and each have a scalar natural parameter. The 

input of the function p in (1) is the natural parameter for the distribution, i.e., νm + am
* ⊤Xt is 

the natural parameter of the conditional distribution at time t + 1 for observation m. A 

similar, but low-dimensional, model appears in [44], but that work focuses on maximum 

likelihood and weighted least squares estimators in univariate settings that are known to 

perform poorly in high-dimensional settings (as is our focus). For these distributions it is 

straightforward to show when they have strongly convex log-partition functions, which will 

be crucial to our analysis. Note that this distribution has 𝔼 ϕ Xt + 1, m | Xt = Z′ ν + am
* ⊤Xt

and  Var  ϕ Xt + 1, m | Xt = Z″ ν + am
* ⊤Xt , the first and second derivatives of the log-partition 

function, respectively. Compared to standard autoregressive processes with Gaussian noise, 

the conditional variance is now dependent on previous data instead of being a constant equal 

to the noise variance.

We can state the conditional distribution explicitly as:

ℙ Xt + 1 Xt = ∏
m = 1

M
h Xt + 1, m exp ϕ Xt + 1, m νm + am

* ⊤Xt − Z νm + am
* ⊤Xt ,

where h is the base-measure of the distribution p. Using this equation and observations, we 

can find an estimate for the network A* which is constructed row-wise by am*  (i.e. am
* ⊤ is the 

mth row of A*).
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In general, we observe T + 1 samples Xt t = 0
T  and our goal is to infer the matrix A*. In the 

setting where M is large, we need to impose structural assumptions on A* in order to have 

strong performance guarantees. Let

𝒮: = (𝓁, m) ∈ 1, …, M 2: A𝓁, m* ≠ 0 .

In this paper we assume that the matrix A* is s-sparse, meaning that A* belongs to the 

following class:

𝒜s = A ∈ amin, amax
M × M A 0 ≤ s .

where A 0: = Σ𝓁 = 1
M Σm = 1

M 1 A𝓁, m ≠ 0  and 1(·) is the indicator function. That is, we 

assume 𝒮 ≤ s. Furthermore, we define

ρm ≜ am* 0  and  ρ ≜ max
m

ρm,

so ρ is the maximum number of non-zero elements in a row of A*.

We might like to estimate A* via a constrained maximum likelihood estimator by solving 

the following optimization problem:

arg min
A ∈ 𝒜s

1
T ∑

t = 0

T − 1
∑

m = 1

M
Z νm + am

⊤Xt − am
⊤Xtϕ Xt + 1, m (2)

or its Lagrangian form

arg min
A ∈ amin, amax

M × M

1
T ∑

t = 0

T − 1
∑

m = 1

M
Z νm + am

⊤Xt − am
⊤Xtϕ Xt + 1, m + λ A

0

. (3)

However, these are difficult optimization problems due to the non-convexity of the ℓ0 norm. 

Therefore, we instead find an estimator using the element-wise ℓ1 regularizer, the convex 

relaxation of the ℓ0 function, along with the negative log-likelihood to create the following 

estimator:

A = arg min
A ∈ amin, amax

M × M

1
T ∑

t = 0

T − 1
∑

m = 1

M
Z νm + am

⊤Xt − am
⊤Xtϕ Xt + 1, m + λ

A

1, 1

,
(4)
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where ∥·∥1 is the ℓ1 norm and ‖A‖1, 1 = Σm = 1
M ‖am‖1. The above is the regularized maximum 

likelihood estimator (RMLE) for the problem, which attempts to find an estimate of A* 

which both fits the empirical distribution of the data while also having many zerovalued 

elements. Notice that we assume the elements of A* are bounded and we use these bounds 

in the estimator definition. One reason for this is that bounds on the elements of A* can 

enforce stability. If the elements of A* are allowed to be arbitrarily large, the system may 

become unstable and therefore impossible to make proper estimates. Knowing loose bounds 

facilitates our analysis but in practice does not appear to be necessary. In the experiment 

section we discuss choosing these bounds in the estimation process.

We note that while we assume that ν is a known constant vector, if we assume there is some 

unknown constant offset that we would like to estimate, we can fold it into the estimation of 

A. For instance, consider appending ν as an extra column of the matrix A*, and appending a 

1 to the end of each observation Xt. Then for indices 1, …, M the observation model 

becomes Xt + 1, m | Xt p am
* ⊤Xt  where am*  and Xt are the appended versions. We can then find 

the RMLE of this distribution to find both A and ν, but for clarity of exposition we assume a 

known ν.

Estimating the network parameters in the autoregressive setting with Gaussian observations 

can be formulated as a sparse inverse problem with connections to the well-known LASSO 

estimator. Consider the problem of estimating the am* . Define

ym =

X2, m
X3, m

⋮
XT , m

and

X =

X1, 1 X1, 2 ⋯ X1, M
X2, 1 X2, 2 ⋯ X2, M

⋮ ⋮ ⋱ ⋮
XT − 1, 1 XT − 1, 2 ⋯ XT − 1, M

,

where ym is the time series of observed counts associated with the mth node and X is a 

matrix of the observed counts associated with all nodes. Then ym = Xam* + ϵm, where 

ϵm: = ym − Xam*  is noise, and we could consider the LASSO estimator for each m:

am = arg min
a

ym − Xa 2
2 + λ a

1
.

However, there are two key challenges associated with the LASSO estimator in this context: 

(a) the squared residual term does not account for the non-Gaussian statistics of the 
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observations and (b) the “design matrix” is data-dependent and hence a function of the 

unknown underlying network. In classical LASSO analyses, performance bounds depend on 

the design matrix satisfying the restricted eigenvalue condition or restricted isome-try 
property or some related condition; it is relatively straightforward to ensure such a condition 

is satisfied when the design matrix is independent of the data, but much more challenging in 

the current context. As a result, despite the fact that we face a sparse inverse problem, the 

existing LASSO literature does not address the subject of this proposal.

III. Main results

In this section, we turn our attention to deriving bounds for ‖A − A*‖F
2 , the difference in 

Frobenius norm between the regularized maximum likelihood estimator, A, and the true 

generating network, A*, under the assumption that the true network is sparse. We assume 

that A* ∈ 𝒜s. Recall ρ ≜ max
m

am*
0
 is the maximum number of non-zero elements in a row of 

A*. First we define a family of autoregressive processes, 𝒢 generated by Equation 1 that will 

permit low approximation errors in the sparse regime. The definition of this class involves 

several sufficient conditions that concern stability and convexity of the autoregressive 

process that allow the underlying network to be estimated successfully. Without stability of 

the process it would be impossible to learn about the underlying model, this is similar to the 

assumption that the maximum eigenvalue of a Gaussian Autoregressive process being 

bounded by 1. The convexity conditions similarly are sufficient for learning the underlying 

network and in generally more easily satisfied in the Gaussian case due to the form of the 

distribution function. For general exponential family distributions it requires proving which 

distributions would fit into this family. After the definition of this class of autoregressive 

processes and statement of the main theorem, we show significant results proving that both 

the Bernoulli and Poisson distributions fit in this family.

Definition III.1.

We define a class of autoregressive processes 𝒢 as any process generated by Equation 1 such 

that for any realization there exists a subset of observations X𝒯t t = 1

𝒯
 for 

𝒯 ⊆ 0, 1, …, T − 1  that satisfies the conditions:

1. There exists a constant U such that U ≥ maxt ∈ 𝒯 Xt ∞ where U is independent 

of T.

2. Z(·) is σ-strongly convex on a domain determined by U:

Z(x) ≥ Z(y) + Z′(y)(x − y) + σ
2 x − y

2
2

for all x, y ∈ [ − ν − 9ρaU, ν + 9ρaU] where ν ≜ max νmin , νmax , and 

a ≜ max amin , amax , where σ is independent of T.
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3. The smallest eigenvalue of Γt ≜ 𝔼 X𝒯t
X𝒯t

⊤ | Xt − 1  is lower bounded by ω > 0, 

which is independent of T.

We define the constant ξ as a constant such that ξ ≜ 𝒯 /T, which will be determined in part 

by the constant U, and can be set such that ξ is very close to 1.

For ξ ≈ 1, membership in 𝒢 means most of the observed data is bounded independent of T. 

The condition allows us to analyze time series in which the maximum of a series of iid 

random variables can grow with T, but any percentile is bounded by a constant. Our analysis 

will then be conducted on the bounded series X𝒯t t = 1

𝒯
. We prove to these conditions to be 

true with high probability for the Bernoulli and Poisson cases in Sections III–A and III–B, 

respectively, and the corresponding values of U, σ, ξ, and ω are computed explicitly. Other 

exponential family distributions and their associated autoregressive processes likely belong 

to 𝒢 as well, but proving the conditions and parameters of their inclusion remains an open 

problem beyond the scope of this paper

Theorem 1.

Assume λ ≥ max
1 ≤ m ≤ M

2
T ∑t = 0

T − 1 ϕ Xt + 1, m − 𝔼 ϕ Xt + 1, m Xt Xt ∞ and let A be the RMLE 

for a process which belongs to 𝒢 as defined in Definition III.1. For any row of the estimator 
and for any δ ∈ (0,1), with probability at least 1 — δ,

am − am* 2
2 ≤ 144

ξ2σ2ω2 ρmλ2

for T ≥
cρm

2

ω2
ρmlog(2M)

ω2 + log(1/δ)  where c is independent of M, T, ρ and s. Furthermore,

A − A* F
2 ≤ 144

ξ2σ2ω2sλ2

with probability greater than 1 – δ for T ≥ cρ2

ω2
ρ

ω2 + 1 log(2M) + log(1/δ) .

To apply Theorem 1 to specific GLAR models, we need to provide bounds on λ, as well as 

σ, ω, U and ξ for inclusion in 𝒢. We do this in the next section for Bernoulli and Poisson 

GLAR models.

We can compare the results of Theorem 1 to the related results of [8]. In that work they 

arrive at rates for the Gaussian autoregressive process that are equivalent with respect to the 

sparsity parameter, number of observations and regularization parameter. However, we incur 

slightly different dependencies on ξ, σ and ω. These are due mainly to the fact that our 

bounds hold for a wide family of distributions and not just the Gaussian case, which has nice 

properties related to restricted strong convexity and specialized concentration inequalities. 
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Additionally, the way λ is defined is very similar, but bounding λ for a non-Gaussian 

distribution will result in extra log factors. It is an open question whether this bound is rate 

optimal in the general setting.

A. Result 1: Bernoulli Distribution—For the Bernoulli distribution we have the 

following autoregressive model:

Xt + 1, m Xt Bernoulli  1
1 + exp −ν − am

* ⊤Xt
. (5)

The first observation about this model is that the sufficient statistic ϕ(x) = x and the log-

partition function Z(θ) = log(l + exp(θ)), which is strongly convex when the absolute value 

of θ is bounded. One advantage of this model is that the observations are inherently bounded 

due to the nature of the Bernoulli distribution, so 𝒯 = [0, 1, …, T − 1] and ξ = l. Using this 

observation we derive the strong convexity parameter of Z on the bounded range, thus 

σ = (3 + exp(ν + 9ρa))−1.

To derive rates from Theorem 1, we must prove that this process belongs to 𝒢 as defined in 

Definition III.1; this is shown with high-probability by Theorem 2.

Theorem 2.

For a sequence Xt generated from the Bernoulli autoregressive process with the matrix A* 

and the vector ν, we have the following properties:

1. The smallest eigenvalue of the matrix Γt = 𝔼 XtXt
⊤ | Xt − 1  is lower bounded by 

ω = (3 + exp(ν + ρa))−1.

2. Assuming 1 ≤ t ≤ T and that T ≥ 2 and log(MT) ≥ 1, then

max
1 ≤ i, j ≤ M

1
T ∑

t = 0

T − 1
Xt − 1, i Xt, j − 𝔼 Xt, j | Xt − 1 ≤ 3 log(MT)

T

with probability at least at least 1 − 1
MT .

Using these results we get the final sample error bounds for the Bernoulli autoregressive 

process.

Corollary 1.

The RMLE for the Bernoulli autoregressive process defined by Equation 5, and setting 

λ = 6log(MT)
T  has error bounded by

A* − A F
2 ≤ C 3 + eν + 9a 4s log2(MT)

ξ2T
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with probability at least 1 − δ for T ≥ max 2
δM , cρ2

ω2 1 + ρ

ω2 log(2M) + log(2/δ)  for constants 

C, c > 0 which are independent of M, T, s and ρ.

