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Abstract

Background

The triage of patients in prehospital care is a difficult task, and improved risk assessment

tools are needed both at the dispatch center and on the ambulance to differentiate between

low- and high-risk patients. This study validates a machine learning-based approach to gen-

erating risk scores based on hospital outcomes using routinely collected prehospital data.

Methods

Dispatch, ambulance, and hospital data were collected in one Swedish region from 2016–

2017. Dispatch center and ambulance records were used to develop gradient boosting mod-

els predicting hospital admission, critical care (defined as admission to an intensive care

unit or in-hospital mortality), and two-day mortality. Composite risk scores were generated

based on the models and compared to National Early Warning Scores (NEWS) and actual

dispatched priorities in a prospectively gathered dataset from 2018.

Results

A total of 38203 patients were included from 2016–2018. Concordance indexes (or areas

under the receiver operating characteristics curve) for dispatched priorities ranged from

0.51–0.66, while those for NEWS ranged from 0.66–0.85. Concordance ranged from 0.70–

0.79 for risk scores based only on dispatch data, and 0.79–0.89 for risk scores including

ambulance data. Dispatch data-based risk scores consistently outperformed dispatched pri-

orities in predicting hospital outcomes, while models including ambulance data also consis-

tently outperformed NEWS. Model performance in the prospective test dataset was similar

to that found using cross-validation, and calibration was comparable to that of NEWS.

Conclusions

Machine learning-based risk scores outperformed a widely-used rule-based triage algorithm

and human prioritization decisions in predicting hospital outcomes. Performance was robust

in a prospectively gathered dataset, and scores demonstrated adequate calibration. Future

research should explore the robustness of these methods when applied to other settings,
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establish appropriate outcome measures for use in determining the need for prehospital

care, and investigate the clinical impact of interventions based on these methods.

Introduction

Emergency care systems in the developed world face increasing burdens due to an aging popu-

lation [1–4], and in prehospital care it is often necessary to prioritize high-risk patients in situ-

ations where resources are scarce. Prehospital care systems have also increasingly sought to

identify patients not in need of emergency care, and to direct these patients to appropriate

forms of alternative care both upon contact via telephone with the dispatch center, and upon

the arrival of an ambulance to a patient [5–12]. Performing these tasks safely and efficiently

requires not only well trained prehospital care providers and carefully considered clinical

guidelines, but also the employment of triage algorithms able to perform risk differentiation

across the diverse cohort of patients presenting to prehospital care systems.

Systems to differentiate high- and low-risk patients in prehospital care have traditionally

relied on simple rule-based algorithms. Many commonly used algorithms seek to identify spe-

cific high-acuity conditions within certain subsets of patients such as cardiac arrest, trauma, or

stroke [13–15]. Other algorithms are intended for use within a broader cohort of patients,

including the vital-sign based Critical Illness Prediction (CIP) and National Early Warning

Scores (NEWS) [16–20], and the Medical Priority Dispatching System (MPDS) [21] for triage

performed over the telephone. In applying such tools, providers commonly “over-triage”

patients, as false negatives are thought to be associated with far greater costs than false positive

findings [22–25]. In this study, we focus on NEWS due to its widespread international use in

the context of prehospital care. NEWS is intended for use as a tool to identify patients at risk

for deterioration, and in studies validating NEWS, patient deterioration has been operationa-

lized in several ways, primarily focusing on patient mortality and/or admission to an Intensive

Care Unit (ICU) [20].

In the context of Emergency Department (ED) triage, Machine Learning (ML) based triage

algorithms have been shown to out-perform their rule-based counterparts in predicting

patient outcomes including mortality, ICU care, and hospital admission [26–29]. We identi-

fied no research relating to the ability of prehospital data to similarly predict hospital out-

comes, though there are indications that ML techniques may be effective in identifying specific

high-acuity conditions such as cardiac arrest at the dispatch center [30]. ML-based approaches

offer the potential to analyze large and complex sets of predictors, and automatically calculate

risk scores for use by care providers. While ML methods can provide substantial gains in

terms of accuracy over traditional risk assessment tools, they also have drawbacks. Perhaps

most concerningly, ML methods readily integrate undesirable systemic biases present in the

data they are trained on into the prediction model [31].

In this study we propose the use of a composite risk score representing the average proba-

bility of several relevant outcomes occurring. This differs from the approaches of previous

researchers, who have either investigated only single measures of patient outcome [27,28], or

binned model predictions across specific ranges of predicted likelihoods [26,32]. To generate

composite scores, we trained separate models for each outcome and to then averaged their pre-

dictions. In averaging multiple model predictions, we argue that it becomes decreasingly likely

that the same sources of undesirable bias (e.g., idiosyncrasies in hospital admission practices,

or differences in the ability of care providers to prevent mortality from different causes) will
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exist across all models. Thus, the combined predictions as embedded in the composite risk

score is argued to be a less biased representation of the true underlying risk for deterioration

associated with a patient than any single measure.

There are several potential use cases for such ML-based risk scores in prehospital care. At

the dispatch center, scores could be used to improve the ability to prioritize patients in

resource constrained situations, enabling faster ambulance responses for higher-risk patients

and the referral of low risk patients to less resource intensive forms of care. Similarly, it may be

possible to develop more accurate risk assessment instruments for use by ambulance staff.

Given sufficiently high levels of sensitivity, such instruments could be used by care providers

to identify low-risk patients suitable for referral to primary care services, thus alleviating the

increasingly vexing problem of overcrowding at EDs [33–35]. At higher levels of specificity,

instruments could be used to automatically alert receiving EDs to incoming high-risk patients,

and allow earlier activation of hospital care processes.

To accommodate this breadth of potential use cases, this study aims to validate our pro-

posed methods empirically in a broad cohort of patients based on the data available at two dis-

tinct points in the chain of emergency care: Over the telephone at the Emergency Medical

Dispatch (EMD) center, and after an ambulance has made contact with the patient in the field.

We investigated the feasibility of using these methods to improve the decisional capacity pre-

hospital care providers in these settings by comparing their accuracy with a previously vali-

dated and widely used triage algorithm (NEWS), and with prioritization decisions made by

nurses at the EMD center per current clinical practice.

Methods

Source of data

This study took place in the region of Uppsala, Sweden, with a size of 8 209 km2, and a popula-

tion of 376 354 in 2018. The region is served by two hospital-based EDs, a single regional

EMD center staffed by Registered Nurses (RNs) employing a self-developed Clinical Decision

Support System (CDSS), and 18 RN-staffed ambulances. The CDSS consists of an interface

wherein dispatchers first seek to identify a set life-threatening conditions (cardiac/respiratory

arrest or unconsciousness), and then document the primary complaint of the patient. Based

on the documented complaint, a battery of questions is presented, the answers to which deter-

mine the priority of the call, or open additional complaints. While the specific set of questions

are idiosyncratic to this and 3 other Swedish regions, its structure is similar to other dispatch

CDSS such as the widely-used MPDS [21].

