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Background. Regenerating islet-derived protein 3α (REG3α) is an antimicrobial peptide secreted by intestinal Paneth cells. 
Circulating REG3α has been identified as a gut damage marker in inflammatory bowel diseases. People living with human im-
munodeficiency virus (PWH) on antiretroviral therapy (ART) present with an abnormal intestinal landscape leading to microbial 
translocation, persistent inflammation, and development of non-AIDS comorbidities. Herein, we assessed REG3α as a marker of gut 
damage in PWH.

Methods. Plasma from 169 adult PWH, including 30 elite controllers (ECs), and 30 human immunodeficiency virus (HIV)–un-
infected controls were assessed. REG3α plasma levels were compared with HIV disease progression, epithelial gut damage, microbial 
translocation, and immune activation markers.

Results. Cross-sectionally, REG3α levels were elevated in untreated and ART-treated PWH compared with controls. ECs also 
had elevated REG3α levels compared to controls. Longitudinally, REG3α levels increased in PWH without ART and decreased in 
those who initiated ART. REG3α levels were inversely associated with CD4 T-cell count and CD4:CD8 ratio, while positively cor-
related with HIV viral load in untreated participants, and with fungal product translocation and inflammatory markers in all PWH.

Conclusions. Plasma REG3α levels were elevated in PWH, including ECs. The gut inflammatory marker REG3α may be used to 
evaluate therapeutic interventions and predict non-AIDS comorbidity risks in PWH.

Keywords.  HIV; gut damage; REG3α; microbial translocation; inflammation.

Human immunodeficiency virus (HIV) infection is character-
ized by a rapid decline in mucosal CD4 T-cell count, early ep-
ithelial gut damage, and subsequent translocation of microbial 
products into the systemic circulation [1]. Epithelial gut damage 
and microbial translocation have been linked with inflamma-
tion, HIV disease progression, and occurrence of non-AIDS 
comorbidities such as cardiovascular and fatty liver diseases, 
neurocognitive dysfunctions, and cancer in people living with 
HIV (PWH) under antiretroviral therapy (ART) [2, 3].

In the absence of ART, the majority of PWH, called 
progressors, have an abnormal gastrointestinal landscape char-
acterized by villous atrophy, crypt hyperplasia, loosened tight 
junctions, gastrointestinal inflammation, and increased intes-
tinal permeability [4–7]. Despite long-term ART, damage to the 
gut mucosa persists in PWH [8–10]. However, elite controllers 
(ECs), a rare subset of PWH who maintain undetectable viral 
load (VL) without ART, present with lower levels of gut mu-
cosal damage compared with progressors [11].

The mechanism behind persistent gut damage in PWH is not 
fully understood [12]. Epithelial gut damage has been observed 
to appear prior to immune changes in simian immunodeficiency 
virus (SIV)–infected rhesus macaques [7]. Deterioration of the 
gastrointestinal landscape in PWH and SIV-infected rhesus 
macaques has been shown to cause translocation of bacterial 
and fungal products contributing to chronic immune activation 
and the development of non-AIDS comorbidities [1, 12–15]. 
Thus, understanding the underlying mechanisms of gut damage 
in PWH may help to develop novel therapeutic strategies to 
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reduce systemic immune activation and subsequent develop-
ment of non-AIDS comorbidities in PWH on ART.

Markers of gut barrier integrity are commonly used in clin-
ical research, as assessing the entire gut epithelium by en-
doscopy remains difficult [16]. Blood markers of microbial 
translocation such as lipopolysaccharide (LPS) and soluble 
CD14 (sCD14) are used as indirect measures of gut epithe-
lium integrity. Circulating intestinal fatty acid binding protein 
(I-FABP), an intracellular protein constitutively expressed in 
enterocytes, is commonly used. Upon intestinal cell death, 
I-FABP is released into the mucosa and subsequently trans-
locates into the blood in inflammatory bowel diseases (IBDs) 
[17, 18]. In PWH, circulating levels of I-FABP were found to be 
elevated in HIV progressors but not in ECs [11, 19]. However, 
some studies found an increase in I-FABP levels after ART 
initiation, which does not mirror the decrease of microbial 
translocation and inflammation observed after ART initiation 
[19–21]. Moreover, we and others have shown that circulating 
I-FABP levels are not associated with some markers of micro-
bial translocation and inflammation in ART-treated PWH [15, 
22].