The lower bound on the number of observations T comes from needing to satisfy the 

conditions of both parts of Theorems 1 and 2. In order to get this statement we use a union 

bound over the high probability statements of Theorem 1 described in (9) and Theorem 2 

which holds with probability greater than 1 − 1
MT .

B. Result 2: Poisson Distribution—In this section, we derive the relevant values to get 

error bounds for the vector autoregressive Poisson distribution. Under this model we have

Xt + 1, m Xt Poiss exp ν + am
* ⊤Xt .

We assume that αmax = 0 for stability purposes, thus we are only modeling inhibitory 

relationships in the network. Deriving the sufficient statistic and log-partition function yields 

ϕ(x) = x and Z(θ) = exp(θ). The next important values are the bounds on the magnitude of 

the observations, which will both ensure the strong convexity of Z and the stability of the 

process.

Lemma 1.

For the Poisson autoregressive process generated with A* ∈ [αmin, 0]M×M and constant 
vector ν ∈ [νmin, νmax]:

1. If log MT ≥ 1, there exists constants C and c which depend on the value νmax, 

but are independent of T,M,s and ρ such that 0 ≤ Xt, m ≤ C log(MT) with 
probability at least 1 – e−clog(MT) for all 1 ≤ t ≤ T and 1 ≤ m ≤ M.

2. For any α ∈ (0, 1) such that αMT is an integer, there exist constants U and c 
which depend on the values of νmax and α, but independent of T, M, s and ρ, 
such that with probability at least 1−e−cMT, 0 ≤ Xt, m ≤ U for at least αMT of the 
indices. We define 𝒯 to be these αMT indices.

As a consequence of Lemma 1, we have ∥|Xt∥∞ ≤ U for at least ξT values of t ∈ {1, 2, …, 

T} where ξ = 1 − (1 – α)M. We additionally assume that U is large enough such that 

α > M − 1
M  and therefore ξ ∈ (0,1).

Using this Lemma, we prove that this process belongs to 𝒢 with high-probability, by 

deriving the strong convexity parameter of Z and a lower bound on the smallest eigenvalue 

of Γt. In the Poisson case, Z(·) = exp(·) and therefore the strong convexity parameter, 

σ = exp −ν + 9ρaminU .

Theorem 3.

For a sequence Xt generated from the Poisson autoregressive process with the matrix A*, 
with all non-positive elements, and the vector ν, we have the following properties
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1. The smallest eigenvalue of the matrix Γt = 𝔼 X𝒯t
X𝒯t

⊤ | X𝒯t − 1
, for consecutive 

indices 𝒯t and 𝒯t − 1 in 𝒯 as defined in the definition of 𝒢, is lower bounded by 

4ξ
5 exp νmin + ρaminU .

2. Assuming Xt, m ≤ C log(MT) for all 1 ≤ m ≤ M and 1 ≤ t ≤ T and that T ≥ 2 and 
log (MT) ≥ 1, then

max
1 ≤ i, j ≤ M

1
T ∑

t = 0

T − 1
Xt − 1, i Xt, j − 𝔼 Xt, j | Xt − 1 ≤ 4C2e

νmaxlog3(MT)
T

with probability at least at least 1−exp(−clog (MT)) for some c > 0 independent 
of ρ, s,M and T.

Using Theorem 3, we can find the error bounds for the PAR process by using the result of 

Theorem 1.

Corollary 2.

Using the results of Theorem 1 and using the Poisson autoregressive model with A* with all 
nonpositive values, the RMLE admits the overall error rate of

A − A* F
2 ≤ Cexp 20 amin Uρ slog6(MT)

ξ3T

with probability at least 1 − δ for T ≥ max 4
δM

c
, cρ2

ω2
ρ

ω2 + 1 log(2M) + log(4/δ)  for 

constants C, c > 0 which are independent of M, T, s and ρ

Again, the lower bound on the number of observations comes from combining the high 

probability statements of each of the constituent parts of the corollary in the same way as 

was done in the Bernoulli case. In this case all of Theorem 1, both parts of Lemma 1 and 

Theorem 3 need to hold.

Remark:

It is worthwhile comparing the theoretical results in the Bernoulli and Poisson processes 

compared to results for Gaussian processes in [8], [10]. The mean-squared error bounds in 

the Gaussian case is slogM
T  [8], [10] whilst our bound for Bernoulli, Poisson, and Gaussian 

random variables are the same up to log and constant factors. The additional log factors arise 

because our analysis is more general and does not exploit specific properties of the linear 

Gaussian process. Hence our analysis is not optimal in the linear Gaussian setting since 

additional log factors are incurred to ensures the process satisfies Definition III.1 using our 

more general analysis that applies to non-linear models with signal-dependent noise.
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C. Experimental Results—We validate our theoretical results with experimental results 

performed on synthetically generated data using the Poisson autoregressive process. We 

generate many trials of synthetic data with known underlying parameters and then compare 

the estimated values. For all trials the constant offset vector ν is set identically at 0, and the 

20×20 matrices A* are set such that s randomly assigned values are in the range [−1,0] and 

with constant ρ = 5. Data is then generated according the process described in Equation 1 

with the Poisson distribution. X0 is chosen as a 20 dimensional vector drawn randomly from 

Poisson(1), then T observations are used to perform the estimation. The parameters s and T 
are then varied over a wide range of values. For each (s, T) pair 100 trials are performed, the 

regularized maximum likelihood estimate A is calculated with λ = 0.1/ T and the MSE is 

recorded. The MSE curves are shown in Figure 1. Notice that the true values of A* are 

bounded by −1 and 0, but in our implementation we do not enforce these bounds (we set 

αmin = −∞ and αmax = to in Equation 4). While αmin = −∞ would cause the theoretical 

bounds to be poor, the theory can be applied with the smallest and largest elements of the 

matrix estimated from the unconstrained optimization. In other words, the theory depends on 

having an upper and lower bound on the rates, but mostly as a theoretical convenience, while 

the estimator can be computed in an unconstrained way.

We show a series of plots which compare the MSE versus increasing behavior of T and s, as 

well as comparing the behavior of MSE·T and of MSE/s. Plotted in each figure is the median 

of 100 trials for each (s, T) pair, with error bars denoting the middle 50 percentile. These 

plots show that setting λ proportional to T−1 gives us the desired T−1 error decay rate. 

Additionally, we see that the error increases approximately linearly in the sparsity level s, as 

predicted by the theory. Finally, Figure 2 shows one specific example process and the 

estimates produced. The first image is the ground truth matrix, generated to be block 

diagonal, in order to more easily visualize support structure whereas in the first experiment 

the support is chosen at random. One set of data is generated using this matrix, and then 

estimates are constructed using the first T = 100, 316 and 1000 data points. The figure shows 

how with more data, the estimates become closer to the original, where much of the error 

comes from including elements off the support of the true matrix.

One important characteristic of the our results is that it does not depend on any assumptions 

about the stationarity or the mixing time of the process. To show that this is truly a property 

of the system and not just our proof technique, we repeat the experimental process described 

above, but for each set of observations of length T, we first generate 10,000 observations to 

allow the process to mix. In other words, for every matrix A we generate T+10,000 

observations, but only use the last T to find the RMLE. The plots in figure 3 show the results 

of this experiment. The important observation is that the results both scale the same way, and 

have approximately the same magnitude as the experiment when no mixing was done.

Up to this point we have shown the results of estimating the underlying network when the 

data was generated using a Poisson Autoregressive Process and using the RMLE associated 

with it. We have shown these results in order to demonstrate that the rates predicted by our 

theoretical error bounds match the rates seen empirically. A natural question is how well 

would estimating the underlying network perform when the data generation process was 

Poisson Autoregressive? Gaussian estimators have many nice properties and their error rates 
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have been studied extensively, so being able to use this as an estimator would seem like a 

logical choice if the approximation error with the non-Gaussian data was relatively small. To 

test this hypothesis data was generated in much the same way as the previous experimental 

set-ups, except values in the A* matrix were allowed to vary from 0 to −2.5, meaning even 

more inhibition was possible. We then made estimates of the underlying network using both 

the Poisson AR loss function as well as the more traditional Gaussian, using the same 

regularization parameter for each. The results of these experiments are shown in Figure 4. 

These plots show a few key characteristics, the most important being that the Poisson based 

objective function soundly outperforms the Gaussian. We also see that as the time horizon 

gets larger, meaning more observations are available, and as sparsity decreases the gap 

between the two increases. Both of these make intuitive sense because as more observations 

are revealed the Poisson objective function can more closely narrow in on the underlying 

network whereas the Gaussian objective function is still stuck with some amount of 

approximation error that will not decrease with increasing data. Additionally as more 

elements of the matrix A* are non-zero, the Gaussian estimate will get worse comparatively 

because it will be wrong in more locations. With a very sparse true matrix the Gaussian 

estimate could set lots of elements to zero and be “accidentally” correct, which will not 

happen with a less sparse true matrix. For all of these reasons, we find it convincing that 

using the objective function which matches the generative process to be extremely important 

for accurate estimation in the autoregressive regime.

IV. Proofs

A. Proof of Theorem 1

Proof: We start the proof by making an important observation about the estimator defined in 

Equation 4: this loss function can be completely decoupled by a sum of functions on rows. 

Therefore we can bound the error of a single row of the RMLE and add the errors to get the 

final bound. For each row we use a standard method in empirical risk minimization and the 

definition of the minimizer of the regularized likelihood for each row:

1
T ∑

t = 0

T − 1
Z νm + am

⊤Xt − am
⊤Xtϕ Xt + 1, m + λ am 1

≤ 1
T ∑

t = 0

T − 1
Z νm + am

* ⊤Xt + am
* ⊤Xtϕ Xt + 1, m + λ am* 1 .

We define ϵt, m ≜ ϕ Xt + 1, m − 𝔼 ϕ Xt + 1, m | Xt , which is conditionally zero mean random 

variable. By using a moment generating function argument, we know that 

𝔼 ϕ Xt + 1, m | Xt = Z′ νm + am
* ⊤Xt , and therefore ϕ Xt + 1, m = Z′ νm + am

* ⊤Xt + ϵt, m. Hence
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1
T ∑

t = 0

T − 1
Z νm + am

⊤Xt − am
⊤Xt Z′ νm + am

* ⊤Xt + ϵt, m + λ am 1 ≤ 1
T ∑

t = 0

T − 1
Z νm + am

* ⊤Xt

− am
* ⊤Xt Z′ νm + am

* ⊤Xt + ϵt, m + λ am* 1 .

Now we use the definition of a Bregman divergence to lower bound the left hand side. An 

important property of Bregman divergences is that if they are induced by a strongly convex 

function, then the Bregman can be lower bounded by a scaled ℓ2 difference of its arguments. 

This is where our squared error term will come.

1
T ∑

t = 0

T − 1
Z νm + am

⊤Xt − Z νm + am
* ⊤Xt − Z′ νm + am

* ⊤Xt am
⊤Xt − am

* ⊤Xt ≤ 1
T ∑

t = 0

T − 1
ϵt, mΔm

⊤Xt

+ λ am* 1 − am 1 ,

where Δm = am − am* .  Let BZ( ⋅ ⋅ ) denote the Bregman divergence induced by Z. Hence

1
T ∑

t = 0

T − 1
BZ νm + am

⊤Xt νm + am
* ⊤Xt ≤ 1

T ∑
t = 0

T − 1
ϵt, mΔm

⊤Xt + λ am* 1 − am 1 .

First we upper bound the right-hand side of the inequality as follows:

1
T ∑

t = 0

T − 1
BZ νm + am

⊤Xt νm + am
* ⊤Xt

≤ 1
T ∑

t = 0

T − 1
ϵt, mΔm

⊤Xt + λ am* 1 − am 1

= 1
T ∑

t = 0

T − 1
ϵt, mΔm

⊤Xt + λ am, 𝒮* 1 − am, 𝒮 1 − a
m, 𝒮c 1

)

≤ 1
T ∑

t = 0

T − 1
ϵt, mΔm

⊤Xt + λ Δm, 𝒮 1 − λ Δ
m, 𝒮c 1

≤ Δm 1
1
T ∑

t = 0

T − 1
Xtϵt, m

∞
+ λ Δm, 𝒮 1 − λ Δ

m, 𝒮c 1

In the above, we use the defintion of 𝒮 as the true support of A* and have used the 

decomposability of ∥·∥1. The decomposability of the norm means that we have the property 

x 1 = x𝒮 1 + x𝒮C 1.