Ambulance responses are triaged by an RN to one of four priority levels, with 1A represent-

ing the highest priority calls (e.g. cardiac/respiratory arrest), and 1B representing less emergent

calls still receiving a “lights and sirens” (L&S) response. Calls with a priority of 2A represent

urgent, but non-emergent ambulance responses, while 2B calls may be held to ensure resource

availability.

Records from January 2016 to December 2017 were extracted to serve as the basis for all

model development. Upon finalizing the methods to be reported upon, records from January

to December 2018 were extracted to form a test dataset to investigate the prospective perfor-

mance of the models. The data in this study were extracted from databases owned by the Upp-

sala ambulance service containing dispatch, ambulance, and hospital outcome data collected

routinely for quality assurance and improvement purposes. Ambulance records were deter-

ministically linked to dispatch records based on unique record identifiers available in both sys-

tems. Hospital records were extracted from the regional Electronic Medical Records (EMR)

system based on patient Personal Identification Numbers (PINs) collected either by dispatchers
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or ambulance crews. This study was approved by the Uppsala regional ethics review board (dnr

2018/133), which waived the requirement for informed consent. Identifiable data was handled by

hospital employees only, and all research was performed on de-identified datasets.

Participants

All dispatch records associated with a primary ambulance response to a single-patient incident

(i.e., excluding multi-patient traffic accidents and planned inter-facility transports) were

selected for inclusion. Records lacking documentation in the CDSS used at the EMD center

were excluded, as were records in which an invalid PIN or multiple PINs were documented.

Dispatch records with no associated ambulance journal (e.g. calls cancelled en route, or where

no patient was found), and records indicating that the patient was treated and left at the scene

of the incident were excluded. We further excluded records where no EMR system entry asso-

ciated with the patient at the appropriate time could be identified (typically due to documenta-

tion errors, or transports to facilities outside of the studied region), and EMR system records

indicating that the patient was transported to a non-ED destination (e.g. a primary/urgent care

facility, or a direct admission to a hospital ward). We also excluded patients with ambulance

records missing measurements of more than two of the vital signs necessary to calculate a

NEWS score. Patients under the age of 18 were excluded as NEWS scores are not valid predic-

tors of risk for pediatric patients.

Outcomes

We selected three outcome measures based on their face validity in representing a range of

outcome acuity levels, and based to their use in previous studies; 1) patient admission to a hos-

pital ward [26–28,32], 2) the provision of critical care, defined as admission to an Intensive

Care Unit (ICU) or in-hospital mortality [26,28], and 3) all-cause patient mortality within two

days [18,19]. In consideration of the need to update models continuously upon implementa-

tion, we included only in-hospital deaths occurring within 30 days of contact with the ED in

calculating the critical care measure.

We generated composite risk scores by combining independent model predictions for each

of these outcomes. The method we propose results in composite risk scores reflecting the nor-

malized mean likelihood of several outcomes with face validity as being representative of

patient acuity occurring, without incurring the loss of information associated with binning

continuous variables. We applied no weights in the compositing process, as the relative impor-

tance of these measures in in establishing the overall acuity of the patient is not known.

Predictors

Predictors extracted from the dispatch system included patient demographics (age and gen-

der), the operational characteristics of the call (Hour and month that the call was received,

haversine distance to the nearest ED, and prior contacts with the EMD center by the patient),

and the clinical characteristics of the call as documented in the existing rule-based CDSS. We

included the 59 complaint categories, and the 1592 distinct question and answer combinations

available in the CDSS as potential predictors in our models. Each of the questions in the CDSS

was encoded with a 1 representing a positive answer to the question, and 0 representing a neg-

ative answer to the question. Questions with multiple potential answers were encoded on a

numerical scale in cases where the answers were ordinal (e.g., “How long have the symptoms

lasted?”), and as dummy variables if the answers were non-ordered. The recommended prior-

ity of the call based on the existing rule-based triage system was also included as a predictor in

the dispatch dataset.
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Predictors extracted from ambulance records represented the information which would be

available at the time of patient hand-over to ED staff, and included the primary and secondary

complaints, additional operational characteristics (times to reach the incident, on scene, and

to the hospital), vital signs, patient history, medications and procedures administered, and the

clinical findings of ambulance staff. Descriptive statistics for the included predictors are

reported in S1 Table.

To provide a basis for comparison, we extracted the dispatched priority of the call as deter-

mined by the RN handling the call at the EMD center, and retrospectively calculated NEWS

scores for each included patient. If multiple vital sign measurements were taken, the first set

was used both as model predictors and to calculate risk scores based on the NEWS 2 algorithm

(42) as commonly done in other validation studies (20).

Missing data

Missing vital sign measurements in ambulance records are not likely to be missing completely

at random, and must be considered carefully [36,37]. Based on exploratory analysis and clini-

cal judgement, we surmised that records missing at most two of the vital signs constituting the

NEWS score fulfilled the missing at random assumption necessary to perform multiple impu-

tation. Missing vitals were multiply imputed five times using predictive mean matching over

20 iterations as implemented in the ‘mice’ R package [38]. The characteristics of the imputed

data were examined, and the median of the imputed vital signs was used to calculate NEWS

scores. Multiply imputed data were not used as predictors, with missing data handled natively

by the ML models used here.

Statistical analysis

We entered each set of predictors transformed as previously described into gradient boosting

models as implemented in the XGBoost R package [39]. This algorithm involves the sequential

estimation of multiple weak decision trees, with each additional tree reducing the error associ-

ated with the previously estimated trees [40]. Model predictions were combined into compos-

ite risk scores by scaling each set of outcome predictions to have a population mean of zero

and a standard deviation of one. A log transformation applied to improve calibration and

interpretability. All component values were then averaged, resulting in a composite risk score

following an approximately standard normal distribution.

We investigated model discrimination based primarily on Receiver Operating Characteris-

tics (ROC) curves, using the area under these curves (a measure equivalent to the concordance

index, or c-index of the model) as summary performance measures [40]. Precision/Recall

curves and their corresponding areas under the curve are included in S1 Analysis. 95% confi-

dence intervals for descriptive statistics and c-index values were generated based on the per-

centiles of 1000 basic bootstrap samples (using stratified resampling for c-index values) as

implemented in the ‘boot’ R package [41]. Model calibration overall and in a number of sub-

populations was investigated visually using lowess smoothed calibration curves, and summa-

rized using the mean absolute error between predicted and ideally calibrated probabilities

using the ‘val.prob’ function from the ‘rms’ R package [42]. As a secondary analysis, we consid-

ered the hypothetical situation in which calls had been assigned priority levels at the dispatch

center based on the dispatch data-based risk scores, with threshold values calibrated to match

the distribution of patient volume identified in our data.