Immunoglobulin A (IgA), antimicrobial peptides, the mucus 
layer, and tight junctions establish a barrier preventing trans-
location of commensal bacteria and pathogens into systemic 
circulation. Regenerating islet-derived protein 3α (REG3α), 
also called HIP (hepatocarcinoma-intestine-pancreas) or PAP 
(pancreatitis-associated protein), is a C-type lectin antimicro-
bial peptide constitutively secreted in the gut lumen by Paneth 
cells [23]. REG3α is selectively produced in the small intestine 
upon bacterial colonization as its homolog REG3γ is absent in 
germ-free mice [24]. Upon intestinal stress, REG3α produc-
tion is increased to help contain bacterial infection by binding 
to peptidoglycan and killing gram-positive bacteria [23, 24]. 
Upon loss of gut barrier integrity, REG3α can cross the epithe-
lium, translocate into the lamina propria, and enter the systemic 
circulation [25]. Hence, circulating levels of REG3α are con-
sidered to be a marker of gut damage during enteropathies such 
as Crohn and celiac diseases, ulcerative colitis, and graft-vs-host 
disease (GVHD) [25–27].

Herein, we investigated whether the gut damage marker 
REG3α was elevated in the plasma of PWH. We compared 
REG3α levels in PWH in early and chronic phases of HIV infec-
tion, in participants who initiated ART or remained untreated, 
as well as in ECs. We also assessed the association between 
plasma levels of REG3α and markers of HIV disease progres-
sion, microbial translocation, and inflammation.

METHODS

Study Design

A total of 169 adult PWH were enrolled from the Montreal 
Primary HIV Infection Study, from patients followed at the 
Chronic Viral Illness Service (CVIS) at the McGill University 

Health Centre (MUHC), from the Canadian HIV and Aging 
Cohort (CHACS) [28] and from the Canadian cohort of 
HIV-Infected Slow Progressors. PWH were categorized into 
those in early HIV infection (n = 51), defined as being within 
6  months of the estimated date of HIV acquisition deter-
mined using the Department of Health and Human Services–
National Institutes of Health Acute HIV Infection and Early 
Diagnosis Research Program guidelines [29, 30], or those in 
chronic HIV infection who were either untreated (n  =  22) 
or ART-treated (n  =  66). Samples from 30 ECs maintaining 
plasma viremia <1.7 log10 copies/mL and CD4 T-cell count 
>200 cells/µL in the absence of ART were analyzed. Groups 
of PWH were compared to 30 HIV-uninfected controls who 
were mostly partners of PWH, recruited from the CVIS at 
the MUHC and the CHACS (Supplementary Figure 1). We 
prospectively followed 22 PWH for 2 years. Ten participants 
were followed from the early phase of the infection before 
and after at least 1 year on ART, while 12 ART-naive persons 
with early HIV infection were followed and remained without 
ART (Table 1, Supplementary Figure 1). All participants were 
fasting at the time of blood collection. Participants did not 
present with any acute condition or history of IBD. To account 
for potential confounders, we recorded renal/pancreatic/
liver functions, serum lipid levels, viral coinfections, and the 
usage of antibiotics. Blood samples were collected to perform 
clinical measurements. Plasma and peripheral blood mono-
nuclear cells were isolated and stored at –80°C and in liquid 
nitrogen, respectively, until used.

Clinical Laboratory Measurements

Plasma HIV type 1 (HIV-1) p24 antigen/antibody and a con-
firmatory Western blot test diagnosed HIV infection as pre-
viously reported [15]. Quantification of plasma VL was done 
using the Abbott RealTime HIV-1 assay (Abbott Laboratories). 
Total immunoglobulin G (IgG), immunoglobulin M (IgM), and 
IgA levels were measured in serum using an Olympus AU58000 
(Beckman Coulter). CD4 and CD8 T-cell counts were measured 
using 4-color flow cytometry.