Note that 1
T ∑t = 0

T − 1 Xtϵt, m ∞
≤ max1 ≤ m ≤ M

1
T ∑t = 0

T − 1 Xtϵt, m ∞
. Under the assumption that 

max
1 ≤ m ≤ M

1
T ∑t = 0

T − 1 Xtϵt, m ∞
≤ λ/2 and by the non-negativity of the Bregman divergence on 

the left hand side of the inequality, we have that
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0 ≤ λ
2 Δm 1 + λ Δm, 𝒮 1 − λ Δ

m, 𝒮c 1
.

Using the decomposability of the ℓ1 norm, this inequality implies that for all rows 1 ≤ m ≤ 

M, we have that Δ
m, 𝒮c 1

≤ 3 Δm, 𝒮 1. Since Δ
m, 𝒮c 1

≤ 3 Δm, 𝒮 1, Δm 1 ≤ 4 Δm, 𝒮 1

and consequently

Δm 1 ≤ 4 ∑
j ∈ 𝒮

Δm, j ≤ 8ρma

where the final inequality follows since Δm, j ≤ 2a for all j. Using this inequality and the 

fact that am* 1 ≤ ρma implies that am 1 ≤ 9ρma, and therefore for all t ∈ 𝒯 the range of both 

νm + am
* ⊤Xt and νm + am

⊤Xt are in [−ν − 9ρa, ν + 9ρa].

Now to lower bound the Bregman divergence in terms of the Frobenius norm, we use the 

first condition of membership in 𝒢. Inherently, the RMLE will admit estimates which should 

converge to the true matrix A* under a Bregman divergence induced by the log-partition 

function, but we are interested in convergence of the Frobenius norm. Therefore, to convert 

from one to the other, we require the log-partition function to be strongly convex. This issue 

is side-stepped in the Gaussian noise case, due to the fact that the Bregman in question 

would identically be the Frobenius norm. By Definition III.1, Z is σ-strongly convex, and 

therefore on T it is true that BZ νm + am
⊤Xt νm + am

* ⊤Xt ≥ σ
2 Δm

⊤Xt
2
 and 

BZ νm + am
⊤Xt νm + am

* ⊤Xt ≥ 0 on the rest of the time indices.

Therefore

1
T ∑

t = 0

T − 1
BZ νm + am

⊤Xt νm + am
* ⊤Xt ≤ λ

2 Δm 1 + λ Δm, S 1 − λ Δ
m, 𝒮c 1

,

Implies

σ
2T ∑

t ∈ 𝒯
Δm

⊤Xt
2 ≤ λ

2 Δm 1 + λ Δm, 𝒮 1 − λ Δ
m, 𝒮c 1

.

Define Δm T
2 = 1

T ∑t ∈ 𝒯 Δm
⊤Xt

2
 for any Δ ∈ ℝM × M, then we have the bound:

σ
2   Δm T

2 ≤ λ
2 Δm 1 + λ Δm, 𝒮 1 − λ Δ

m, 𝒮c 1
≤ 3λ

2 Δm, 𝒮 1 .

Therefore we can define the cone on which the vector Δm must be defined:
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ℬm, 𝒮: = Δ ∈ amin − amax, amax − amin
M Δ

m, 𝒮c 1
≤ 3 Δm, 𝒮 1 ,

and restrict ourselves to studying properties of vectors in that set. Since 

Δm, 𝒮 1 ≤ ρm Δm 2 where ρm is the number of non-zeros of am* , we have that

Δm T
2 ≤ 3

σ λ ρm Δm 2 = δm Δm 2, (6)

where δm ≜ 3
σ λ ρm Now we consider three cases: if ∥Δm∥T ≥ ∥Δm∥2, then max(∥Δm∥T, 

∥Δm∥2) ≤ δm. On the other hand if ∥Δm∥T ≤ ∥Δm∥2 and ∥Δm∥2 ≤ δm, then max(∥Δm∥T, ∥Δm∥2) 

≤ δm.

Hence the final case we need to consider is ∥Δm∥T ≤ ∥Δm∥2 and ∥Δm∥2 ≥ δm. Now we follow 

a similar proof technique to that used in Raskutti et al. [60] adapted to dependent sequences, 

to understand this final scenario. Let us define the following set:

ℬm δm : = Δm ∈ ℬm, 𝒮 Δm 2 ≥ δm . (7)

Further, let us define the alternative set:

ℬm′ δm : = Δm ∈ ℬm, 𝒮 Δm 2 = δm . (8)

We wish to show that for Δm ∈ ℬm δm , we have Δm T
2 ≥ κ Δm 2

2 for some κ ∈ (0, 1) with 

high probability, and therefore Equation 6 would imply that max(∥Δm∥T, ∥Δm∥2) ≤ δm/κ. We 

claim that it suffices to show that Δm T
2 ≥ κ Δm 2

2 is true on ℬm′ δm  (δm) with high 

probability. In particular, given an arbitrary non-zero Δm ∈ ℬm δm , consider the re-scaled 

vector Δm =
δm

Δm 2
Δm. Since Δm ∈ ℬm δm , We have Δm ∈ ℬm δm  and Δm 2 = δm by 

construction. Together, these facts imply Δm ∈ ℬm′ δm . Furthermore, if Δm T
2 ≥ κ Δm 2

2 is 

true, then Δm T
2 ≥ κ Δm 2

2 is also true. Alternatively if we define the random variable 

𝒵T ℬm′ = supΔm ∈ ℬm′ δm
δm

2 − Δm T
2 , then it suffices to show that 𝒵T ℬm′ ≤ (1 − κ)δm

2 .

For this step we use some recent concentration bounds [65] and empirical process 

techniques [66] for martingale random variables. Recall that the empirical norm is 

Δm T
2 = 1

T ∑t ∈ 𝒯 Δm
T Xt

2
. Further let ti i = 1

|𝒯|  denote the indices in 𝒯. Next we define the 

conditional expectation
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YT : = 1
T ∑

i = 1

𝒯
𝔼 Δm

T Xti

2
Xt1

, Xt2
, …, Xti − 1 .

Then we have

𝒵T ℬm′ =   sup
Δm ∈ ℬm′ δm

δm
2 − Δm T

2 ≤   sup
Δm ∈ ℬm′ δm

δm
2 − YT + sup

Δm ∈ ℬm′ δm

YT − Δm T
2 .

To bound the first quantity, sup
Δm ∈ ℬ′m δm

δm
2 − YT , we first note that

sup
Δm ∈ ℬm′ δm

δm
2 − YT ≤ δm

2 − δm
2 ω = (1 − ω)δm

2

by the definition of 𝒢 and the fact that ‖Δm‖2
2 = δm

2  since Δm ∈ ℬm′ δm . Thus

𝒵T ℬm′ ≤ (1 − ω)δm
2 + sup

Δm ∈ ℬm′ δm

YT − Δm T
2 .

Now we focus on bounding sup sup
Δm ∈ ℬ′m δm

YT − Δm T
2 . First, we use a martingale 

version of the bounded difference inequality using Theorem 2.6 in [65] (see Appendix VII–

D):

sup
Δm ∈ ℬm′ δm

YT − Δm T
2 ≤ 𝔼 sup

Δm ∈ ℬm′ δm

YT − Δm T
2 +

ωδm
2

4 ,

with high probability. Recall that on 𝒯, we have 0 ≤ Δm
⊤Xt

2 ≤ Δm 1
2 Xt ∞

2 ≤ U2 Δm 1
2

Because Δm ∈ ℬ′m δT , it is true that Δm 1 ≤ 4 Δm, 𝒮 1. We then use the the relationship 

between the ℓ1 and ℓ2 norms to say Δm, 𝒮 1 ≤ ρm Δm, 𝒮 2 ≤ ρm Δm 2 where ρm is the 

number of non-zeros in the mth row of the true matrix A*. Putting these together means 

Δm
⊤Xt

2 ≤ 16U2ρmδm
2 . In particular, we apply Theorem 4 in Appendix VII–D with 

ZT = sup
Δm ∈ ℬ′m δm

YT − Δm T
2 , a =

ωδm
2

4 , Lt = −
16U2ρmδm

2

T  and Ut =
16U2ρmδm

2

T , and 

therefore CT
2 =

324U4ρm
2 δm

4

T . Therefore, applying Theorem 4
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sup
Δm ∈ ℬm′ δm

YT − Δm T
2 ≤ 𝔼 sup

Δm ∈ ℬm′ δm

YT − Δm T
2 +

ωδm
2

4 ,

with probability at least 1 − exp − 2T

324U4ρm
2 . Since T ≥ 324U4ρm

2 log(M), the above statement 

holds with probability at least 1 − 1
M2 . Hence

𝒵T ℬm′ ≤ (1 − ω)δm
2 +

ωδm
2

4 + 𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2 .

Now we bound 𝔼 sup
Δm ∈ ℬ′m δm

YT − Δm T
2 . Here we use a recent symmetrization 

technique adapted for martingales in [66]. To do this, we introduce the so-called sequential 

Rademacher complexity defined in [66]. Let ϵt t = 1
T  be independent Rademacher random 

variables, that is ℙ ϵt = + 1 = ℙ ϵt = − 1 = 1
2 . For a function class ℱ, the sequential 

Rademacher complexity ℛT(ℱ) is:

ℛT(ℱ): = sup
X1, X2, …, XT

𝔼 sup
f ∈ ℱ

1
T ∑

t = 1

T
ϵt f Xt ϵ1, ϵ2, …, ϵt − 1 .

Note here that Xt is a function of the previous independent random variables (ϵ1, ϵ2, …, 

ϵt−1). Using Theorem 2 in [66] (also stated Appendix VII–D) with f Xt = Δm
T Xt

2
 and 

noting that even though we use the index set 𝒯, Xt t ∈ 𝒯 is still a martingale, it follows that:

𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2 ≤ 2 sup

Xt1
, Xt2

, …, X 𝒯
𝔼 sup

Δm ∈ ℬm′ δm

1
T ∑

i = 1

𝒯
ϵti

Δm
T Xti

2
.

Additionally since Δm
⊤Xt ≤ 4U ρmδm by the argument above and using the symmetry of 

Rademacher random variables
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𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2

≤ 2 sup
X1, X2, …, X 𝒯

𝔼 sup

Δm ∈ ℬm
δm

1
T ∑

i = 1

𝒯
ϵti

Δm
T Xti

Δm
T Xti

≤ 8U ρmδm sup
X1, X2, …, X T

𝔼 sup
Δm ∈ ℬm′ δm

1
T ∑

i = 1

𝒯
ϵti

Δm
T Xti

The final step is to upper bound the sequential Rademacher complexity 

ℛT = 𝔼 sup
Δm ∈ ℬ′m δm

1
T ∑i = 1

|𝒯| ϵtΔm
⊤Xti

 where Xti is a function of (ϵ1, ϵ2, …, ϵti−1). 

Clearly:

1
T ∑

i = 1

𝒯
ϵtΔm

⊤Xti
≤ 1

T ∑
i = 1

𝒯
ϵtXti ∞

Δm 1 .

Because Δm ∈ ℬm′ δm  we have Δm 1 = Δm, 𝒮 1 + Δ
m, 𝒮c 1

≤ 4 Δm, 𝒮 1 and 

Δm, 𝒮 1 ≤ ρm Δm, 𝒮 2 ≤ ρm Δm 2 = ρmδm.

𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2

≤ 8U ρmδm sup
X1, X2, …, X 𝒯

𝔼 sup
Δm ∈ ℬm′ δm

1
T ∑

i = 1

𝒯
ϵti

Δm
T Xti

≤ 8U ρmδm sup
X1, X2, …, X T

1
T ∑

i = 1

𝒯
ϵti

Xti
ϵ1, …, ϵti − 1

∞
sup

Δm ∈ ℬm′ δm

Δm 1

≤ 32U2ρmδm
2 sup

X1, X2, …, X T
  1

T ∑
i = 1

𝒯
ϵti

Xti
ϵ1, …, ϵti − 1

∞
.