We considered the performance of the models in the prospective dataset to be the best met-

ric of future model performance, though results in this field have previously been reported

based on cross-validation [26,32] or randomly selected hold-out samples [28]. In this paper we
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report our main findings based on model performance in a prospective test dataset, and

include results based on cross-validation for comparison. Model performance in the training

dataset was estimated using 5-fold cross-validation (CV), and model performance in the test-

ing dataset was based on models estimated using the full training dataset.

Readers interested in further details of the methods employed to produce the results

reported here are encouraged to peruse the commented source code found in S1 Code. All

model development and validation was performed using R version 3.5.3 [43].

Results

Participants

A total of 68 668 records were collected, of which 45 045 were in the training dataset, and 23

623 were in the test dataset as reported in Table 1. Overall, 30 465 records (44%) were excluded

due all criteria. A lower proportion of records were excluded from the test dataset, primarily

due to fewer non-matched ambulance and hospital records.

Summary statistics describing the characteristics of all patients included in the study (across

both training and testing sets), both in total and stratified by dispatched priority are presented

in Table 2. We found that ambulance predictors and outcomes were generally distributed such

that higher priority calls had higher levels of patient acuity, with the notable exception of hos-

pital admission which remained constant at around 50% regardless of dispatched priority.

Higher priority patients were generally younger, more often male, and had a higher proportion

of missing vital signs. Overall, at least one vital sign was missing in a quarter of ambulance rec-

ords, with the most commonly missing vital sign measurement being the patient’s body tem-

perature. Temperature was missing in 15% of cases, and other vital signs were missing in less

than 5% of cases as reported in S1 Table. Multiple imputation of these vital signs resulted in

good convergence and similarity to non-imputed data, and NEWS scores based on sets of

imputed scores did not differ significantly in terms of predictive value.

Model performance

Receiver operating characteristics curves across the three hospital outcomes for each of the

risk prediction scores, as well as for the dispatched priority of the call are presented in Fig 1.

We found that for all investigated outcomes, risk scores based on ambulance data outper-

formed all other instruments investigated. NEWS scores had a greater overall c-index than

Table 1. Results of applying exclusion criteria.

Training dataset (2016–2017) Test dataset (2018)

Excluded,

N

Excluded, percent Remaining, N Excluded, N Excluded, percent Remaining, N

Original 45045 23623

No dispatch CDSS data 2358 5.5 42687 857 3.8 22766

Missing PIN 2113 5.2 40574 1244 5.8 21522

No ambulance journal 2526 6.6 38048 933 4.5 20589

No ambulance transport 3879 11.4 34169 2461 13.6 18128

No hospital journal 3958 13.1 30211 1429 8.6 16699

No ED visit 2939 10.8 27272 1590 10.5 15109

Missing > 2 vitals 1336 5.2 25936 829 5.8 14280

Patient age < 18 1328 5.4 24608 685 5 13595

Final 20437 45.4 24608 10028 42.5 13595

https://doi.org/10.1371/journal.pone.0226518.t001
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dispatch data-based models for critical care and two-day morality, but at threshold values cor-

responding to high levels of sensitivity, dispatch data-based risk predictions provided similar

levels of specificity. While we identified no guidelines on appropriate levels of sensitivity with

regards to these outcomes, in the context of trauma care, the American College of Surgeons

Committee on Trauma (ACS-CoT) recommend that decision rules to identify patients suitable

for direct transport to a level-1 trauma center to have a sensitivity of 95% [25,44]. A similarly

high level of sensitivity is reasonable in applications where risk scores are used to direct

patients to alternate destinations. The level of 95% sensitivity is denoted in Fig 1 by a dotted

line.

In predicting critical care, NEWS scores were unable to achieve a level of 95% sensitivity,

with a decision rule based on a NEWS score of 1 or more yielding a sensitivity (and 95% CI) of

0.92 (0.90–0.93) and a specificity of 0.24 (0.24–0.25). At the same level of sensitivity, the dis-

patch and ambulance data-based risk scores yielded specificities of 0.25 (0.24–0.26) and 0.35

(0.35–0.36) respectively. With regards to 2-day mortality, a decision rule based on NEWS

score of 2 or above yields a sensitivity of 0.95 (0.91–0.98), corresponding to the ACS-CoT rec-

ommendation, while providing a specificity of 0.41 (0.40–0.42). At equivalent levels of sensitiv-

ity, the dispatch and ambulance based models provide specificities of 0.30 (0.29–0.31) and 0.48

(0.47–0.49) respectively.

Table 2. Descriptive statistics of included population.

Priority

1A 1B 2A 2B Total

N 1283 15533 17227 4160 38203

Age, mean 56.2

(54.8–57.5)

64.5

(64.1–64.8)

67.5

(67.2–67.8)

67.3

(66.6–67.9)

65.9

(65.6–66.1)

Female, percent 46.1

(43.3–48.9)

49.4

(48.6–50.1)

53.9

(53.1–54.6)

54.5

(53.0–56.0)

51.9

(51.4–52.4)

Emergent transport,

percent

38.7

(35.9–41.5)

24.6

(23.8–25.2)

4.3

(4.0–4.6)

2.2

(1.8–2.6)

13.5

(13.1–13.8)

Ambulance interventiona,

percent

87.9

(86.1–89.6)

87.4

(86.9–87.9)

71.1

(70.4–71.8)

62.1

(60.6–63.6)

77.3

(76.9–77.7)

Missing vitals,

percent

33.8

(31.3–36.5)

25.7

(25.0–26.4)

24.4

(23.7–25.1)

23.8

(22.5–25.2)

25.2

(24.7–25.6)

NEWS value,

mean

5.79

(5.57–6.00)

3.76

(3.70–3.82)

2.97

(2.92–3.01)

2.40

(2.32–2.48)

3.32

(3.29–3.36)

Prior contacts

(30 days), mean

0.21

(0.17–0.24)

0.17

(0.16–0.18)

0.17

(0.16–0.18)

0.23

(0.21–0.24)

0.18

(0.17–0.18)

Intensive Care Unit, percent 10.0

(8.5–11.6)

3.5

(3.1–3.7)

1.7

(1.5–1.9)