Markers of Epithelial Gut Damage, Microbial Translocation, Inflammation, 

and Global B-Cell Activation

REG3α and I-FABP were quantified in plasma using 
an enzyme-linked immunosorbent assay (ELISA) kit 
(R&D Systems and Hycult Biotech, respectively). Anti-
cytomegalovirus (CMV) IgG concentrations were meas-
ured using the anti-CMV IgG enzyme immunoassay test kit 
(GenWay Biotech). LPS was quantified using a human LPS 
ELISA kit (Cusabio). sCD14 was quantified by immunoassay 
(Quantikine, R&D Systems). Plasma (1→3)-β-d-glucan 
level (β-d-glucan) was measured by the Fungitell Limulus 
Amebocyte Lysate assay (Associates of Cape Cod). Plasma 
levels of interleukin 6 (IL-6), interleukin 8 (IL-8), and tumor 
necrosis factor (TNF)–α were measured by MSD multiplexes 
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(MesoScale Discovery) [31]. Interleukin 22 (IL-22) levels 
were quantified by ELISA (R&D Systems). Kynurenine and 
tryptophan plasma levels were measured using an auto-
mated online solid-phase extraction liquid chromatographic 
tandem mass spectrometric method [10]. The kynurenine-
to-tryptophan ratio was calculated as a measure of 
indoleamine-2,3-dioxygenase (IDO-1) enzyme activity. All 
measurements were done in duplicate as previously reported 
[31]. Percentage of activated CD4 and CD8 T-cells was de-
termined by flow cytometry analysis of the coexpression of 
HLA-DR and CD38 [15].

Statistical Analyses

Statistical analyses were conducted using GraphPad Prism 6.0 
software. Comparisons were conducted using nonparametric 
Mann–Whitney U test and Kruskal–Wallis test with Dunn cor-
rection for multiple variables. Correlations were performed 
using a nonparametric Spearman test. An α level of 5% was 

used for statistical significance. Multivariate analysis was per-
formed using IBM SPSS 24.0 software.

Ethical Considerations

All study participants provided written consent for enroll-
ment and ethical approval was obtained from the MUHC and 
the Centre Hospitalier de l’Université de Montréal research 
ethics boards. The study was conducted in accordance with the 
Declaration of Helsinki.

RESULTS

Study Participant Characteristics

Participants had a median age of 48 (interquartile range [IQR], 
36–56) years, and 87.1% were male. Untreated PWH had a lower 
CD4 T-cell count with a median of 480 (IQR, 321–658) cells/µL, 
whereas CD4 T-cell count was higher in those receiving ART 
(552 [IQR, 410–691] cells/µL). Conversely, untreated PWH had 
a higher CD8 T-cell count (772 [IQR, 611–1073] cells/µL) than 

Table 1. Participant Characteristics

Characteristic

Early HIV Infection Chronic HIV Infection ECs Controls

(n = 51)

(n = 88)

(n = 30) (n = 30)

ART Naive ART Treated

(n = 22) (n = 66)

Age, y      

 Median 34 38 55 43 58

 IQR 28–44 33–50 47–61 36–50 52–61

Sex, %      

 Women 3 23 11 27 27

 Men 97 77 89 73 73

CD4 count, cells/µL      

 Median 460 220 595 576 821

 IQR 310–640 35–345 416–700 498–745 519–1022

 Range 210–1680 3–489 54–1251 290–1090 281–1173

CD8 count, cells/µL      

 Median 810 770 720 660 373

 IQR 620–1040 407–1147 552–968 433–955 273–536

 Range 279–2590 54–1425 140–1475 260–1560 188–843

CD4:CD8 ratio      

 Median 0.57 0.19 0.77 0.86 2.08

 IQR 0.39–0.8 0.06–0.43 0.54–1.12 0.69–1.24 1.22–3.01

Viral load, log10 copies/mL      

 Median 4.5 5.1 <1.7 <1.7 NA

 IQR 3.8–5.0 4.4–5.5 1.7-1.7 NA

 Range 1.3–7.5 3.9–5.9 1.6–1.7 NA

Time to initiation of ART, y      

 Median NA NA 3.0 NA NA

 IQR 0.6–7.0

 Range 0–23.8

ART duration, y      

 Median NA NA 13.6 NA NA

 IQR 1.6–17.8

 Range 0.2–25.4

Abbreviations: ART, antiretroviral therapy; ECs, elite controllers; HIV, human immunodeficiency virus; IQR, interquartile range; NA, not applicable.
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those receiving ART (727 [IQR, 552–953] cells/µL). Median 
log10 VL per mL of plasma for ART-naive early and chroni-
cally HIV-infected groups was 4.5 (IQR, 3.8–5.0) and 5.1 (IQR, 
4.4–5.5), respectively. PWH receiving ART for a median of 13.6 
(IQR, 1.6–17.8) years had suppressed viremia of <50 (1.7 log10) 
copies/mL (Table 1).