Finally, we use Lemma 6 applied to the index set 𝒯 :
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𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2

≤ 32U2ρmδm
2 sup

X1, …, X T

1
T ∑

i = 1

𝒯
ϵti

Xti
ϵ1, …, ϵti − 1

∞

≤ 128U4ρmδm
2 log(MT)

T
,

with probability at least 1 − 1
(MT)2

. Now if we set T =
2562U8ρm

2 log2(MT)

ω2 ,

𝔼 sup
Δm ∈ ℬm′ δm

YT − Δm T
2 ≤

ωδm
2

4

with probability 1 – (MT)−2.

Overall this tells us that on the set ℬm′ δm  we have that Δm T
2 ≥ 3ω

4 Δm 2
2 with high 

probability. Now we return to the main proof. After considering all three cases that can 

follow from 6, we have

max Δm 2
2, Δm T

2 ≤ 144
σ2ω2ξ2 ρmλ2

with probability at least 1 − exp
c′ρm

ω2 log(2M) − cω2T

ρm
2 , which bounds the error accrued on any 

single row, as a function of the sparsity of the true row. Combining, to get an overall error 

yields,

A − A* F
2 ≤ 144

σ2ω2ξ2λ2 ∑
m = 1

M
ρm = 144

σ2ω2ξ2λ2s

with probability at least

1 − exp log(M) + c′ρ
ω2 log(2M) − cω2T

ρ2 . (9)

B. Proof of Theorem 2

1) Part 1: Proof: The matrix Γt can be expanded as
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𝔼 XtXt
⊤| Xt − 1 = 𝔼 Xt Xt − 1 𝔼 Xt Xt − 1

⊤ + Diag Var Xt Xt − 1

Thus Γt has two parts, one is the outer product of a vector with itself, and the second is a 

diagonal matrix. Therefore, the smallest eigenvalue will be lower bounded by the smallest 

element of the diagonal matrix, because the outer product matrix will always be positive 

semi-definite with smallest eigenvalue equal to 0. Using properties of the Bernoulli 

distribution, the conditional variance is explicitly given as (2 + exp(ν + A*Xt−1) + exp(−ν
−A*Xt−1))−1 and therefore the smallest eigenvalue of Γt is lower bounded by 

(3 + exp(ν + ρa))−1. ■

2) Part 2: Proof: In order to prove this part of the Theorem, we use of Markov’s 

inequality and Lemma 5 in the case of the Bernoulli autoregressive process. Define the 

sequence Yn, n ∈ ℕ  as

Yn ≜ 1
T ∑

t = 0

n − 1
Xt, m Xt + 1, 𝓁 − 𝔼 Xt + 1, 𝓁 Xt .

Notice the following values:

Yn − Yn − 1 =
Xn − 1, m

T Xn, 𝓁 − 𝔼 Xn, 𝓁 Xn − 1 Mn
k = ∑

i = 1

n
𝔼

Xi − 1, m
T Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1

k
X1, …, Xi − 1 .

The first value shows that 𝔼 Yn − Yn − 1 | X1, …, Xn − 1 = 0 and therefore Yn (and the negative 

of the sequence, −Yn) is a martingale. Additionally, we know Yn − Yn − 1 ≤ 1
T ≜ B and

Mn
2 = ∑

i = 1

n
𝔼

Xi − 1, m
T Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1

2
X1, …, Xi − 1

= 1
T2 ∑

i = 1

n
X𝔨 − 1, m

2 𝔼 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
2 Xi − 1

≤ n

4T2 ≜ Mn
2

where the last step follows because Bernoulli random variables are bounded by one, and the 

variance is bounded by ¼. We also need to bound Mn
k as follows:
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Mn
k = ∑

i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k

X1, …, Xi − 1

= ∑
i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
2 Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k − 2

Xi − 1

≤ Bk − 2Mn
2

We use these values to get a bound on the summation term used in Lemma 5.

Dn ≜ ∑
k ≥ 2

ηk

k! Mn
k ≤ ∑

k ≥ 2

ηkBk − 2Mn
2

k!

≤
Mn

2

B2 ∑
k ≥ 2

(ηB)k
k! ≜ Dn

Dn ≜ ∑
k ≥ 2

ηk

k! −1 kMn
k ≤ Dn .

In the above Dn corresponds to the sum corresponding to the negative sequence −Y0, −Y1, 

… which we also need to obtain the desired bound. Now we use a variant of Markov’s 

inequality to get a bound on the desired quantity.

ℙ Yn ≥ y)

= ℙ Yn ≥ y + ℙ −Yn ≥ y

≤ 𝔼 e
ηYn e−ηy + 𝔼 e

η −Yn e−ηy

= 𝔼 e
ηYn − Dn + Dn e−ηy + 𝔼 e

η −Yn −  Dn +  Dn e−ηy

≤ 𝔼 e
ηYn − Dn e

Dn − ηy
+ 𝔼 e

η −Yn − Dn e
Dn − ηy

≤ 2e
Dn − ηy

.

The final inequality comes from the use of Lemma 5, which states that the given terms are 

supermartingales with initial term equal to 1, so the entire expectation is less than or equal to 

1. The final step of the proof is to find the optimal value of η to minimize this upper bound.
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ℙ Yn ≥ y ≤ 2exp Dn − ηy

= 2exp
Mn

2

B2 eηB − 1 − ηB − ηy

Setting η = 1
B log yB

Mn
2 + 1  yields the lowest such bound, giving

ℙ( Yn ≥ y)

≤ 2exp
Mn

2

B2
yB

Mn
2 − log yB

Mn
2 + 1 − y

B log yB

Mn
2 + 1

= 2exp −
Mn

2

B2 H yB

Mn
2

where H(x) = (1 + x) log(1 + x) − x. We use the fact that H(x) ≥ 3x2
2(x + 3)  for x ≥ 0 to further 

simplify the bound.

ℙ Yn ≥ y ≤ 2exp −3y2

2yB + 6Mn
2

= 2exp − 6y2T2
4yT + 3n

To complete the proof, we set n = T and take a union bound over all indices because YT 

considered specific indices m and ℓ, which gives the bound

ℙ max
1 ≤ i, j ≤ M

1
T ∑

t = 0

T − 1
Xt − 1, i Xt, j − 𝔼 Xt, j Xt − 1 ≥ 3log(MT)

T

≤ exp log 2M2 − 54log(MT)
12/ T + 3

≤ 1
MT .

Here we have additionally assumed that T ≥ 2 and that log(MT) ≥ 1. ■

C. Proof of Theorem 3

1) Part 1: Proof: We start with the following observation:
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𝔼 X𝒯t
X𝒯t

⊤ Xt − 1

= 𝔼 X𝒯t
X𝒯t − 1 𝔼 X𝒯t

X𝒯t − 1

⊤
+  Diag   Var  X𝒯t

X𝒯t − 1

Thus Γt has two parts, one is the outer product of a vector with itself, and the second is a 

diagonal matrix. Therefore, the smallest eigenvalue will be lower bounded by the smallest 

element of the diagonal matrix. In order to lower bound this variance, we must consider the 

two cases, one where 𝒯t − 1 = 𝒯t − 1 where the previous term in the sequence 𝒯 is the 

previous term in the overall sequence, and the other case where 𝒯t − 1 = 𝒯t − 1 where the 

previous term is not in the sequence 𝒯. The variance of X𝒯 can be characterized based on 

these two possible situations:

 Var  X𝒯t, i
X𝒯t − 1

= p Var  X𝒯, t Xt − 1, 𝒯t − 1 = 𝒯t − 1

+(1 − p) Var  X𝒯t, i
X𝒯t − 1

, 𝒯t − 1 < 𝒯t − 1

where p is the probability that 𝒯t − 1 = 𝒯t − 1. Because variances are lower bounded by 0, 

we can lower bound this entire term by the first part of the sum, where 𝒯t − 1 = 𝒯t − 1. For 

this term, we know that X𝒯t is drawn from a Poisson distribution, with the added 

information that each element is bounded above by U because it is an element of the 

sequence X𝒯1, X𝒯2, …. Thus using Lemma 3 we know that the variance of each value is 

lower bounded by 4
5exp νi + ai

* ⊤Xt − 1  which can in turn be lower bounded by exp(νmin + 

ραminU). Finally, since there are at least ξT elements of 1, 2, …, T which are in the bounded 

set of observations, then the worst case distribution of the observations with elements greater 

than U is that they are never consecutive. This maximizes the number of times there is a 

break in the sequence 𝒯1, 𝒯2, …, which means there would be a total of T − ξT times when 

there was a break. Thus the probability that consecutive elements are in the set is at least ξ, 

meaning that the minimum eigenvalue of 𝔼 X𝒯t
X𝒯t

⊤ | X𝒯t − 1
 is lower bounded by 

4ξ
5 exp νmin + ρaminU .

2) Part 2: Proof: To prove this part of the Theorem, we use of Markov’s inequality and 

Lemma 5 as they pertain specifically to our problem. Define the sequence Yn, n ∈ ℕ  as

Yn ≜ 1
T ∑

t = 0

n − 1
Xt, m Xt + 1, 𝓁 − 𝔼 Xt + 1, 𝓁 Xt .
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Notice the following values:

Yn − Yn − 1 =
Xn − 1, m

T Xn, 𝓁 − 𝔼 Xn, 𝓁 Xn − 1

Mn
k = ∑

i = 1

n
𝔼

Xi − 1, m
T Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1

k
X1, …, Xi − 1 .

The first value shows that 𝔼 Yn − Yn − 1 | X1, …, Xn − 1 = 0 and therefore Yn (and the negative 

of the sequence, −Yn) is a martingale. Additionally, we have assumed that Xm, i ≤ C log MT 

for 1 ≤ m ≤ M and 1 ≤ i ≤ T, so it is true that Yn − Yn − 1 ≤ C2log2(MT)
T ≜ B. Additionally:

Mn
2 = 1

T2 ∑
i = 1

n
Xi − 1, m

2 𝔼 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
2 Xi − 1

= 1
T2 ∑

i = 1

n
Xi − 1, m

2 exp ν𝓁 + a𝓁
* ⊤Xi − 1

≤ nC2log2(MT)e
νmax

T2 ≜ Mn
2

where the last step follows because X𝓁, i | Xi − 1 ~ Poisson (exp ν𝓁 + a𝓁
* ⊤Xi − 1 ) and the mean 

and variance of a Poisson random variable are equal. The final line uses the fact that Xt is 

bounded. We will also need to bound Mn
k as follows:

Mn
k = ∑

i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k

X1, …, Xi − 1

= ∑
i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
2 Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k − 2

Xi − 1

≤ Bk − 2Mn
2

We need to use these values to get a bound on the summation term used in Lemma 5.

Dn ≜ ∑
k ≥ 2

ηk

k! Mn
k ≤ ∑

k ≥ 2

ηkBk − 2Mn
2

k!

≤
Mn

2

B2 ∑
k ≥ 2

(ηB)k
k! ≜ Dn

Dn ≜ ∑
k ≥ 2

ηk

k! −1 kMn
k ≤ Dn
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In the above Dn corresponds to the sum corresponding to the negative sequence −Y0, −Y1, 

… which we will also need to obtain the desired bound. Now we are able to use a variant of 

Markov’s inequality to get a bound on the desired quantity.

ℙ Yn ≥ y)

= ℙ Yn ≥ y + ℙ −Yn ≥ y

≤ 𝔼 e
ηYn e−ηy + 𝔼 e

η −Yn e−ηy

= 𝔼 e
ηYn − Dn + Dn e−ηy + 𝔼 e

η −Yn − Dn + Dn e−ηy

≤ 𝔼 e
ηYn − Dn e

Dn − ηy
+ 𝔼 e

η −Yn − Dn e
Dn − ηy

≤ 2e
Dn − ηy

The final inequality comes from the use of Lemma 5, which states that the given terms are 

supermartingales with initial term equal to 1, so the entire expectation is less than or equal to 

1. The final step of the proof is to find the optimal value of η to minimize this upper bound.

ℙ Yn ≥ y

≤ 2exp Dn − ηy

= 2exp
Mn

2

B2 eηB − 1 − ηB − ηy

Setting η = 1
B log yB

Mn
2 + 1  yields the lowest such bound, giving

ℙ Yn ≥ y

≤ 2exp
Mn

2

B2
yB

Mn
2 − log yB

Mn
2 + 1 − y

B log yB

Mn
2 + 1

= 2exp −
Mn

2

B2 H yB

Mn
2
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where H(x) = (1 + x) log(1 + x) − x. We can use the fact that H(x) ≥ 3x2
2(x + 3)  for x ≥ 0 to 

further simplify the bound.