1.6

(1.2–2.0)

2.7

(2.5–2.8)

In-hospital death,

percent

8.7

(7.2–10.2)

4.0

(3.7–4.3)

3.7

(3.4–4.0)

3.9

(3.4–4.5)

4.0

(3.8–4.2)

Critical care,

percent

15.7

(13.8–17.6)

6.6

(6.2–6.9)

4.7

(4.4–5.0)

4.4

(3.8–5.1)

5.8

(5.6–6.0)

Admitted, percent 51.9

(49.1–54.6)

52.3

(51.5–53.0)

52.3

(51.5–53.1)

49.2

(47.6–50.6)

52.0

(51.5–52.5)

2-day mortality,

percent

4.8

(3.6–5.9)

1.6

(1.4–1.8)

0.7

(0.6–0.9)

0.7

(0.5–1.0)

1.2

(1.1–1.3)

Statistics are reported with their bootstrapped 95% confidence interval
aInterventions include Medication administration, Oxygen administration, IV placement, Spinal/longbone immobilization, 12-lead EKG capture/transmission to

hospital, Emergent transport (using lights and sirens), Hospital pre-arrival notification, and administration of CPR.

https://doi.org/10.1371/journal.pone.0226518.t002
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Table 3 summarizes the discrimination of the risk assessment instruments for each out-

come in the test dataset using the c-index of the model and its 95% confidence interval. ML

models based on ambulance data outperformed NEWS scores in terms of c-index for all out-

comes. The dispatch data-based risk predictions outperformed NEWS in predicting hospital

admission, while NEWS scores outperformed the dispatch data-based predictions for critical

Fig 1. Receiver operating characteristics in predicting hospital outcomes. Dotted line corresponds to 95% sensitivity.

https://doi.org/10.1371/journal.pone.0226518.g001

Table 3. Concordance indexes in predicting hospital outcomes.

Validation method Outcome Dispatched priority NEWS Score Dispatch risk score Ambulance risk score

Test Hospital admission 0.51

(0.50–0.52)

0.66

(0.65–0.67)

0.73

(0.72–0.73)

0.79

(0.78–0.80)

Critical Care 0.57

(0.55–0.59)

0.75

(0.73–0.77)

0.70

(0.68–0.72)

0.79

(0.77–0.81)

Two-day mortality 0.66

(0.62–0.70)

0.85

(0.81–0.88)

0.79

(0.76–0.82)

0.89

(0.87–0.92)

Cross-Validated Hospital admission 0.50

(0.50–0.51)

0.67

(0.67–0.68)

0.72

(0.72–0.73)

0.79

(0.78–0.79)

Critical Care 0.57

(0.56–0.59)

0.76

(0.75–0.78)

0.70

(0.68–0.71)

0.79

(0.78–0.80)

Two-day mortality 0.62

(0.59–0.65)

0.85

(0.83–0.87)

0.79

(0.77–0.81)

0.89

(0.87–0.91)

C-indexes are reported with their bootstrapped 95% confidence interval

https://doi.org/10.1371/journal.pone.0226518.t003

Machine learning-based risk scores in the prehospital setting

PLOS ONE | https://doi.org/10.1371/journal.pone.0226518 December 13, 2019 8 / 18

https://doi.org/10.1371/journal.pone.0226518.g001
https://doi.org/10.1371/journal.pone.0226518.t003
https://doi.org/10.1371/journal.pone.0226518


care and two-day mortality in terms of overall discrimination. All risk assessment instruments

outperformed dispatched priorities in predicting hospital outcomes, which were found to have

some predictive power for critical care and two-day mortality, but none for hospital admission.

We found no significant differences between model performance using cross-validation and

validation in the test dataset.

We found that both NEWS and ML-based risk scores demonstrated some deviation from

ideal calibration as reported in S1 Fig. In terms of mean average error, NEWS scores demon-

strated better overall calibration in predicting hospital admission and critical care, but not

two-day mortality as reported in S2 Table. In investigating model calibration in sub-popula-

tions stratified by age, gender, dispatched priority and patient complaint, some sub-popula-

tions did deviate from ideal calibration among both NEWS scores and ML risk scores, though

deviations were not consistent across outcomes.

We found that prioritizations at the dispatch center based solely on the dispatch data model

would have resulted in substantial improvements in risk differentiation with regards to hospi-

tal outcomes and NEWS scores, as reported in Table 4. The proportion of the highest priority

patients receiving critical care for instance would increase from the current level of 15% to

22%, while the corresponding levels for the lowest priority patients would decrease from 4% to

1%. With regards to the pre-hospital interventions we included however, differentiation was

not improved and indeed in most cases was poorer.

The relative gain in predictive value provided by the 15 most important predictors included

in the ambulance data-based models is reported in Fig 2, in order of descending mean gain

across the 3 outcomes. Patient age and the provision of oxygen (coded as the liter per minute

flow) ranked highest, followed by a number of patient vital signs. Whether or not the patient

was transported using lights and sirens to the hospital was a strong predictor of outcomes. A

number of measures of call duration (time to the hospital, time on-scene, and time between

call receipt and ambulance dispatch), the distance to the nearest ED, and time of day of the

call also ranked highly. A summary of the gain provided by all included variables is provided

in S1 Table.

Table 4. Outcomes by priority compared with hypothetical dispatch prioritization.

Type Priority N Emergent transport,

percent

Ambulance intervention,

percent

NEWS value,

mean

Admitted, percent Critical care,

percent

2-day mortality,

percent

Current 1A 473 35.3

(31.3–39.7)

87.5

(84.6–90.5)

5.64

(5.28–6.02)

48.6

(44.2–52.9)

14.6

(11.6–17.8)

4.7

(3.0–6.6)

1B 5657 22.5

(21.4–23.6)

86.4

(85.5–87.2)

3.70

(3.59–3.80)

52.3

(51.0–53.6)

6.5

(5.9–7.2)

1.7

(1.4–2.0)

2A 6112 3.4

(3.0–3.9)

70.5

(69.3–71.6)

2.81

(2.74–2.89)

51.5

(50.1–52.8)

4.7

(4.2–5.2)

0.6

(0.4–0.9)

2B 1353 1.7

(1.1–2.4)

60.5

(57.9–63.2)

2.33

(2.20–2.46)

47.7

(44.8–50.5)

4.4

(3.3–5.4)

0.4

(0.1–0.9)

Hypo-thetical 1A 473 37.8

(33.4–42.5)

90.7

(87.9–93.2)

7.22

(6.84–7.61)

75.3

(71.2–79.1)

22.2

(18.4–25.8)

10.1

(7.4–12.9)