Plasma REG3α Levels Were Elevated in HIV-Infected Participants and 

Decreased With ART

Cross-sectional analysis showed higher plasma levels of 
REG3α during early infection (mean 1938 ± standard devia-
tion 374 pg/mL), untreated chronic infection (3084 ± 293 pg/
mL), and ART-treated PWH (2441 ± 630 pg/mL) compared to 
controls (715 ± 243 pg/mL) (P <  .0001 for all). Interestingly, 
REG3α levels were also elevated in ECs (1442  ±  270 pg/
mL) compared with controls (P  =  .048). REG3α was higher 
in untreated chronic than untreated early HIV infection 
(P  <  .0001). Such values were also lower in treated chronic 
(P  =  .027) compared with untreated chronic HIV infection 
(Figure 1A). Longitudinal assessment of 12 early HIV-infected 
PWH not receiving ART showed an increase in REG3α levels 

from a median of 1878 ± 357 pg/mL to 2074 ± 328 pg/mL over 
a 24-month interval (Figure 1C; P  =  .032). One participant 
had a decrease in plasma REG3α. For this participant, CD4 
count increased (719 then 881 cells/µL), and CD4:CD8 ratio 
remained elevated (0.83 vs 0.69) despite similar viremia at the 
2 timepoints (4.15 vs 4.25 log10 copies/mL). This participant 
may have had a slower T-cell depletion and lower gut damage 
than other untreated participants [32, 33], mimicking the SIV-
infection tolerance of sooty mangabeys [34, 35]. Conversely, 
10 participants with early HIV infection who initiated ART 
during follow-up had decreased REG3α levels after 24 months 
(1952 ± 385 vs 1622 ± 318 pg/mL; P = .049) (Figure 1D). One 
participant had an increase in REG3α levels after 2 years on 
ART. This participant had an undetectable viremia (<1.7 log10 
copies/mL) at the time of the second sampling and his CD4 
count was increased (289 vs 557 cells/µL). However, we did 
not collected information on potential diarrhea, colitis, or any 
digestive illness for this participant at the second timepoint.

Nonparametric analyses showed that neither duration of 
ART nor the time to ART initiation had an influence on REG3α 
levels in ART-treated, chronically HIV infected participants 
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Figure 1. Plasma levels of regenerating islet-derived protein 3α (REG3α) were elevated over the course of human immunodeficiency virus (HIV) infection. A, Plasma REG3α 
levels during early and chronic infection compared to elite controllers (ECs) and uninfected controls. Early HIV without antiretroviral therapy (ART–) (n = 51), chronic HIV 
without ART (n = 22), chronic HIV with ART (ART+; n = 66), ECs (n = 30), and controls (n = 30), Kruskal–Wallis test. B, Plasma intestinal fatty acid binding protein (I-FABP) levels 
in early HIV infection without ART (n = 56), chronic HIV without ART (n = 22), chronic HIV with ART (n = 71), ECs (n = 30), and controls (n = 30), Kruskal–Wallis test. Longitudinal 
analysis showed that plasma levels of REG3α (C) but not I-FABP levels (E) increased over 24 months in people living with HIV (PWH) without ART (n = 12), Wilcoxon test. 
Longitudinal analysis showed that plasma levels of REG3α (D) but not I-FABP (F) decreased in PWH after 24 months on ART (n = 10), Wilcoxon test. ns, not significant.
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(r = –0.07, P = .65 and r = 0.02, P = .89, respectively; data not 
shown). Multivariate analysis showed that elevated REG3α 
levels among PWH were independent of sex, age, and CD4 and 
CD8 T-cell counts (data not shown). There was no association 
between REG3α levels and serum levels of the pancreatic en-
zymes lipase and amylase (data not shown).