ℙ Yn ≥ y

≤ 2exp −3y2

2yB + 6Mn
2

= 2exp − 3y2T2

2C2 Ty + 3ne
νmax log2(MT)

To prove the proof, we set n = T and take a union bound over all indices because YT 

considered specific indices m and ℓ, which gives the bound

ℙ maxi, j
1
T ∑

t = 0

T − 1
Xt − 1, i Xt, j − 𝔼 Xt, j Xt − 1 ≥ 4C2e

νmaxlog3(MT)
T

≤ exp log 2M2 − 48C4exp
2νmaxlog4(MT)

8C4e
νmaxlog3(MT)/ T + 6C1

2emax
ν

≤ exp 2log(MT) −
24C2emax

ν log(MT)

4C2/ T + 3

≤ exp( − clog(MT))

where c = 24C2e
νmax − 8C2 − 6
4C2 + 3

 which is positive for sufficiently large C. Here we have 

additionally assumed that T ≥ 2 and that log(MT) ≥ 1.

V. Discussion

Corollaries 1 and 2 provide several important facts about the inference process. Primarily, if 

ρ is fixed as a constant for increasing M (suggesting that the maximum degree of a node 

does not increase with the number of nodes in a network), then the error scales inversely 

with T, linearly with the sparsity level s and only logarithmically with the dimension M in 

order to estimate M2 parameters. These parameters will dictate how much data needs to be 

collected to achieve a desired accuracy level. This rate illustrates the idea that doing 

inference in sparse settings can greatly reduce the needed amount of sensing time, especially 
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when s ≪ M2. Another quantity to notice is that we require T ≥ ω−4ρ3 log(M). If ρ is fixed 

as a constant for increasing M, this tells us that T needs to be on the order of log(M), which 

is significantly less than the total M2 parameters which are being estimated, and therefore 

including the sparsity assumption has lead to a significant gain. One final observation from 

the risk bound is that it provides guidance in the setting of the regularization parameter. We 

see that we would like to set λ generally as small as possible, since the error scales 

approximately like λ2, but we also require λ at least as large as O T−1/2  for the bounds to 

hold. The balance between setting λ small enough to have low error, while maintaining that 

it’s large enough is an equivalent argument to needing to set λ large enough for it to take 

effect, but not too large to cause over smoothing.

A. Dense rows of A*

The exponential scaling in Corollaries 1 and 2 with the maximum number of non-zeros in a 

row, ρ, at first seems unsatisfying. However, we can imagine a worst-case scenario where a 

large ρ relative to s and M would actually lead to very poor estimation. Consider the case of 

a large star-shaped network, where every node in the network influences and is influenced 

by a single node, and there are no other edges in the network. This would correspond to a 

matrix with a single, dense row and corresponding column. Therefore, we would have ρ = M 
and s = 2M − 1. In the Poisson setting, this network would have M − 1 independently and 

identically distributed Poisson random variables at every time with mean ν, but the central 

node of the network would be constantly inhibited, almost completely. In a large network, it 

would be very difficult to know if this inhibition was coming from a few strong connections 

or from the cumulative effect of all the inhibitions. Additionally, since the central node 

would almost never have a positive count, it would also be difficult to learn about the 

influence that node has on the rest of the network. Because of networks like this, it is 

important that not only is the overall network sparse, but each row also needs to be sparse. 

This requirement might seem restrictive, but it has been shown in many real world networks 

that the degree of a node in the network follows a power-law which is independent of the 

overall size of the network [67], and ρ would grow slowly with growing M.

B. Bounded observations and higher-order autoregressive processes

Recall that the definition of 𝒢 ensures that most observations are bounded. Bounded 

observations are important to our analysis because we use martingale concentration 

inequalities [68] which depend on bounded conditional means and conditional variances, the 

latter condition being equivalent to Z being strongly convex. Since the conditional means 

and variances are data-dependent, bounded data (at least with high probability) is a sufficient 

condition for bounded conditional means and conditional variances. In some settings (e.g., 

Bernoulli), bounded observations are natural and ξ = 1. In other settings (e.g., Poisson) there 

is no constant U independent of T that is an upper bound for all observations with high 

probability. Furthermore, if we allow U to increase with T in violation of 𝒢 in Definition III.

1, we derive a bound on A − A* F
2  that increases polynomially with T. To avoid this and get 

the far better bound in Theorem 1, our proof focuses on characterizing the error on the set 𝒯
defined in the definition of 𝒢.
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Thus far we have focused on the case where Xt + 1, m | Xt p νm + am
* ⊤Xt , a first order 

autoregressive process. However, we could imagine a simple, higher-order version where 

Xt + 1, m | Xt − q + 1, …, Xt p νm + am
* ⊤∑i = 0

q − 1αiXt − i  for some known sequence αi. This 

process could be reformulated as a process Xt + 1, m | Xt − q + 1, …, Xt p νm + am
* ⊤Xt  where 

Xt ≜ ∑i = 0
q − 1αiXt − 1, and much of the same proof techniques would still hold, especially in 

the case of the Bernoulli autoregressive process, where 𝒯 is easily defined. However, in the 

more general GLAR case finding the right analogy to 𝒯 in the higher space is not an 

obvious extension. A true order-q autoregressive process where 

Xt + 1, m | Xt − q + 1, …, Xt p ν + ∑i = 0
q − 1am

* ⊤Xt − iXt − i  could also be formulated as an order-1 

process by properly stacking vectors and matrices, however, in this case proving the key 

lemmas and showing that the process belongs to 𝒢 is also an open question.

C. Stationarity

As stated in the problem formulation, we restrict our attention to bounded matrices A* ∈ 
[αmin, αmax]M×M; in the specific context of the log-linear Poisson autoregressive model, we 

use αmax = 0, corresponding to a model that only accounts for inhibitory interactions. One 

might ask whether these constraints could be relaxed and whether the Poisson model could 

also account for stimulatory interactions.

These boundedness constraints are sufficient to ensure that the observed process has a 

stationary distribution. The stationarity of processes is heavily studied; once a process has 

reached its stationary distribution, then data can be approximated as independent samples 

from this distribution and temporal dependencies can be can be ignored. While stationarity 

does not play an explicit role in our analysis, we can identify several sufficient conditions to 

ensure the vector GLAR processes of interest are stationary. In particular we assume that A* 

= A*⊤ which ensures reversibility of the Markov chain described by the process defined by 

Xt + 1, m | Xt p νm + am
* ⊤Xt . We derive the stationary distribution π(x), and then establish 

bounds on the mixing time. Note that this is a Markov chain with transition kernel:

P(x, y) = ℙ Xt + 1 = y Xt = x = exp ν⊤y + y⊤A*x − ∑
i = m

M
Z νm + am

* ⊤X ∏
m = 1

M
h ym .

If we further assume that the entries of Xt take on values on a countable domain to ensure a 

countable Markov chain, we can derive bounds on the mixing time.

Lemma 2.—Assume A* = A*⊤, then the Markov chain Xt + 1, m p νm + am
* ⊤Xt  is a 

reversible Markov chain with stationary distribution:

π(x) = Cν, A *exp ν⊤x + ∑
m = 1

M
Z νm + am

* ⊤x ∏
m = 1

M
h xm
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Cν, A* = ∫x1
∫x2

…∫xM
exp ν⊤x + ∑

m = 1

M
Z νm + am

* ⊤x ∏
m = 1

M
h xm dxM)…dx2dx1 .

Further, if Xt ∈ ℤ+
M, αmax = 0 and Z(·) is an increasing function, then for any y ∈ ℤ+

M, if νm ≤ 

νmax < ∞ for all 1 ≤ m ≤ M and αmin ≤ 0 we have that

Pt(y, . ) − π( . ) TV ≤ 1 − h(0)−2Me
−2MZ νmax

t
.

Notice that for large M, the chain will mix very slowly, and additionally this bound has no 

dependence on the sparsity of the true matrix A*. Conversely, our results require T to be 

greater than a value that scales roughly like ρ3 log(M), which has a much milder dependence 

on M, and varies based on the sparsity of A*. What we can conclude from these 

observations is that while the RMLE needs a certain amount of observations to yield good 

results, we do not necessarily need enough data to reach the stationary distribution. 

Additionally, under conditions where mixing time guarantees are not given (i.e. non-

symmetric A*, uncountable domain), we still have guarantees on the performance of the 

RMLE.

VI. Conclusions

Instances of the generalized linear autoregressive process have been used successfully in 

many settings to learn network structure. However, this model is often used without rigorous 

non-asymptotic guarantees of accuracy. In this paper we have shown important properties of 

the Regularized Maximum Likelihood Estimator of the GLAR process under a sparsity 

assumption. We have proven bounds on the error of the estimator as a function of sparsity, 

maximum degree of a node, ambient dimension and time, and shown how these bounds look 

for the specific examples of the Bernoulli and Poisson autoregressive proceses. In order to 

prove this risk bound, we have incorporated many recently developed tools of statistical 

learning, including concentration bounds for dependent random variables. Our results show 

that by incorporating sparsity the amount of data needed is on the order of ρ3 log(M) for 

bounded degree networks, which is a significant gain compared to the M2 parameters being 

estimated.

While this paper has focused on generalized linear models, we believe that the extension of 

these ideas to other models is possible. Specifically, for modeling firing rates of neurons in 

the brain, we are interested in settings in which we observe

Xt + 1, m Xt Poisson g am
* ⊤Xt + ν

and exploring possible functions g beyond the exponential function considered here. Such 

analysis would allow our results to apply to stimulatory effects in addition to inhibitory 

effects, but key challenges include ensuring that the process is stable and, with high 
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probability, bounded. Another direction would be settings where the counts are drawn from 

more complicated higher-order or autoregressive moving average (ARMA) models which 

would better model real-world point processes.

VII. Appendix

A. Supplementary Lemmas

First we present supplementary Lemmas which we use throughout the proofs of the main 

Theorems.

Lemma 3.—Let X be a Poisson random variable, with the following probability density 
function:

p(X = k λ) = λke−k

k!

and let X′ be a random variable defined by the following pdf:

q(k λ) = 0 otherwise

c
k!λke−λ i f  k ≤ U

Where c = 1
1 − ℙ(X > U) > 1. Roughly speaking, X′ is generated by taking a Poisson pdf, and 

removing the tail probability, and scaling the remaining density so that it is a valid pdf. For 
this random variable, assuming U ≥ max(6, 1.5eλ, λ + 5) then

Var X′ ≥ 4
5Var(X) = 4λ

5

Proof: Define the error terms ϵ1 ≜ 𝔼[X]2 − 𝔼 X′ 2 and ϵ1 ≜ 𝔼[X]2 − 𝔼 X′ 2. We know

Var X′ = 𝔼 X′2 − 𝔼 X′ 2

= 𝔼 X2 − ϵ2 − 𝔼[X]2 − ϵ1

≥ 𝔼 X2 − 𝔼[X]2

Var(X)

− ϵ1 + ϵ2

= λ − ϵ1 + ϵ2

(10)

Our strategy will be to show ϵ1, ϵ2 are small relative to λ, which will tell us Var(X’) ≈ 
Var(X) = λ. Intuitively, the error terms should be small relative to λ because X’ differs from 

X only by cutting off the extreme edge of the pdf, given the assumptions on the size of U 
relative to λ.
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First, we bound ϵ1. We have

ϵ1 = 𝔼[X]2 − 𝔼 X′ 2 = 𝔼[X] + 𝔼 X′ 𝔼[X] − 𝔼 X′

Since 𝔼 X′ ≤ 𝔼[X], the first term is bounded by 2𝔼[X] = 2λ. To bound the second term, we 

note that the pdf for X’ is given explicitly as

q k λ = 0 otherwise

c
k!λke−λ if k ≤ U

where c = 1
1 − ℙ(X > U) > 1. And therefore

𝔼 X′ = c ∑
k = 1

U λke−λ

(k − 1)! ≥ ∑
k = 1

U λke−λ

(k − 1)!