1B 5657 15.3

(14.3–16.2)

77.9

(76.8–79.0)

4.22

(4.13–4.33)

69.6

(68.5–70.8)

8.2

(7.5–8.9)

1.6

(1.2–1.9)

2A 6112 8.9

(8.1–9.7)

74.9

(73.8–76.0)

2.37

(2.31–2.44)

40.3

(39.0–41.5)

3.3

(2.8–3.7)

0.4

(0.3–0.6)

2B 1353 6.1

(4.9–7.3)

75.0

(72.7–77.2)

1.55

(1.45–1.65)

16.3

(14.3–18.4)

1.0

(0.5–1.6)

0.0

(0.0–0.0)

Table presents a comparison of outcome prevalences within each priority group as dispatched per current clinical practice, and for a hypothetical situation in which calls

were dispatched based solely on the proposed dispatch risk score. All estimates are reported with bootstrapped 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0226518.t004
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Discussion

Limitations

We limited this study to the investigation of a composite score based on an unweighted aver-

age of model predictions for three specific hospital outcomes. In doing so, we make the

assumption that each of these outcomes is equally important in determining the overall risks

associated with the patient. A sensitivity analysis provided in S3 Table demonstrated that while

the predictive value of the risk scores did shift in favor of more heavily weighted outcomes

across a range of weights, the differences did not impact the main findings of this study. The

unweighted average furthermore offered a good compromise in terms of discrimination for

each of the constituent outcomes. The most appropriate set of outcomes and associated

weights to employ is nevertheless dependent on the intended application of the risk scores,

and we recognize that we have examined only one of many potentially valid sets of outcome

measures to employ in prehospital risk assessment.

We employed a relatively restrictive set of inclusion criteria in this study which excluded

patients left at the scene of the incident, and patients transported to non-ED destinations. We

considered investigation of the cohort of patients transported to an ED to provide the most

replicable results as this avoided several sources of loss to follow-up present among non-trans-

ported patients. Given that prior research on ML-based risk scores has been performed pri-

marily in the context of the ED, this cohort was thought to be most relevant to other

researchers. We performed a sensitivity analysis to investigate the impact of using a broader

patient cohort including patients left on scene by the ambulance and those transported to des-

tinations other than the ED. The results were essentially unchanged as reported in S2 Analysis.

Upon implementing these methods, care must be taken to ensure that the criteria used to

include patients in a training dataset results in a population of patients similar to those upon

whom the risk assessment tools will be applied.

Fig 2. Importance of variables in predicting hospital outcomes in Ambulance models. Variables are arranged in order of descending mean gain across the models

predicting the outcomes included in the ambulance data-based risk score.

https://doi.org/10.1371/journal.pone.0226518.g002
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We observed a rate of loss to follow up of around 5–10% upon the application of each of

our exclusion criteria. To assess and ameliorate risks associated with data quality issues, we

manually spot-checked records to ensure the accuracy of our automated data extraction meth-

ods, finding an average accuracy of 96% for the ambulance and hospital measures. We

addressed systematic data extraction issues where we found them, which could account for the

lower rate of loss to follow-up we observed in the test dataset as reported in Table 1. The link-

age rates found in this study were similar or superior to other studies of prehospital data [45–

47]. We also observed c-index values for NEWS scores similar to those found in previous stud-

ies; Lane et al. [18] identified c-indexes of 0.85 for NEWS in predicting two-day mortality, sim-

ilar to our value of 0.85 (0.82–0.86). Results were also similar to those identified by Pirneskoski

et al. [19], who found a c-index value of 0.84 for NEWS scores in predicting 1-day mortality.

Such agreement suggests that the quality of the data in this study is comparable to that of previ-

ously published research in the field.

While the ML models reported on in this single-site study performed well in prospective

validation, they are not likely to generalize well if applied directly to other contexts. Guidelines

regarding hospital admission and intensive care for instance may vary, potentially biasing out-

come predictions if these models were applied directly in other settings. Such idiosyncrasies

are likely to exist among predictor variables as well: Oxygen was found to have been adminis-

tered to 17% of patients in this study for instance, a rate which appears to be lower than that

found in other contexts [48,49]. In settings where oxygen is administered more liberally, it is

not likely to be as strongly associated with patient acuity. The ML framework we employ is

however highly flexible, and is likely to produce good results if models were to be trained

“from scratch” on other similar datasets. As such, rather than seek to apply the specific models

developed in this study to other settings, we encourage researchers to generate and validate

novel models based on the framework we propose in other settings. To enhance reproducibil-

ity, we sought to adhere to TRIPOD guidelines in reporting our results regarding the develop-

ment and validation of these models [50], and it is hoped that the source code found in S1

Code will facilitate the replication of-, and improvement upon our results.

Interpretation

Overall, these findings suggest that the application of machine learning methods using rou-

tinely collected dispatch and ambulance data is a feasible approach to improving the decision

support tools used by prehospital care providers to assess patients in terms of the need for hos-

pital care. We found that risk scores generated using ML models based on ambulance data out-

performed NEWS in predicting hospital outcomes. Risk scores based on data gathered at the

EMD center outperformed the prioritizations made by dispatch nurses, and performed com-

parably to NEWS (which are based on physiological data gathered upon patient contact) in set-

tings where high sensitivity is demanded. Model performance was similar when validated

internally using cross-validation and when evaluated in a prospectively gathered dataset, sug-

gesting that the performance of the models is likely to remain stable upon being implemented

within the studied context. ML-based risk scores demonstrated acceptable levels of calibration

both overall and stratified by age, gender, priority and common call types, and were only

mildly sensitive to the selection of alternate sets of weights.

During the development of the methods reported here, we investigated the performance of

a number of ML techniques including regularized logistic regression, support vector machines,

random forests, gradient boosting, and deep neural networks in the training dataset. As in pre-

vious studies [27,51–53], we found that the XGBoost algorithm performed at least as well as

other methods we applied to these data in terms of discrimination. We also found that the
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XGBoost algorithm had several practical benefits, including being essentially invariant to

monotonic transformations of the predictors, thus simplifying the data transformation pipe-

line [40], and appropriately handling missing data using a sparsity-aware splitting algorithm

[39]. While providing good discrimination, the approach does have some drawbacks including

being somewhat difficult to interpret, the inability to update models without access to the full

original dataset, and that the models are not inherently well calibrated as logistic regression for

instance is. We employ a novel method for combining the predictions of these models into a

composite measure using a weighted average. This provides some practical benefits; It allows

the instrument to be tailored to various applications by adjusting the weights associated with

each prediction, and it allows the presentation of predictions for each individual component

outcome to users, in addition to an overall risk score which can be rapidly interpreted. This

approach also avoids the information loss associated with binning continuous values as

employed in previous studies [26,32], which is particularly undesirable in applications where

the acuity of patients is to be directly compared.