Plasma levels of I-FABP were elevated in early, chronic 
ART-naive and chronic ART-treated PWH compared to con-
trols (P < .0001 for all 3 comparisons) (Figure 1B). ECs did not 
have elevated plasma levels of I-FABP compared with controls 
(P > .99). As opposed to REG3α, no differences in plasma levels 
of I-FABP were observed between the different HIV-infected 
groups, including early, chronic ART-naive and chronic ART-
treated PWH. Prospective analysis demonstrated that plasma 
levels of I-FABP did not change significantly after 2  years in 
PWH who initiated ART and those who did not (Figure 1E and 
1F).

Plasma Levels of REG3α Correlated With Markers of HIV Disease 

Progression

REG3α levels correlated positively with HIV plasma VL 
(r  =  0.29, P  =  .013) (Figure 2A) in both untreated early and 
chronic HIV infection. Plasma levels of REG3α also inversely 

correlated with CD4 T-cell count (r = –0.28, P = .0003) (Figure 
2B) and CD4:CD8 ratio (r = –0.29, P = .0002) in PWH (Figure 
2C). No correlations were observed between REG3α levels and 
CD8 T-cell count (r = –0.006, P = .94) (Table 2). Plasma levels of 
I-FABP did not correlate with these markers (Table 2). REG3α 
plasma levels were also associated with total plasma IgG and 
with anti-CMV IgG titer in PWH (r = 0.24, P = .03) (Table 2 and 
Figure 2D, respectively).

REG3α Levels Were Associated With Markers of Epithelial Gut Damage 

and Microbial Translocation

Plasma REG3α levels were weakly correlated with plasma levels 
of I-FABP in PWH (r  =  0.17, P  =  .029) (Figure 3A). Loss of 
barrier integrity is implicated in the translocation of micro-
bial products from the gut lumen into the blood [1, 12, 14, 
15]. Indeed, plasma levels of LPS, a validated marker of bac-
terial translocation [1], correlated with REG3α levels in HIV 
progressors (r = 0.24, P =  .005) (Figure 3B), but not in ART-
treated chronic PWH only (Table 3). In addition, REG3α levels 
correlated with sCD14, a marker of myeloid cell activation fol-
lowing LPS stimulation (r = 0.31, P = .0009; Figure 3C). Plasma 
levels of β-d-glucan, a marker of fungal translocation [15], 
also correlated with REG3α levels (r  =  0.19, P  =  .028) (Table 
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Figure 2. Plasma levels of regenerating islet-derived protein 3α (REG3α) correlated with markers of disease progression. A, Plasma REG3α levels correlated with human 
immunodeficiency virus (HIV) viral load in participants with early HIV and chronic HIV without ART (n = 72). B, Plasma REG3α inversely correlated with CD4 T-cell count (B) 
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2), including in ART-treated chronic PWH (Table 3). Plasma 
levels of I-FABP did not correlate with these markers of micro-
bial translocation (Table 2), with the exception of β-d-glucan 
plasma levels among ART-treated people living with chronic 
HIV (Table 3).

REG3α Levels Correlated With Markers of Systemic Immune Activation

As gut permeability allows for increased microbial transloca-
tion, intestinal damage has been associated with increased in-
flammation in PWH [1, 15]. In our study participants, plasma 
levels of IL-6 and IL-8, which have been linked with the risk of 
developing non-AIDS comorbidities [2], were strongly correl-
ated with plasma levels of REG3α in early and chronically HIV-
infected participants (r = 0.50, P <  .0001 [IL-6] and r = 0.18, 
P  <  .02 [IL-8]) (Figure 4A and 4B). Such correlations were 
maintained in ART-treated chronic PWH (Table 3) Plasma 
levels of CXCL13, a marker of immune activation in PWH, 
were also associated with REG3α (r  =  0.16, P  =  .04; data not 
shown) [31]. Conversely, plasma levels of TNF-α were not as-
sociated with plasma levels of REG3α (Table 2). A  trend was 
observed between plasma levels of REG3α and IL-22 (r = 0.21, 
P =  .06; data not shown), a cytokine involved in the immune 
response against bacterial pathogens in epithelial cells [36]. 
Plasma levels of REG3α also correlated with the innate activa-
tion marker IDO-1, whose enzymatic activity was measured by 
the kynurenine-to-tryptophan ratio in plasma of PWH in both 
early and chronic HIV infection (r = 0.35, P = .0009; Figure 4C). 
The association of REG3α levels with markers of inflammation 
and IDO-1 activity was independent of sex, age, and CD4 and 
CD8 T-cell counts. Importantly, such correlations were not de-
tected with plasma levels of I-FABP (Table 2).