Using this fact to bound 𝔼[X] − 𝔼 X′  gives us

𝔼[X] − 𝔼 X′ ≤ 𝔼[X] − ∑
k = 1

U λke−λ

(k − 1)!

= ∑
k = U + 1

∞ λke−λ

(k − 1)!

= λ

eλ ∑
k = U

∞ λk

k!

Note ∑k = U
∞ λk

k!  is the remainder term of the degree U − 1 Taylor Polynomial for eλ. We can 

bound this using Taylor’s Remainder theorem:

∑
k = U

∞ λk

k! ≤ eλλU

U !

and so

𝔼[X] − 𝔼 X′ ≤ λλU

U ! ≤ λ

1.5U

U
e

U

U !

where the second inequality comes from the assumption that U ≥ 1.5eλ. Here, the second 

fraction is small by Sterling’s approximation formula. Formally, Sterling tells us
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U
e

U

U ! ≤ 1
2πU

and therefore

𝔼[X] − 𝔼 X′ ≤ λ

1.5U 2πU
.

Combining the two terms tells us

ϵ1 ≤ 2λ λ

1.5U 2πU
≤ λ

10

since U ≥ 6.

ϵ2 = 𝔼 X2 − 𝔼 X′2

𝔼 X′2 = c ∑
k = 1

U kλke−λ

(k − 1)! ≥ ∑
k = 1

U kλke−λ

(k − 1)!

and therefore

ϵ2 ≤ 𝔼 X2 − ∑
k = 1

U kλke−λ

(k − 1)!   = ∑
k = U + 1

∞ kλke−λ

(k − 1)!   ≤ (U + 1)λ2

Ueλ ∑
k = U − 1

∞ λk

k!

where the last inequality is due to the fact that k
k − 1 ≤ U + 1

U  for all k ≥ U +1. Here 

∑k = U − 1
∞ λk

k!  is the remainder term for the degree U − 2 Taylor Polynomial approximation to 

eλ. By the Taylor’s remainder formula, we can bound this by

eλλU − 1
(U − 1)!

and so

ϵ1 ≤ λ(U + 1)λU

U !

and since λ ≤ U
1.5e , it follows from Sterling’s approximation that
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ϵ1 ≤ λ U + 1
1.5U 2πU

≤ λ
10

since U ≥ 6.

Putting the bounds for ϵ1 and ϵ2 back into Equation 10 to get the final form of the Lemma

Var X′ ≥ 4
5Var(X) = 4

5λ

We next present a one-sided concentration bound for Poisson random variables due to 

Bobkov and Ledoux [69]: random variables.

Lemma 4—(Proposition 10 in [69]). If X ~ Poisson(λ):

ℙ(X − λ > t) ≤ exp − t
4log 1 + t

2λ .

Lemma 5—(Lemma 3.3 in [68]). Let Yn, n ∈ ℕ  be a martingale. For all k ≥ 2, let

ℙ(X − λ > t) ≤ exp − t
4log 1 + t

2λ .

Then for all integers n ≥ 1 and for all η such that for all i ≤ n, 𝔼 exp η Y i − Y i − 1 ≤ ∞,

εn ≜ exp ηYn − ∑
k ≥ 2

ηk

k! Mn
k

is a super-martingale. Additionally, if Y0 = 0, then 𝔼 εn ≤ 1.

Lemma 6.—Let ϵt t = 0
T  be i.i.d. Rademacher random variables(i.e 

ℙ ϵt = + 1 = ℙ ϵt = − 1 = 1
2  and Xt t = 0

T  are a sequence of random variables, where Xt ∈ 

[0, U]M, Xt(ϵ1, ϵ2, …, ϵt−1) is a function of (ϵ1, ϵ2, …, ϵt−1). Then

sup
X1, …, XT

1
T ∑

t = 1

T
Xt ϵ1, ϵ2, …, ϵt − 1 ϵt

∞
≤ 2U log(MT)

T
,

with probability at least 1 − 1
(MT)2

Proof:To prove this Lemma, we once again use Markov’s inequality and Lemma 5. For a 

fixed m ∈ {1, …, M}, define the sequence (Yn, n ∈ ℕ) as
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Yn ≜ 1
T ∑

t = 1

n
Xt, mϵt .

Notice the following values:

Yn − Yn − 1 = 1
T ϵnXn, mMn

k = ∑
t = 1

n
𝔼 1

T Xt, mϵt
k

ϵ1, …, ϵt − 1  .

The first value shows that 𝔼 Yn − Yn − 1 |ϵ1, …, ϵn − 1 = 0 and therefore Yn (and the negative 

of the sequence, −Yn) is a martingale. Additionally, we have assumed that 0 ≤ Xm, i ≤ U for 

1 ≤ m ≤ M and 1 ≤ i ≤ T, so it is true that Yn − Yn − 1 ≤ 2U
T ≜ B. Additionally:

Mn
2 = ∑

t = 1

n
𝔼 1

T Xt, mϵt
2

ϵ1, …, ϵt − 1 = 1
T2 ∑

t = 1

n
ϵt
2𝔼 Xt, m

2 ϵ1, …, ϵt − 1 ≤ 4nU2

T2 ≜ Mn
2

We will also need to bound Mn
k as follows:

Mn
k = ∑

i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k X1, …, Xi − 1

= ∑
i = 1

n
𝔼

Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
2 Xi − 1, m

T2 Xi, 𝓁 − 𝔼 Xi, 𝓁 Xi − 1
k − 2

Xi − 1 ≤ Bk − 2Mn
2

We need to use these values to get a bound on the summation term used in Lemma 5.

Dn ≜ ∑
k ≥ 2

ηk

k! Mn
k ≤ ∑

k ≥ 2

ηkBk − 2Mn
2

k!

≤
Mn

2

B2 ∑
k ≥ 2

(ηB)k
k! ≜ Dn

Dn ≜ ∑
k ≥ 2

ηk

k! −1 kMn
k ≤ Dn

In the above Dn corresponds to the sum corresponding to the negative sequence −Y0, −Y1, 

… which we will also need to obtain the desired bound. Now we are able to use a variant of 

Markov’s inequality to get a bound on the desired quantity.
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ℙ Yn ≥ y)

= ℙ Yn ≥ y + ℙ −Yn ≥ y

≤ 𝔼 e
ηYn e−ηy + 𝔼 e

η −Yn e−ηy

= 𝔼 e
ηYn − Dn + Dn e−ηy + 𝔼 e

η −Yn − Dn +  Dn e−ηy

≤ 𝔼 e
ηYn − Dn e

Dn − ηy
+ 𝔼 e

η −Yn − Dn e
Dn − ηy

≤ 2e
Dn − ηy

The final inequality comes from the use of Lemma 5, which states that the given terms are 

supermartingales with initial term equal to 1, so the entire expectation is less than or equal to 

1. The final step of the proof is to find the optimal value of η to minimize this upper bound.

ℙ Yn ≥ y ≤ 2exp Dn − ηy = 2exp
Mn

2

B2 eηB − 1 − ηB − ηy

Setting η = 1
B log yB

Mn
2 + 1  yields the lowest such bound, giving

ℙ Yn ≥ y ≤ 2exp
Mn

2

B2
yB

Mn
2 − log yB

Mn
2 + 1 − y

B log yB

Mn
2 + 1 = 2exp −

Mn
2

B2 H yB

Mn
2

where H(x) = (1 + x) log(1 + x) − x. We can use the fact that H(x) ≥ 3x2
2(x + 3)  for x ≥ 0 to 

further simplify the bound.

ℙ Yn ≥ y

≤ 2exp −3y2

2yB + 6Mn
2

= 2exp − 3y2T2

2C2 Ty + 3ne
νmax log2(MT)
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To complete the proof, we set n = T and take a union bound over all indices because YT 

considered specific indices m, which gives the bound

ℙ max
m

1
T ∑

t = 1

T
Xt, mϵt ≥ 2U log(MT)

T

≤ exp log(M) − 12U2Tlog2(MT)
4U2( Tlog(MT) + 3T)

≤ exp log(MT) − 3log(MT)
1/ T + 3/log(MT)

≤ exp( − 2log(MT)) .

B. Proof of Lemma 1

1) Part 1: Proof:For all 1 ≤ t ≤ T and 1 ≤ m ≤ M, Xt, m|Xt−1 is drawn from a Poisson 

distribution with mean e
νm + am

* ⊤Xt − 1 for some am* ∈ amin, 0 M. Because of the range of 

values am*  can take, we know that e
νm + am

* 1Xt − 1 ≤ e
νmax where νm ≤ νmax for some νmax < 

∞ for all m. Therefore, we know that

ℙ Xt, m ≥ η + e
νmax Xt − 1 ≤ ℙ Y ≥ η + e

νmax

where Y is a Poisson random variable with mean eνmax. To bound this quantity we use the 

result of Lemma 4,

ℙ Y > η + e
νmax ≤ exp − η

4log 1 + η

2e
νmax

.

Setting η = ClogMT − e
νmax,

ℙ(Y > C logMT)

≤ exp − C logMT − e
νmax

4 log 1 + C logMT − e
νmax

2e
νmax

≤ exp − C logMT − e
νmax

4 .

Here, we have assumed that C ≥ eνmax (2e − 1) and log MT ≥ 1. This upper bound is not 

dependent on the value of Xt−1, so this quantity is also an upper bound for the unconditional 

probability of Xt,m ≥ C log MT. Using this for a single index t, m of our data X, and taking a 

union bound over all possible indices 1 ≤ m ≤ M, 1 < t ≤ T gives

Hall et al. Page 38

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℙ max
1 ≤ m ≤ M, 1 ≤ t ≤ T

Xt, m > C log MT

≤ exp log MT − C logMT − e
νmax

4

≤ exp( − c log MT)

for c ≤ C − e
νmax

4 − 1. Thus if C > max(eνmax (2e − 1), 4 + eνmax), then c > 0, and the bound 

is valid. ■

2) Part 2: Proof:We are interested in bounding the number of observations Xt,m for 1 ≤ m 
≤ M and 1 ≤ t ≤ T that are above the value U. Saying at least j ≜ αMT observations are less 

than a certain value, is equivalent to saying that the jth smallest observation is less than that 

value. Therefore,

ℙ(jth smallest observation Xt,m > U)

= ℙ ∑
t = 1

T
∑

m = 1

M
Yt, m ≤ j − 1 = ∑

𝓁 = 0

j − 1
ℙ ∑

t = 1

T
∑

m = 1

M
Yt, m = 𝓁 ≤ ∑

𝓁 = 0

j
∑

y ∈ 𝒴𝓁
ℙ(Y = y) .

Here we define Y t, m ≜ 1 Xt, m ≤ U , and 𝒴𝓁 = y ∈ 0, 1 M × T | ∑t = 1
T ∑m = 1

M yt, m = 𝓁 . We 

then condition the values of Yt on all previous values of Y and then understand this as a 

marginal of the joint distribution over Yt and Xt−1. Below we use the notation Y1:t to denote 

all the time indices of Y from 1 to t, and similarly for y.

ℙ(Y = y)

= ∏
t = 1

T
ℙ Yt = yt Y1: t − 1 = y1: t − 1

= ∏
t = 1

T
∑

xt − 1
ℙ Yt = yt Y1: t − 1 = y1: t − 1, Xt − 1 = xt − 1 ℙ Xt − 1 = xt − 1 Y1: t − 1 = y1: t − 1

= ∏
t = 1

T
∑

xt − 1
∏

m = 1

M
ℙ Yt, m = yt, m Xt − 1 = xt − 1 ℙ Xt − 1 = xt − 1 Y1: t − 1 = y1: t − 1

In the last line we use the fact that conditioned on Xt−1, Yt is independent across dimensions 

m, and independent of previous values Y1:t−1. We now make the observation that 

ℙ Xt, m > U | Xt − 1 = xt − 1  is exactly the probability that a Poisson random variable with rate 

exp(νm + am
* ⊤xt − 1) is greater than U, which can be upper-bounded by the probability that a 

Poisson random variable with rate exp(νmax) is greater than U because we have assumed all 
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values of a am*  are non-positive. Call this probability pνmax. Thus we have 

ℙ(Y = y) ≤ pνmax

MT − ∑t = 1
T ∑m = 1

M yt, m and therefore,

ℙ ∑
t = 1

T
∑

m = 1

M
Yt, m ≤ j − 1

≤ ∑
𝓁 = 0

j
MT𝓁 pνmax

MT − 𝓁

= 1 + pνmax

MT
− ∑

𝓁 = 0

MT − j − 1
MT𝓁 pνmax

𝓁

≤ MTMT − j 1 + pνmax

j
pνmax

MT − j

≤ MTe
MT − j

MT − j
1 + pνmax

j
pνmax

MT − j .