We found the overall calibration of our composite risk scores to be satisfactory, despite

their nature as an average of multiple outcomes. Examination of calibration across sub-popula-

tions yielded interesting results which could be further examined. We found NEWS for

instance to systematically under-estimate the probability of hospital admission among older

patients—Such miscalibration could be the result of an over-estimation of risks among older

patients in the hospital admission process, but could also represent an underlying bias in

NEWS as currently calculated. Interestingly, all risk scores tended to underestimate the proba-

bility of two-day mortality for the oldest quartile of patients. While the usual caution in inter-

preting post-hoc sub-group analyses is warranted, we found analyses of this type to be useful

in developing the models reported here, and in considering how to proceed with their applica-

tion to clinical practice.

While dispatcher prioritizations did have some predictive value for critical care and two-

day mortality, their discrimination was poor in comparison with all other risk assessment

instruments with regards to hospital outcomes. This may in part be due to dispatchers priori-

tizing ambulance responses with an eye to the need for prehospital rather than in-hospital

care. These aspects of patient care often coincide but can in some cases differ. Cases of severe

allergic reactions for instance call for a high priority ambulance response, but following treat-

ment in the field by ambulance staff, often require only minimal in-hospital care. This is

reflected in the results reported in Table 4, which demonstrated that while the risk scores

improved differentiation with regards to hospital outcomes, it did not improve the stratifica-

tion of patients with regards to prehospital interventions. These findings highlight the need to

use this type of risk assessment instrument in the context of clinical guidelines which permit

care providers to override the risk score in complex situations where factors beyond those cap-

tured in the models are at play. We suggest that the results of such an instrument should rather

be considered as one factor in a holistic patient assessment.

Our models generally had lower levels of overall predictive value than found in previous

studies investigating these outcomes based on data collected at the ED. This could in part be

explained by population differences, given that the population of ambulance-transported

patients investigated here constitutes a sum-population of the highest-acuity patients cared for

at the ED [54–56]. The population in this study for instance had an average rate of in-hospital

mortality of 4%, compared with the 0.5% rate found by Levin et al. [26], while our hospital

admission rate was 52% as compared with the 30% found by Hong et al. [27], both of whom

studied the full population of ED patients. We provide outcome data stratified by patient

condition at the ED as S4 Table to allow comparison with other studies. It is also the case that

the data available in records of prehospital care tend to be less detailed, lacking granular
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information regarding for instance the patient’s past medical history and laboratory test

results. Such data have been found to provide substantial improvements to patient outcome

predictions [27,29]. This study demonstrates that despite these barriers, prehospital data does

have value in predicting hospital outcomes. We identified no studies of ED triage models

which included prehospital data, and as such, we suggest that one avenue for improving the

performance of in-hospital triage models may be to include variables drawn from dispatch and

ambulance records.

The risk scores we present in this study have potential applications throughout the chain of

prehospital emergency care including at the dispatch center, on the ambulance, and at the ED.

While each potential use case will require the models to be tailored to suit the application, it is

a strength of the approach we propose that such adaptations are relatively simple to imple-

ment. At the dispatch center for instance, the risk scores could be applied directly for the task

of assessing the need for hospital care. As noted previously, different outcome measures must

be selected to capture the need for prehospital care however. While a number of measures

have been proposed to assess dispatch accuracy, more research is needed to establish consen-

sus regarding the most suitable set of measures to employ [57]. In the ambulance setting, the

risk scores appear suitable for use as a direct replacement for NEWS for the identification of

patients for whom referral to a hospital is necessary [58]. In this application, broader inclusion

criteria such as those reported in S2 Analysis should be applied in order to train models on the

appropriate cohort of patients.

The inclusion criteria used in the main analysis are most applicable to the use case of alert-

ing receiving EDs to incoming high-risk patients. For instance, it may be possible to shorten

ED waiting times by identifying incoming patients with a high probability of admission. Staff

could then make arrangements for in-patient care immediately upon patient hand off, or per-

haps even before the patient arrives at the ED. In this application, the composite measures we

propose have similar levels of discrimination with regards to hospital admission as single mod-

els dedicated to predicting only this outcome, while retaining a high predictive value for other

outcomes of interest as reported in S3 Table. To demonstrate the behavior of the risk scores we

present, a simplified version of the ambulance data-based risk assessment instrument has been

made publicly available and integrated into a web application for non-clinical use [59].

In conclusion, these results demonstrate that machine learning offers a viable approach to

improving the accuracy of prehospital risk assessments, both in relation to existing rule-based

triage algorithms, and current practice. Further research should investigate if the inclusion of

additional unstructured data such as free-text notes and dispatch center call recordings could

further improve the predictive value of the models reported here. Studies to investigate the atti-

tudes of care providers with regards to risk assessments using ML may also prove fruitful;

while ML methods can provide prehospital care providers with a more accurate risk score, the

lack of direct interpretability often associated with such models may prove to be a barrier to

acceptance. This study establishes only the feasibility of this approach to prehospital risk

assessment, and further studies must establish the ability of this approach to influence the deci-

sions of care providers and impact patient outcomes by means of prospective, preferably ran-

domized, trial.

Supporting information

S1 Analysis. Precision/Recall analysis. Provides results from a Precision/recall curve analysis

as commonly reported in the machine learning literature, presented in the same manner as Fig

1 and Table 2 in the main analysis.
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S2 Analysis. Broad inclusion criteria. Investigates the sensitivity of our results to a broaden-

ing of the inclusion criteria used in the main analysis, we report all tables, figures and supple-

mentary analyses presented here, but including patients left on scene by an ambulance or

transported to a non-ED destination.

(DOCX)

S1 Fig. Model calibration curves. Provides the results of model calibration analyses using low-

ess smoothed calibration curves for both overall calibration, and calibration among sub-popu-

lations divided by age quartile, gender, call priority, and the 5 most common call types.

(DOCX)

S1 Table. Predictor description. Descriptions of each set of predictors included in gradient

boosting models, providing information regarding the number of non-missing, non-zero val-

ues among included calls, the average gain provided by the predictor, and the number of

dummy-encoded variables included from the predictor in the models.

(DOCX)

S2 Table. Model calibration mean average error. Provides summary statistics in the form of

the mean average calibration error for NEWS and ML risk scores both in the full population,

and the weighted average of all investigated sub-populations.

