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Abstract

Temperature serves as a fundamental signal in biological systems. In some microbial pathogens of 

humans, mammalian body temperature triggers establishment and maintenance of a developmental 

program that allows the microbe to survive and thrive in the host. Histoplasma capsulatum is one 

of a group of fungal pathogens called thermally dimorphic fungi, all of which respond to 

mammalian body temperature by converting from an environmental mold form that inhabits the 

soil into a parasitic form that causes disease in the host. It has been known for decades that 

temperature is a key signal that is sufficient to trigger the switch from the soil to host form (and 

vice versa) in the laboratory. Recent molecular studies have identified a number of key regulators 

that are required to specify each of the developmental forms in response to temperature. Here we 

review the regulatory circuits that govern temperature-dependent dimorphism in Histoplasma.

Introduction

Histoplasma capsulatum is a thermally dimorphic fungal pathogen that is the most common 

cause of fungal respiratory infections in immunocompetent hosts [1,2]. Histoplasma species 

are found worldwide [3–6]. Although Histoplasma causes disease even in the setting of a 

functional immune system, the incidence of Histoplasma in HIV-infected patients has 

revealed the extent of this global distribution, including North America, Central and South 

America, Africa, and Asia [1]. Recent analysis suggests that in people with AIDS in Latin 

America, the incidence of Histoplasma infection is equal to the incidence of tuberculosis [7].

The term “thermally dimorphic fungal pathogen” has been used to describe a group of 

evolutionarily related fungi, including Histoplasma, that grow in a mold form in the 

environment but alter their growth program and adopt a parasitic form when exposed to 

mammalian body temperature [8–10]. Like the majority of these organisms, Histoplasma 
colonizes the soil as a sporulating mold form, and infection occurs when fungal particles are 

inhaled. Healthy humans who inhale a large dose of infectious particles and individuals who 

have defects in cell-mediated immunity are more likely to develop life-threatening 

respiratory and/or systemic disease [1,11,12]. Even in asymptomatic individuals, the fungus 

usually disseminates through the bloodstream from the lungs, and can reactivate years later 

from a latent state if the immune status of the host declines [12].
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The environmental form of Histoplasma transitions to the yeast form in 

response to temperature

Histoplasma grows in the soil as a sporulating mold. The mold form is a multicellular 

mycelium comprised of an interconnecting network of vegetative hyphae. The hyphae 

produce asexual spores named micro- or macroconidia based on size [13]. Microconidia 

range in size from 2–6 μm, whereas macroconidia have been reported to range in size from 8 

to 14 μm or 10 to 25 μm, depending on the strain and growth conditions. A number of early 

studies published several decades ago discuss conidiation conditions, the morphology of the 

resultant spores, and germination of micro- and macroconidia [13–20]. However, very little 

is known about the molecular basis of conidial development or germination. There has been 

a single gene expression profiling study that compared the transcriptome of conidia to that of 

yeast and hyphae [21], but an analysis of gene expression changes that occur as conidia 

germinate has not been performed. Additionally, the molecular and developmental 

relationship between micro- and macroconidia is unclear.

Although little is known about their biology, conidia are thought to play a role in both 

environmental fungal dispersion and infection of mammals via inhalation. Interestingly, 

conidial-enriched transcripts include those involved in stress responses [21], perhaps 

reflecting the challenging conditions encountered by these infectious propagules in either the 

environment or in the host. Upon disruption of the soil, conidia and/or hyphal fragments are 

inhaled by the host and then taken up by macrophages and other phagocytic cells [22–24]. 

Once inside the host, both spores and filaments give rise to yeast cells, which evade killing 

by phagocytic cells and instead replicate intracellularly within macrophages and monocytes 

(reviewed in [25]).

A key aspect of Histoplasma biology is that exposure to mammalian body temperature is 

sufficient to trigger the developmental transition from hyphal growth to yeast-phase growth 

[26–28]. This transition can be recapitulated in the laboratory, making trigger Histoplasma a 

compelling system in which to explore temperature-dependent signaling. During laboratory 

culture, Histoplasma cells grow in the hyphal form at room temperature and in the yeast 

form at 37°C (Figure 1), and the transition to the yeast form is accompanied by the 

expression of virulence factors [23]. Additionally, in vitro studies of conidia show that the 

majority of spores germinate to give rise to hyphae at room temperature and yeast cells at 

37°C [21], again delineating temperature as a critical determinant of developmental fate.

A number of factors in addition to temperature have been noted to promote either hyphal or 

yeast-phase growth (Figure 2), although the majority of these observations were made in the 

pre-molecular era and the genetic basis for their effects is unknown. For example, exogenous 

addition of cystine and cysteine in the culture medium is required to establish yeast-phase 

growth during the hyphal-to-yeast transition, and further increasing the cysteine levels (or 

other sulf-hydryl reducing agents such as dithiothreitol (DTT)) can accelerate the transition 

[29]. Furthermore, addition of DTT has also been shown to trap Histoplasma in the yeast 

form even when cells are shifted to room temperature [26]. In contrast, addition of the sulf-

hydryl oxidizing agent pchloromercuriphenylsulfonic acid (PCMS) was shown to 

irreversibly trap Histoplasma cells in the hyphal form independent of temperature 
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[26,30,31]. Addition of exogenous cyclic AMP is also thought to promote hyphal growth 

even at 37°C [28]. Most recently, exposure to the ubiquitous sugar N-Acetylglucosamine 

(GlcNAc) was shown to robustly accelerate the transition from yeast to hyphae at room 

temperature in both Histoplasma and the related thermally dimorphic fungus Blastomyces 
[32]. Interestingly, GlcNAc transporters are required for the yeast-to-hyphae transition even 

without the addition of exogenous GlcNAc, suggesting that endogenous GlcNAc, which is 

the building block of the polysaccharide chitin in the fungal cell wall, might be taken up by 

cells and sensed as a facilitator of hyphal growth.