The second inequality is from the application of Taylor’s Remainder Theorem, and the third 

is from the fact that k
n ≤ ne

k
k
. Now use the fact that j = αMT as stated in the Lemma, to 

give

ℙ ∑
t = 1

T
∑

m = 1

M
Yt, m ≤ j − 1

≤
pνmax

e

1 − α

(1 − α)MT

1 + pνmax

αMT

≤
pνmax

e

1 − α

1 − α

2α
MT

.

By using Lemma 4 in a similar way as was used in the proof of Lemma 1 part 1, pνmax can 

be controlled by U in the following way,

pνmax
= ℙ(X > U)

≤ exp − U − e
νmax

4 log 1 + U − e
νmax

2e
νmax

≤ exp − U − e
νmax

4 ,

when U ≥ eνmax(2e − 1). Plugging the result back into the bound gives 

ℙ at least α MT  observations  Xt, m ≤ U ≥ 1 − e−cMT
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When U > 4 + e
νmax + 4αlog(2)

1 − α − 4log 1 − α  and additionally greater than eνmax (2e − 1) 

the condition from above, then the probability of this event is decaying in M and T. 

Therefore, for c = 1 − U − e
νmax

4 − log(1 − α) (1 − α) − αlog(2), have the inequality

ℙ (at least αMT observations Xt,m ≤ U) ≥ 1 – e−cMT ■

C. Proof of Lemma 2

Proof: To prove the form of the stationary distribution we show that

π(y) = ∫x
π(x)P(x, y),

where

P(x, y) = exp ν⊤y + y⊤A*x − ∑
m = 1

M
Z νm + am

⊤x ∏
m = 1

M
h ym .

Plugging in π(x) as specified,

∫x
π(x)P(x, y)

= Cν, A*∫x
exp ν⊤x + ∑

m = 1

M
Z νm + am

* ⊤x + ν⊤y + y⊤A*x − ∑
m = 1

M
Z νm + am

* ⊤x ∏
m = 1

M
h xm h ym

= Cν, A*exp ν⊤y ∏
m = 1

M
h ym ∫x

exp ν⊤x + y⊤A*x ∏
m = 1

M
h xm

= Cν, A*exp ν⊤y ∏
m = 1

M
h ym ∫x

exp ν⊤x + x⊤A*y ∏
m = 1

M
h xm

= Cν, A*exp ν⊤y ∏
m = 1

M
h ym ∫xm

exp νmxm + xmam
* ⊤y h xm

= Cν, A*exp ν⊤y + ∑
m = 1

M
Z νm + am

* ⊤y ∏
m = 1

M
h ym

= π(y)

The second to last equality uses the definition of Z as the log partition function, and the third 

uses the assumption that A* = A*⊤.

To prove the upper bound on total variation distance for Markov chains on countable 

domains, we define two chains, one chain Yt begins at the stationary distribution and the 

other independent chain starts at Xt begins at some arbitrary random state x, both with 

transition kernel P. These two chains are said to be coupled if they are run independently 

until the first time where the states are equal, then are equal for the rest of the trial. The 

Hall et al. Page 41

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



notation Pt(x, y) denotes the probability of transitioning from state y to state x in exactly t 
steps. Theorem 5.2 of [70] asserts that:

‖Pt(x, ⋅ ) − π( ⋅ )‖TV ≤ ℙx τcouple > t ,

where τcouple: = min
t > 0

: Xt = Y t . Note first that ℙ τcouple > t ≤ ∏τ = 0
t 1 − ℙ Xτ = Yτ = 0 . 

Since the chains are independent until τ couple , ℙ Xτ = Yτ = 0 = ℙ Xτ = 0 ℙ Yτ = 0 . Note 

also that:

ℙ Xτ = 0 Xτ − 1 = x

= h 0 Mexp − ∑
m = 1

M
Z νm + am

* ⊤x

≥ h 0 Mexp − ∑
m = 1

M
Z νm

≥ h 0 Mexp −MZ νmax ,

where the first inequality is due to the fact that Z is an increasing function, and from the 

assumption that Ai,j ≥ 0. Hence. 

ℙ τcouple > t ≤ ∏τ = 0
t 1 − h(0)−2Mexp −2MZ νmax = 1 − h 0 −2Mexp −2MZ νmax

t
. ■

D. Empirical processes for martingale sequences

To concretely define the martingale, let (Xt)t≥1 be a sequence of random variables adapted to 

the filtration 𝒜t t ≥ 1. First we present a bounded difference inequality for martingales 

developed by van de Geer [65].

Theorem 4—(Theorem 2.6 in [65]). Fix T ≥ 1 and let ZT be an 𝒜𝒯 -measurable random 

variable, satisfying for each t = 1, 2, …, t,

Lt ≤ 𝔼 ZT 𝒜t ≤ Ut,

almost surely where Lt < Ut are constants. Define CT
2 = ∑t = 1

T Ut − Lt
2. Then for all α > 0,

ℙ ZT − 𝔼 ZT ≥ a ≤ exp − 2a2

CT
2 .

The second important result we need is a notion of sequential Rademacher complexity for 

martingales that allows us to do symmetrization, an important step in empirical process 

theory (see e.g. [71]). To do this we use machinery developed in [66]. Recall that (Xt)t≥1 is a 
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martingale and let χ be the range of each Xt. Let ℱ be a function class where for all 

f ∈ ℱ, f : χ ℝ.

To define the notion of sequential Rademacher complexity, we first let ϵt t = 1
T  be a sequence 

of independent Rademacher random variables (i.e. ℙ ϵt = + 1 = ℙ ϵt = − 1 = 1
2 )). Next we 

define a tree process as a function of these independent Rademacher random variables.

A χ-valued tree x of depth T is a rooted complete binary tree with nodes labelled by 

elements of χ. We identify the tree x with the sequence (x1, x2, …, xT) of labeling functions 

xt: ± 1 t − 1 χ which provide the labels for each node. Here x1 ∈ χ is the label for the 

root of the tree, while xt for t > 1 is the label of the node obtained by following the path of 

length t − 1 from the root, with +1 indicating “right” and −1 indicating “left.” Based on this 

tree, xt is a function of (ϵ1, ϵ 2, …, ϵ t−1).

Based on this, we define the sequential Rademacher complexity of a function class ℱ.

Definition 1—(Definition 3 in [66]). The sequential Rademacher complexity of a function 

class ℱ on a χ-valued tree x is defined as

ℛT(ℱ) ≜ sup
x

𝔼 sup
f ∈ ℱ

ϵt f xt ϵ1, ϵ2, …, ϵt − 1

where the outer supremum is taken over all χ-valued trees. Importantly note that (ϵtf(xt(ϵ1, 

ϵ2, …, ϵt−1))t≥1 is a martingale. Now we are in a position to state the main result which 

allows us to do symmetrization for functions of martingales.

Theorem 5—(Theorem 2 in [66]).

𝔼 sup
f ∈ ℱ

1
T ∑

t = 1

T
𝔼 f Xt 𝒜t − 1 − f Xt ≤ 2ℛT(ℱ) .

For further details refer to [66].

Acknowledgments

We gratefully acknowledge the support of the awards NSF CCF-1418976, NSF IIS-1447449, NIH 1 U54 
AI117924–01, ARO W911NF-17-1-0357 and NSF DMS - 1407028

References

[1]. Brown EN, Kass RE, and Mitra PP, “Multiple neural spike train data analysis: state-of-the-art and 
future challenges,” Nature neuroscience, vol. 7, no. 5, pp. 456–461, 2004. [PubMed: 15114358] 

[2]. Coleman TP and Sarma S, “Using convex optimization for nonparametric statistical analysis of 
point processes,” in Proc. ISIT, 2007.

Hall et al. Page 43

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Smith AC and Brown EN, “Estimating a state-space model from point process observations,” 
Neural Computation, vol. 15, pp. 965–991, 2003. [PubMed: 12803953] 

[4]. Hinne M, Heskes T, and van Gerven MAJ, “Bayesian inference of whole-brain networks,” arXiv:
1202.1696 [q-bio.NC], 2012.

[5]. Ding M, Schroeder CE, and Wen X, “Analyzing coherent brain networks with Granger causality,” 
in Conf. Proc. IEEE Eng. Med. Biol. Soc, 2011, pp. 5916–8. [PubMed: 22255686] 

[6]. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, and Simoncelli EP, “Spatio-
temporal correlations and visual signalling in a complete neuronal population,” Nature, vol. 454, 
pp. 995–999, 2008. [PubMed: 18650810] 

[7]. Masud MS and Borisyuk R, “Statistical technique for analysing functional connectivity of multiple 
spike trains,” Journal of Neuroscience Methods, vol. 196, no. 1, pp. 201–219, 2011. [PubMed: 
21236298] 

[8]. Basu S and Michailidis G, “Regularized estimation in sparse high-dimensional time series 
models,” Annals of Statistics, vol. 43, no. 4, pp. 1535–1567, 2015.

[9]. Han F and Liu H, “Transition matrix estimation in high dimensional time series,” in Proc. Machine 
Learning Research, 2013, vol. 28(2), pp. 172–180.

[10]. Kock A and Callot L, “A class of multiple-error-correcting codes and the decoding scheme,” 
Journal of Econometrics, vol. 186(2), pp. 325–344, 2015.

[11]. Song S and Bickel PJ, “Large vector auto regressions,” Tech. Rep, UC Berkeley, 2011.

[12]. Netrapalli Praneeth and Sanghavi Sujay, “Learning the graph of epidemic cascades,” in ACM 
SIGMETRICS Performance Evaluation Review. ACM, 2012, vol. 40, pp. 211–222.

[13]. Altarelli Fabrizio, Braunstein Alfredo, Luca Dall’Asta Ingrosso Alessandro, and Zecchina 
Riccardo, “The patient-zero problem with noisy observations,” Journal of Statistical Mechanics: 
Theory and Experiment, vol. 2014, no. 10, pp. P10016, 2014.

[14]. Kempe David, Kleinberg Jon, and Tardos Éva, “Maximizing the spread of influence through a 
social network,” in Proceedings of the ninth ACM SIGKDD international conference on 
Knowledge discovery and data mining. ACM, 2003, pp. 137–146.

[15]. Kuperman M and Abramson G, “Small world effect in an epidemiological model,” Physical 
Review Letters, vol. 86, no. 13, pp. 2909, 2001. [PubMed: 11290070] 

[16]. Johansson Per, “Speed limitation and motorway casualties: a time series count data regression 
approach,” Accident Analysis & Prevention, vol. 28, no. 1, pp. 73–87, 1996. [PubMed: 8924187] 

[17]. Matteson David S, McLean Mathew W, Woodard Dawn B, and Henderso Shane Gn, “Forecasting 
emergency medical service call arrival rates,” The Annals of Applied Statistics, pp. 1379–1406, 
2011.

[18]. Rydberg Tina Hviid and Neil Shephard, “A modelling framework for the prices and times of 
trades made on the new york stock exchange,” Tech. Rep, Nuffield College, 1999, Working Paper 
W99–14.

[19]. Aït-Sahalia Y, Cacho-Diaz J, and Laeven RJA, “Modeling financial contagion using mutually 
exciting jump processes,” Tech. Rep, National Bureau of Economic Research, 2010.

[20]. Chavez-Demoulin V and McGill JA, “High-frequency financial data modeling using Hawkes 
processes,” Journal of Banking & Finance, vol. 36, no. 12, pp. 3415–3426, 2012.

[21]. Cameron A Colin and Trivedi Pravin K, Regression analysis of count data, vol. 53, Cambridge 
university press, 2013.