Last, we observed that plasma levels of REG3α levels were as-
sociated with the percentage of activated HLA-DR+CD38+CD4 
(r = 0.46, P = .048; Supplementary Figure 1A) and CD8 T-cells 
(r  =  0.66, P  =  .002; Supplementary Figure 1B). Conversely, 
plasma levels of I-FABP were not associated with percentage of 
activated CD4 (r = 0.20, P =  .39; data not shown) nor CD8 T 
cells (r = 0.04, P = .87; data not shown).

DISCUSSION

REG3α has been previously validated as a marker of gut damage 
in IBDs and GVHD as it is solely produced in the intestine [25–
27, 37]. As PWH present with intestinal abnormalities even 
after long-term ART, we assessed their plasma levels of REG3α. 
To our knowledge, we are the first to report elevated circulating 
REG3α in untreated and ART-treated PWH. Plasma levels of 
REG3α were increased in PWH in chronic infection compared 
to those in early infection. Initiation of ART was associated with 
a decrease without normalization of plasma levels of REG3α. In 
contrast to I-FABP, plasma levels of REG3α were significantly 
higher in ECs compared with controls. Furthermore, plasma 
levels of REG3α were associated with markers of HIV disease 

Table 2. Correlation Between Plasma Levels of Regenerating Islet-
Derived Protein 3α or Intestinal Fatty Acid Binding Protein and Markers of 
Disease Progression, Microbial Translocation, and Inflammation in People 
Living With Human Immunodeficiency Virus (HIV) in Early and Chronic HIV 
Infection

Parameter

Correlation With Plasma Levels in 
PWH

REG3α I-FABP

CD4 T-cell count r = –0.28 r = –0.07

P = .0003 P = .39

n = 161 n = 160

CD8 T-cell count r = –0.006 r = 0.11

P = .94 P = .16

n = 161 n = 160

CD4:CD8 ratio r = –0.29 r = –0.35

P = .0002 P = .66

n = 161 n = 160

Viral load r = 0.29 r = 0.0015

P = .0134 P = .99

n = 72 n = 72

LPS r = 0.24 r = 0.047

P = .005 P = .56

n = 139 n = 160

β-d-glucan r = 0.19 r = 0.11

P = .03 P = .17

n = 139 n = 160

Soluble CD14 r = 0.37 r = –0.0012

P = .0013 P = .99

n = 74 n = 83

Tryptophan r = –0.41 r = –0.031

P = .0001 P = .78

n = 81 n = 87

Kynurenine r = 0.30 r = 0.12

P = .0056 P = .26

n = 81 n = 88

Kynurenine/tryptophan ratio r = 0.39 r = 0.12

P = .0003 P = .28

n = 81 n = 87

IL-6 r = 0.53 r = 0.11

P < .0001 P = .17

n = 139 n = 160

IL-8 r = 0.51 r = 0.17

P < .0001 P = .035

n = 190 n = 160

TNF-α r = –0.006 r = 0.13

P = .94 P = .10

n = 139 n = 160

Total IgG r = 0.44 r = 0.16

P = .0019 P = .27

n = 47 n = 49

Total IgM r = 0.2 r = –0.081

P = .18 P = .58

n = 47 n = 49

Total IgA r = –0.12 r = 0.005

P = .43 P = .97

n = 50 n = 52

Values in boldface indicate P values <.05.

Abbreviations: β-d-glucan  (1→3)-β-d-glucan; I-FABP, intestinal fatty acid binding protein; 
IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; IL, interleukin; 
LPS, lipopolysaccharide; PWH, people living with human immunodeficiency virus; REG3α, 
regenerating islet-derived protein 3α; TNF, tumor necrosis factor.

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiz423#supplementary-data
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progression and microbial translocation in untreated PWH, 
and with markers of systemic inflammation and T-cell activa-
tion in all PWH.