(DOCX)

S3 Table. Sensitivity to alternate weights. Reports c-indexes for risk scores across a range of

alternate weighting schemes, including the performance of individual model predictions

across all investigated outcomes.

(DOCX)

S4 Table. Descriptive statistics by ED triage category. Presents patient volumes, ages, and

outcomes across ED triage categories with more than 300 occurrences.

(DOCX)

S1 Code. R Source code. Provides all R code necessary to replicate the results reported in this

manuscript in a user-provided dataset. If no dataset is provided, results are calculated in a ran-

domly generated synthetic dataset mimicking the univariate properties of our data. This repos-

itory also includes the public release models and the code for an interactive demonstration of

the models using the Shiny wed app framework. A maintained version of this code may be

found on github: https://github.com/dnspangler/openTriage_validation, and an interactive

demo app based on the public release models may be found here: https://ucpr.se/openTriage_

demo/.

(ZIP)
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11. Höglund E, Schröder A, Möller M, Andersson-Hagiwara M, Ohlsson-Nevo E. The ambulance nurse

experiences of non-conveying patients. J Clin Nurs. 2019; 28: 235–244. https://doi.org/10.1111/jocn.

14626 PMID: 30016570

12. Kirkland SW, Soleimani A, Rowe BH, Newton AS. A systematic review examining the impact of redirect-

ing low-acuity patients seeking emergency department care: is the juice worth the squeeze? Emerg

Med J. 2019; 36: 97–106. https://doi.org/10.1136/emermed-2017-207045 PMID: 30510034

13. Heward A, Damiani M, Hartley-Sharpe C. Does the use of the Advanced Medical Priority Dispatch Sys-

tem affect cardiac arrest detection? Emerg Med J. 2004; 21: 115–118. https://doi.org/10.1136/emj.

2003.006940 PMID: 14734398

14. Bolorunduro OB, Villegas C, Oyetunji TA, Haut ER, Stevens KA, Chang DC, et al. Validating the Injury

Severity Score (ISS) in different populations: ISS predicts mortality better among Hispanics and

females. J Surg Res. 2011; 166: 40–44. https://doi.org/10.1016/j.jss.2010.04.012 PMID: 20828742

15. Maddali A, Razack FA, Cattamanchi S, Ramakrishnan TV. Validation of the Cincinnati Prehospital

Stroke Scale. J Emerg Trauma Shock. 2018; 11: 111–114. https://doi.org/10.4103/JETS.JETS_8_17

PMID: 29937640

Machine learning-based risk scores in the prehospital setting

PLOS ONE | https://doi.org/10.1371/journal.pone.0226518 December 13, 2019 15 / 18

https://doi.org/10.3109/10903127.2010.481759
https://doi.org/10.3109/10903127.2010.481759
http://www.ncbi.nlm.nih.gov/pubmed/20507220
https://www.mja.com.au/journal/2011/194/11/challenges-population-ageing-accelerating-demand-emergency-ambulance-services?inline=true
https://www.mja.com.au/journal/2011/194/11/challenges-population-ageing-accelerating-demand-emergency-ambulance-services?inline=true
https://doi.org/10.1377/hlthaff.2013.0670
http://www.ncbi.nlm.nih.gov/pubmed/24301394
https://doi.org/10.1111/jgs.12072
http://www.ncbi.nlm.nih.gov/pubmed/23311549
https://doi.org/10.1136/qshc.2003.008003
http://www.ncbi.nlm.nih.gov/pubmed/15465940
https://doi.org/10.1080/10903120500541308
http://www.ncbi.nlm.nih.gov/pubmed/16531379
https://doi.org/10.1136/emj.2007.048850
http://www.ncbi.nlm.nih.gov/pubmed/17901280
https://doi.org/10.1016/j.ienj.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26472522
https://doi.org/10.14423/SMJ.0000000000000303
https://doi.org/10.14423/SMJ.0000000000000303
http://www.ncbi.nlm.nih.gov/pubmed/26192931
https://doi.org/10.1071/AH15134
http://www.ncbi.nlm.nih.gov/pubmed/26568037
https://doi.org/10.1111/jocn.14626
https://doi.org/10.1111/jocn.14626
http://www.ncbi.nlm.nih.gov/pubmed/30016570
https://doi.org/10.1136/emermed-2017-207045
http://www.ncbi.nlm.nih.gov/pubmed/30510034
https://doi.org/10.1136/emj.2003.006940
https://doi.org/10.1136/emj.2003.006940
http://www.ncbi.nlm.nih.gov/pubmed/14734398
https://doi.org/10.1016/j.jss.2010.04.012
http://www.ncbi.nlm.nih.gov/pubmed/20828742
https://doi.org/10.4103/JETS.JETS_8_17
http://www.ncbi.nlm.nih.gov/pubmed/29937640
https://doi.org/10.1371/journal.pone.0226518


16. Silcock DJ, Corfield AR, Gowens PA, Rooney KD. Validation of the National Early Warning Score in the

prehospital setting. Resuscitation. 2015; 89: 31–35. https://doi.org/10.1016/j.resuscitation.2014.12.029

PMID: 25583148

17. Seymour CW, Kahn JM, Cooke CR, Watkins TR, Heckbert SR, Rea TD. Prediction of Critical Illness

During Out-of-Hospital Emergency Care. JAMA. 2010; 304: 747–754. https://doi.org/10.1001/jama.

2010.1140 PMID: 20716737

18. Lane DJ, Wunsch H, Saskin R, Cheskes S, Lin S, Morrison LJ, et al. Assessing Severity of Illness in

Patients Transported to Hospital by Paramedics: External Validation of 3 Prognostic Scores. Prehosp

Emerg Care. 2019; 0: 1–9. https://doi.org/10.1080/10903127.2019.1632998 PMID: 31210571

19. Pirneskoski J, Kuisma M, Olkkola KT, Nurmi J. Prehospital National Early Warning Score predicts early

mortality. Acta Anaesthesiol Scand. 2019; 63: 676–683. https://doi.org/10.1111/aas.13310 PMID:

30623422

20. Patel R, Nugawela MD, Edwards HB, Richards A, Le Roux H, Pullyblank A, et al. Can early warning

scores identify deteriorating patients in pre-hospital settings? A systematic review. Resuscitation. 2018;

132: 101–111. https://doi.org/10.1016/j.resuscitation.2018.08.028 PMID: 30171976

21. Hettinger AZ, Cushman JT, Shah MN, Noyes K. Emergency Medical Dispatch Codes Association with

Emergency Department Outcomes. Prehosp Emerg Care. 2013; 17: 29–37. https://doi.org/10.3109/