[22]. Raginsky M, Willett R, Horn C, Silva J, and Marcia R, “Sequential anomaly detection in the 
presence of noise and limited feedback,” IEEE Transactions on Information Theory, vol. 58, no. 
8, pp. 5544–5562, 2012.

[23]. Silva J and Willett R, “Hypergraph-based anomaly detection in very large networks,” IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 563–569, 2009, 
doi:10.1109/TPAMI.2008.232. [PubMed: 19147882] 

[24]. Stomakhin A, Short MB, and Bertozzi A, “Reconstruction of missing data in social networks 
based on temporal patterns of interactions,” Inverse Problems, vol. 27, no. 11, 2011.

[25]. Blundell C, Heller KA, and Beck JM, “Modelling recip-rocating relationships with Hawkes 
processes,” in Proc. NIPS, 2012.

Hall et al. Page 44

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[26]. Zhou K, Zha H, and Song L, “Learning social infectivity in sparse low-rank networks using 
multi-dimensional Hawkes processes,” in Proceedings of the 16th International Conference on 
Artificial Intelligence and Statistics (AISTATS), 2013.

[27]. Huang Shyh-Jier and Shih Kuang-Rong, “Short-term load forecasting via arma model 
identification including non-Gaussian process considerations,” Power Systems, IEEE 
Transactions on, vol. 18, no. 2, pp. 673–679, 2003.

[28]. Vere-Jones D and Ozaki T, “Some examples of statistical estimation applied to earthquake data,” 
Ann. Inst. Statist. Math, vol. 34, pp. 189–207, 1982.

[29]. Ogata Y, “Seismicity analysis through point-process modeling: A review,” Pure and Applied 
Geophysics, vol. 155, no. 2–4, pp. 471–507, 1999.

[30]. Brännäs Kurtand Johansson Per, “Time series count data regression,” Communications in 
Statistics-Theory and Methods, vol. 23, no. 10, pp. 2907–2925, 1994.

[31]. MacDonald Iain L and Zucchini Walter, Hidden Markov and other models for discrete-valued 
time series, vol. 110, CRC Press, 1997.

[32]. Zeger Scott L, “A regression model for time series of counts,” Biometrika, vol. 75, no. 4, pp. 
621–629, 1988.

[33]. Jørgensen Bent, Lundbye-Christensen Soren, Song PX-K, and Sun Li, “A state space model for 
multivariate longitudinal count data,” Biometrika, vol. 86, no. 1, pp. 169–181, 1999.

[34]. Fahrmeir Ludwig and Tutz Gerhard, Multivariate statistical modelling based on generalized linear 
models, Springer Science & Business Media, 2013.

[35]. Grunwald Gary K, Hyndman Rob J, Tedesco Leanna, and Tweedie Richard L, “Theory & 
methods: Non-Gaussian conditional linear AR (1) models,” Australian & New Zealand Journal of 
Statistics, vol. 42, no. 4, pp. 479–495, 2000.

[36]. Benjamin Michael A, Rigby Robert A, and Stasinopoulos D Mikis, “Generalized autoregressive 
moving average models,” Journal of the American Statistical association, vol. 98, no. 461, pp. 
214–223, 2003.

[37]. Gouriéroux Christian and Jasiak Joann, “Autoregressive gamma processes,” Les Cahiers du 
CREF of HEC Montréal Working Paper,, no. 05–03, 2005.

[38]. Willett R and Nowak R, “Multiscale Poisson intensity and density estimation,” IEEE 
Transactions on Information Theory, vol. 53, no. 9, pp. 3171–3187, 2007, doi:10.1109/TIT.
2007.903139.

[39]. Raginsky M, Willett R, Harmany Z, and Marcia R, “Compressed sensing performance bounds 
under Poisson noise,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 3990–4002, 
2010, arXiv:0910.5146.

[40]. Raginsky M, Jafarpour S, Harmany Z, Marcia R, Willett R, and Calderbank R, “Performance 
bounds for expander-based compressed sensing in Poisson noise,” IEEE Transactions on Signal 
Processing, vol. 59, no. 9, 2011, arXiv:1007.2377.

[41. Jiang X, Willett R, and Raskutti G, “Minimax rates of estimation for high-dimensional linear 
regression over ℓq-balls,” IEEE Transactions on Information Theory, vol. 61, pp. 44584474, 2015.

[42]. Fokianos Konstantinos, Rahbek Anders, and Tjøstheim Dag, “Poisson autoregression,” Journal of 
the American Statistical Association, vol. 104, no. 488, pp. 1430–1439, 2009.

[43]. Zhu Fukang and Wang Dehui, “Estimation and testing for a Poisson autoregressive model,” 
Metrika, vol. 73, no. 2, pp. 211230, 2011.

[44]. Fokianos Konstantinos and Tjøstheim Dag, “Log-linear Poisson autoregression,” Journal of 
Multivariate Analysis, vol. 102, no. 3, pp. 563–578, 2011.

[45]. Hawkes AG, “Point spectra of some self-exciting and mutually-exciting point processes,” Journal 
of the Royal Statistical Society. Series B (Methodological), vol. 58, pp. 83–90, 1971.

[46]. Hawkes AG, “Point spectra of some mutually-exciting point processes,” Journal of the Royal 
Statistical Society. Series B (Methodological), vol. 33, pp. 438–443, 1971.

[47]. Daley DJ and Vere-Jones D, An introduction to the theory of point processes, Vol. I: Probability 
and its Applications, Springer-Verlag, New York, second edition, 2003.

Hall et al. Page 45

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[48]. Hansen Niels Richard, Reynaud-Bouret Patricia, and Rivoirard Vincent, “LASSO and 
probabilistic inequalities for multivariate point processes,” Bernoulli, vol. 21, no. 1, pp. 83–143, 
2 2015.

[49]. Bacry Muzy, Gaiffas, “A generalization error bound for sparse and low-rank multivariate hawkes 
processes,” arXiv:1501.00725, 2015.

[50]. Heinen Andréas, “Modeling time series count data: an autoregressive conditional Poisson 
model,” Available at SSRN1117187, 2003.

[51]. Zhu Fukang, “A negative binomial integer-valued garch model,” Journal of Time Series Analysis, 
vol. 32, no. 1, pp. 54–67, 2011.

[52]. Zhu Fukang, “Modeling time series of counts with COM-poisson INGARCH models,” 
Mathematical and Computer Modelling, vol. 56, no. 9, pp. 191–203, 2012.

[53]. Zhu Fukang, “Modeling overdispersed or underdispersed count data with generalized Poisson 
integer-valued garch models,” Journal of Mathematical Analysis and Applications, vol. 389, no. 
1, pp. 58–71, 2012.

[54]. Achilioptas D and McSherry F, “On spectral learning of mixtures of distributions,” in 18th 
Annual Conference on Learning Theory (COLT), July 2005.

[55]. van de Geer S, “High-dimensional generalized linear models and the LASSO,” Annals of 
Statistics, vol. 36, pp. 614–636, 2008.

[56]. Koltchinskii V and Yuan M, “Sparse recovery in large ensembles of kernel machines,” in 
Proceedings of COLT, 2008.

[57]. Meier L, van de Geer S, and Buhlmann P, “High-dimensional additive modeling,” Annals of 
Statistics, vol. 37, pp. 3779–3821, 2009.

[58]. Negahban S, Ravikumar P, Wainwright MJ, and Yu B, “A unified framework for high-
dimensional analysis of M-estimators with decomposable regularizers,” Statistical Science, vol. 
27, no. 4, pp. 538–557, 2010.

[59]. Raskutti G, Wainwright MJ, and Yu B, “Minimax rates of estimation for high-dimensional linear 
regression over ℓq-balls,” IEEE Transactions on Information Theory, vol. 57, pp. 69766994, 2011.

[60]. Raskutti G, Wainwright MJ, and Yu B, “Minimax-optimal rates for sparse additive models over 
kernel classes via convex programming,” Journal of Machine Learning Research, vol. 13, pp. 
398–427, 2012.

[61]. Zhao P and Yu B, “On model selection consistency of LASSO,” Journal of Machine Learning 
Research, vol. 7, pp. 2541–2567, 2006.

[62]. Bühlmann P and van de Geer S, Statistics for High-Dimensional Data: Methods, Theory and 
Applications, Springer, 2011.

[63]. Bickel P, Ritov Y, and Tsybakov A, “Simultaneous analysis of Lasso and Dantzig selector,” 
Annals of Statistics, vol. 37, no. 4, pp. 1705–1732, 2009.

[64]. Jiang X, Reynaud-Bouret P, Rivoirard V, Sansonnet L, and Willett R, “A data-dependent 
weighted LASSO under Poisson noise,” arXiv preprint arXiv:1509.08892, 2015.

[65]. van de Geer S, Empirical Process Techniques for Dependent Data, Springer-Verlag, New York, 
NY, 2002.

[66]. Rakhlin A, Sridharan K, and Tewari A, “Sequential complexities and uniform martingale laws of 
large numbers,” Probability Theory and Related Fields, vol. 1, no. 161, pp. 111–153, 2 2015.

[67]. Barabási Albert-László and Albert Réka;, “Emergence of scaling in random networks,” Science, 
vol. 286, no. 5439, pp. 509–512, 1999. [PubMed: 10521342] 

[68]. Houdré Christian and Reynaud-Bouret Patricia, “Exponential inequalities, with constants, for U-
statistics of order two,” in Stochastic inequalities and applications, pp. 55–69. Springer, 2003.

[69]. Bobkov SG and Ledoux M, “On modified logarithmic Soboloev inequalities for Bernoulli and 
Poisson measures,” Journal of Functional Analysis, vol. 156, pp. 347–365, 1998.

[70]. Levin DA, Peres Y, and Wilmer EL, Markov Chains and Mixing Times, American Mathematical 
Society, 2008.

[71]. Pollard D, Convergence of Stochastic Processes, Springer-Verlag, New York, 1984.

Hall et al. Page 46

IEEE Trans Inf Theory. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1: 
A series of plots to show the behavior of the MSE of the RMLE for the Poisson 

Autoregressive process to show how error scales with time horizon, T, and sparsity, s. Our 

theoretical analysis states that error should decay as 1
T  and should grow like s both up to 

constants and log factors. The top row of plots shows the MSE behavior over a range of T 
values, from 100 to 400 all less than or equal to M2 = 400, where (a) is the MSE and (b) is 

the MSE multiplied by T to show that the MSE scales as 1
T . The bottom row shows the MSE 

behavior over a range of s values, where (c) shows MSE and (d) shows MSE divided by s to 

show that the MSE is linear is s. Plots (b) and (d) are included to show the values which are 

expected to scale as constants, which is confirmed. In all plots the median value of 100 trials 

is shown, with error bars denoting the middle 50 percentile.
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Fig. 2: 
These images show the ground truth A* matrix (a) and 3 different estimates of the matrix 

created using increasing amounts of data. We observe that even for a relatively low amount 

of data we have picked out most of the support but with several spurious artifacts. As the 

amount of data increases, fewer of the erroneous elements are estimated. All images are 

scaled from 0 (dark) to −1 (bright).
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Fig. 3: 
Repeat of experimental set up from Figure 1, but now allowing for mixing. The top row of 

plots shows the MSE behavior over a widely varying range of T values, from 100 to 400, 

where (a) is the MSE and (b) is the MSE multiplied by T to show that the MSE is behaving 

as 1/T. The bottom row shows the MSE behavior over a range of s values, where (c) shows 

MSE and (d) shows MSE divided by s to show that the MSE is linear is s. Plots (b) and (d) 

are included to show the values which are expected to scale as constants, independent of 

mixing time, which is confirmed. In all plots the median value of 100 trials is shown, with 

error bars denoting the middle 50 percentile. Most importantly, the behavior and magnitude 

of errors in this plot matches the results with no mixing.
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Fig. 4: 
Repeat of the experimental set up from Figure 1, but with the true A* matrix allowed to have 

elements ranging from 0 to 2.5. This time both the Poisson Autoregressive RMLE is 

estimated as well as an estimator based on the Gaussian approximation to the Poisson 

distribution. We see that the Poisson based estimator consistently and significantly 

outperforms the Gaussian estimator and that the gap increases with increasing T and 

decreasing sparsity. In all plots the median value of 100 trials is shown, with error bars 

denoting the middle 50 percentile.
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