REG3α is a member of a family of antimicrobial peptides se-
creted by Paneth cells in the crypts of the intestinal epithelium. 
Gut antimicrobial peptides keep pathogens and commensal mi-
crobes at bay from the mucosa [38]. REG3α acts as a C-type 
lectin by binding to peptidoglycan from gram-positive bacteria, 
forming a pore that in turn kills bacteria [39]. REG3α is exclu-
sively secreted into the intestinal lumen and thus its presence 
in the lamina propria is a marker of gut damage, allowing for 
its translocation into the blood. Hence, elevated plasma REG3α 
levels are an indicator of gut epithelium integrity. Increased gut 
damage and circulating levels of REG3α were found in people 
with Crohn disease, ulcerative colitis, and celiac disease, but not 
in people with irritable bowel syndrome [25].

As PWH, including those on long-term ART, have increased 
gut damage, they also experience increased microbial translo-
cation and chronic inflammation. Because routine access to gut 
tissue samples remains challenging [16], methods of assessing 
gut damage in PWH rely on plasma/serum level markers. 
Existing markers such as soluble suppressor of tumorigenicity 
2 assesses the degree of inflammation in any type of epithelium 

and were only elevated during the early phase of the infection 
in PWH [8]. Research studies commonly utilize circulating 
I-FABP as a measure of enterocyte cell death and turnover 
[11, 18]. Although circulating I-FABP is a reliable measure of 
the level of enterocyte damage, it yields little information con-
cerning the degree of intestinal permeability prior to or after 
enterocyte lysis. In contrast, during homeostasis, REG3α is con-
stitutively secreted into the gut lumen with very small quan-
tities translocating into systemic circulation. However, upon gut 
damage, REG3α translocates into systemic circulation. Thus, 
circulating REG3α levels reflect the degree of gut damage inde-
pendent of enterocyte cell death.

Plasma levels of REG3α were more elevated in chronic 
vs early HIV infection. Moreover, our longitudinal analyses 
demonstrated an increase of REG3α levels in the absence of 
ART. These findings are consistent with our knowledge of the 
degree of gut damage in PWH. In contrast, no significant dif-
ferences in I-FABP levels were detected between the early and 
chronic phase of HIV infection in our cross-sectional nor in 
the longitudinal analysis. Measuring gut damage with REG3α 
compared to I-FABP levels allows for a better identification 
of participants in early or chronic HIV infection as well as 
ECs from controls. In addition, stronger correlations were 
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detected between plasma levels of REG3α with most valid-
ated markers of disease progression, microbial translocation, 
and inflammation.

This article is the first to report circulating levels of REG3α 
in ECs to be significantly higher than controls while remaining 
lower than HIV progressors. This was expected as ECs display 
reduced epithelial gut damage compared with HIV-infected 
progressors [11]. However, persistence of chronic inflammation 

and elevated plasma levels of sCD14 suggest that, similar to 
HIV-infected progressors, ECs also present with chronic mi-
crobial translocation and inflammation [40]. Indeed, increased 
gut damage may explain the higher frequency of non-AIDS 
comorbidities like cardiovascular diseases in ECs compared to 
controls [41].

We and others have previously shown an association between 
loss of barrier integrity, gut damage, and translocation of bacte-
rial and fungal products into the systemic circulation [1, 12, 14, 
15]. Indeed, study findings demonstrated that circulating levels 
of REG3α correlated with plasma levels of LPS and β-d-glucan 
levels in PWH. As increased gut damage allows the passage of 
microbial products into the circulation, it also contributes to 
systemic inflammation and immune activation. We observed 
that REG3α correlated with plasma levels of proinflammatory 
cytokines such as IL-6 and IL-8, and the percentage of activated 
CD4 and CD8 T cells. REG3α levels were also associated with 
total IgG but not IgM or IgA plasma levels, suggesting a link 
between gut damage and B-cell activation. Moreover, IDO-1 
activity, measured by plasma tryptophan-to-kynurenine ratio, 
was strongly correlated with REG3α levels. As IDO-1 activity 
is linked with dysbiosis and microbial translocation during 
HIV infection, this further strengthens the association between 
REG3α and gut inflammation in PWH [10, 42]. IDO-1 activity 
is a marker of activated innate immune cells such as monocytes 
and macrophages and has been shown to predict cardiovascular 
diseases [43]. Moreover, anti-CMV IgG titer was associated 
with inflammation and mortality in HIV-uninfected popula-
tion [44]. In line with our previous findings showing an asso-
ciation between CMV coinfection and elevated gut damage in 
PWH [45, 46], we found an association between plasma REG3α 
and anti-CMV IgG titer.