10903127.2012.710716 PMID: 23140195

22. Veen M van, Steyerberg EW, Ruige M, Meurs AHJ van, Roukema J, Lei J van der, et al. Manchester tri-

age system in paediatric emergency care: prospective observational study. BMJ. 2008; 337: a1501.

https://doi.org/10.1136/bmj.a1501 PMID: 18809587

23. Khorram-Manesh A, Montán KL, Hedelin A, Kihlgren M, Örtenwall P. Prehospital triage, discrepancy in

priority-setting between emergency medical dispatch centre and ambulance crews. Eur J Trauma

Emerg Surg. 2010; 37: 73–78. https://doi.org/10.1007/s00068-010-0022-0 PMID: 26814754

24. Dami F, Golay C, Pasquier M, Fuchs V, Carron P-N, Hugli O. Prehospital triage accuracy in a criteria

based dispatch centre. BMC Emerg Med. 2015;15. https://doi.org/10.1186/s12873-015-0041-6

25. Newgard CD, Yang Z, Nishijima D, McConnell KJ, Trent SA, Holmes JF, et al. Cost-Effectiveness of

Field Trauma Triage among Injured Adults Served by Emergency Medical Services. J Am Coll Surg.

2016; 222: 1125–1137. https://doi.org/10.1016/j.jamcollsurg.2016.02.014 PMID: 27178369

26. Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, et al. Machine-Learning-Based Elec-

tronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared

With the Emergency Severity Index. Ann Emerg Med. 2018; 71: 565–574.e2. https://doi.org/10.1016/j.

annemergmed.2017.08.005 PMID: 28888332

27. Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency department triage

using machine learning. PLOS ONE. 2018; 13: e0201016. https://doi.org/10.1371/journal.pone.

0201016 PMID: 30028888

28. Raita Y, Goto T, Faridi MK, Brown DFM, Camargo CA, Hasegawa K. Emergency department triage pre-

diction of clinical outcomes using machine learning models. Crit Care. 2019; 23: 64. https://doi.org/10.

1186/s13054-019-2351-7 PMID: 30795786

29. Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and accurate deep learning with

electronic health records. Npj Digit Med. 2018; 1: 18. https://doi.org/10.1038/s41746-018-0029-1 PMID:

31304302

30. Blomberg SN, Folke F, Ersbøll AK, Christensen HC, Torp-Pedersen C, Sayre MR, et al. Machine learn-

ing as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation. 2019; 138: 322–

329. https://doi.org/10.1016/j.resuscitation.2019.01.015 PMID: 30664917

31. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential Biases in Machine Learning Algo-

rithms Using Electronic Health Record Data. JAMA Intern Med. 2018; 178: 1544–1547. https://doi.org/

10.1001/jamainternmed.2018.3763 PMID: 30128552

32. Dugas AF, Kirsch TD, Toerper M, Korley F, Yenokyan G, France D, et al. An Electronic Emergency Tri-

age System to Improve Patient Distribution by Critical Outcomes. J Emerg Med. 2016; 50: 910–918.

https://doi.org/10.1016/j.jemermed.2016.02.026 PMID: 27133736

33. Guttmann A, Schull MJ, Vermeulen MJ, Stukel TA. Association between waiting times and short term

mortality and hospital admission after departure from emergency department: population based cohort

study from Ontario, Canada. BMJ. 2011; 342: d2983. https://doi.org/10.1136/bmj.d2983 PMID:

21632665

34. Di Somma S, Paladino L, Vaughan L, Lalle I, Magrini L, Magnanti M. Overcrowding in emergency

department: an international issue. Intern Emerg Med. 2015; 10: 171–175. https://doi.org/10.1007/

s11739-014-1154-8 PMID: 25446540

Machine learning-based risk scores in the prehospital setting

PLOS ONE | https://doi.org/10.1371/journal.pone.0226518 December 13, 2019 16 / 18

https://doi.org/10.1016/j.resuscitation.2014.12.029
http://www.ncbi.nlm.nih.gov/pubmed/25583148
https://doi.org/10.1001/jama.2010.1140
https://doi.org/10.1001/jama.2010.1140
http://www.ncbi.nlm.nih.gov/pubmed/20716737
https://doi.org/10.1080/10903127.2019.1632998
http://www.ncbi.nlm.nih.gov/pubmed/31210571
https://doi.org/10.1111/aas.13310
http://www.ncbi.nlm.nih.gov/pubmed/30623422
https://doi.org/10.1016/j.resuscitation.2018.08.028
http://www.ncbi.nlm.nih.gov/pubmed/30171976
https://doi.org/10.3109/10903127.2012.710716
https://doi.org/10.3109/10903127.2012.710716
http://www.ncbi.nlm.nih.gov/pubmed/23140195
https://doi.org/10.1136/bmj.a1501
http://www.ncbi.nlm.nih.gov/pubmed/18809587
https://doi.org/10.1007/s00068-010-0022-0
http://www.ncbi.nlm.nih.gov/pubmed/26814754
https://doi.org/10.1186/s12873-015-0041-6
https://doi.org/10.1016/j.jamcollsurg.2016.02.014
http://www.ncbi.nlm.nih.gov/pubmed/27178369
https://doi.org/10.1016/j.annemergmed.2017.08.005
https://doi.org/10.1016/j.annemergmed.2017.08.005
http://www.ncbi.nlm.nih.gov/pubmed/28888332
https://doi.org/10.1371/journal.pone.0201016
https://doi.org/10.1371/journal.pone.0201016
http://www.ncbi.nlm.nih.gov/pubmed/30028888
https://doi.org/10.1186/s13054-019-2351-7
https://doi.org/10.1186/s13054-019-2351-7
http://www.ncbi.nlm.nih.gov/pubmed/30795786
https://doi.org/10.1038/s41746-018-0029-1
http://www.ncbi.nlm.nih.gov/pubmed/31304302
https://doi.org/10.1016/j.resuscitation.2019.01.015
http://www.ncbi.nlm.nih.gov/pubmed/30664917
https://doi.org/10.1001/jamainternmed.2018.3763
https://doi.org/10.1001/jamainternmed.2018.3763
http://www.ncbi.nlm.nih.gov/pubmed/30128552
https://doi.org/10.1016/j.jemermed.2016.02.026
http://www.ncbi.nlm.nih.gov/pubmed/27133736
https://doi.org/10.1136/bmj.d2983
http://www.ncbi.nlm.nih.gov/pubmed/21632665
https://doi.org/10.1007/s11739-014-1154-8
https://doi.org/10.1007/s11739-014-1154-8
http://www.ncbi.nlm.nih.gov/pubmed/25446540
https://doi.org/10.1371/journal.pone.0226518
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