Conversely to plasma levels of I-FABP, REG3α were associ-
ated with levels of CD4 and CD8 T-cell activation, which have 
been reported to be a predictor of HIV disease progression in-
dependently of plasma VL [2].

We acknowledge that our study presents some limitations 
as we did not assess gut microbiota composition in our study 
participants. Elevated REG3α production in the gut lumen 
would also be associated with shifts in microbiota composi-
tion resulting from the killing of certain bacteria as seen in 
a mouse model of colitis [47]. However, the causative role of 
REG3α in microbiota modification in PWH has yet to be ex-
plored. In addition, although we accounted for several factors 
such as usage of antibiotics and CMV coinfection, we did not 
collect information on alcohol consumption in our partici-
pants, which might play a role in gut damage. In this study, 
we did not assess the predictive value of REG3α elevation for 
the risk of development of non-AIDS comorbidities, as clin-
ical outcomes were rare. Last, gut tissue expression of REG3α 
needs to be studied to confirm its role and value as a marker of 
gut damage in PWH [37].

Table 3. Correlation Between Plasma Levels of Regenerating Islet-Derived 
Protein 3α or Intestinal Fatty Acid Binding Protein and Markers of Disease 
Progression, Microbial Translocation, and Inflammation in Antiretroviral 
Therapy–Treated People Living With Human Immunodeficiency Virus in 
Chronic Infection

Parameter

Correlation With Plasma Levels in 
ART-Treated PWH With Chronic 

Infection

REG3α I-FABP

CD4 T-cell count r = –0.015 r = –0.009

P = .90 P = .94

n = 66 n = 66

CD8 T-cell count r = –0.022 r = –0.062

P = .86 P = .62

n = 66 n = 66

CD4:CD8 ratio r = –0.069 r = 0.016

P = .58 P = .89

n = 66 n = 66

LPS r = –0.035 r = –0.039

P = .78 P = .75

n = 66 n = 66

β-d-glucan r = 0.25 r = 0.39

P = .04 P = .0011

n = 66 n = 66

Soluble CD14 r = –0.22 r = 0.035

P = .48 P = .92

n = 12 n = 12

Tryptophan r = –0.46 r = –0.33

P = .02 P = .12

n = 24 n = 24

Kynurenine r = 0.76 r = 0.48

P = .73 P = .017

n = 24 n = 24

Kynurenine/tryptophan ratio r = 0.4 r = 0.56

P = .05 P = .0045

n = 24 n = 24

IL-6 r = 0.29 r = 0.044

P = .01 P = .72

n = 66 n = 66

IL-8 r = 0.32 r = 0.22

P = .008 P = .06

n = 66 n = 66

TNF-α r = –0.035 r = 0.085

P = .78 P = .50

n = 66 n = 66

Values in boldface indicate P values <.05.

Abbreviations: β-d-glucan  (1→3)-β-d-glucan; ART, antiretroviral therapy; I-FABP, intestinal fatty 
acid binding protein; IL, interleukin; LPS, lipopolysaccharide; PWH, people living with human im-
munodeficiency virus; REG3α, regenerating islet-derived protein 3α; TNF, tumor necrosis factor.
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CONCLUSIONS

Compared to I-FABP, REG3α plasma levels were able to identify 
participants in early or chronic HIV infection as well as those 
receiving or not receiving ART, and ECs. In addition, REG3α 
presented stronger correlations with several validated makers 
of HIV disease progression and inflammation.

As gut damage and microbial translocation are associated 
with inflammation and non-AIDS comorbidities [2, 48], ro-
bust markers of epithelial gut damage are warranted to pro-
vide better care for PWH. We showed that plasma levels of the 
C-type lectin REG3α were elevated in PWH. Measuring REG3α 
levels may contribute to the assessment of the risk of developing 
non-AIDS comorbidities in PWH and provide a useful marker 
to evaluate therapeutic interventions.
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