Regulatory circuits that drive yeast-phase growth

Although the dimorphic nature of Histoplasma biology has been known for decades, the 

molecular regulators and effectors of dimorphism have only started to be elucidated. Both 

genomic and genetic approaches have successfully identified components of the regulatory 

circuits that drive morphologic programs in response to temperature. A number of early 

studies identified phase-specific genes (i.e. those genes whose transcripts show enriched 

expression in one phase over the other), and made an initial, appealing connection between 

yeast morphology and the expression of virulence genes [33–36]. More recently, a number 

of whole-genome expression studies have been performed and up to 20% of the genome 

exhibits phase-specific gene expression [21,32,37–41]. Additionally, transcriptomics studies 

have enhanced annotation of the Histoplasma genome by providing experimental evidence 

that can be used to refine gene predictions and by identifying new genes [40,41]. Core 

phase-specific genes (those genes exhibiting phase-specific expression in multiple 

Histoplasma strains) are providing molecular insight on fundamental attributes of hyphae 

and yeast. Notably, transcripts encoding proteins with predicted signal sequences are more 

likely to show phase-specific expression. One family of putative secreted factors with 

homology to cystine-knot proteins is expanded in Histoplasma and shows yeast-specific 

expression [41]. It will be of interest to determine whether these phase-specific transcripts 

play a role in the biology of yeast cells during infection. Additionally, this study uncovered 

phase-dependent variation in transcript architecture, specifically 5’UTR length, implying 

that regulatory strategies other than simple transcript abundance might influence phase-

specific biology. Finally, ribosomal profiling experiments coupled with RNAseq analysis in 

yeast and hyphae uncovered evidence for transcripts that exhibit phasespecific translation, 

suggesting that these factors might effect phase-specific biology [41]. Similarly, elucidation 

of the extracellular proteome of Histoplama yeast cells has uncovered secreted proteins that 

could be well positioned to influence host biology during infection [42].

Genetics [43] has been a powerful approach to identify regulators of both hyphal and yeast-

phase growth in Histoplasma, and Figure 2 summarizes genes that are known to influence 

Histoplasma morphology. The first regulator of Histoplasma yeast-phase growth was 

identified by performing a genetic screen in the related fungus Blastomyces. A mutant hunt 

to identify genes required for expression of a Blastomyces yeast-specific reporter yielded a 

disruption in a histidine kinase gene that was subsequently named Drk1 (dimorphism-

regulating kinase). Drk1 is required for yeast-phase morphology, yeast-phase gene 

expression, sporulation, and virulence in both Blastomyces and Histoplasma [44]. The 
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precise signal transduced by Drk1 to stimulate yeast-phase growth is unknown, and how 

Drk1 integrates with other drivers of the yeast phase remains to be seen.

Subsequent to Drk1, two forward genetic screens identified three transcription factors, Ryp1, 

Ryp2, and Ryp3, that are required for yeast-phase growth in Histoplasma [38,45]. Mutants 

that lack Ryp1, 2, or 3 are trapped in the hyphal form independent of temperature, and Ryp2 

and Ryp3 are also required for spore development and viability [38,39,45]. These key 

developmental regulators have orthologs in other fungi: Ryp1 orthologs are found 

throughout the fungal kingdom and include the Candida albicans Wor1, which regulates cell-

type specification [46–48]. Ryp2 and Ryp3 are both Velvet family proteins, which regulate 

developmental transitions in filamentous fungi [49]. A fourth transcriptional regulator of 

yeast-phase growth, Ryp4 (a Zn(II)2Cys6 transcription factor), was identified because it 

shows yeast-specific expression and is a direct target of Ryp1, Ryp2, and Ryp3. 

Transcriptional profiling experiments revealed that Ryp1, Ryp2, Ryp3, and Ryp4 are each 

required for the vast majority of the normal transcription program at 37°C: in mutants 

lacking any of the Ryps, the cells fail to induce transcripts that are normally differentially 

expressed at 37°C and instead inappropriately express hyphal-specific genes [38,39]. 

Chromatin immunoprecipitation experiments were performed to identify direct targets of the 

Ryp transcription factors, which are enriched for yeast-specific genes but also include a few 

hyphal-specific genes, and genes that do not show differential expression between yeast and 

hyphae. Thus, Ryp factors associate upstream of some yeast-specific genes to enhance their 

expression at 37°C and also associate upstream of some hyphal-specific genes to repress 

their expression at 37°C. Notably, the majority of previously identified virulence factors 

were direct targets of the four Ryp transcription factors, indicating that these transcription 

factors link morphology and virulence traits in response to temperature.

Biochemical studies revealed that Ryp1, Ryp2, and Ryp3 form a complex [39]. Additionally, 

Ryp1, Ryp2, Ryp3, and Ryp4 associate with the upstream regulatory regions of Ryp1, Ryp2, 

and Ryp4, and each of the ryp mutants shows decreased expression of the other Ryp 

transcripts at 37°C [38,39,45]. A DNA binding motif was defined for Ryp1 and for the 

Ryp2-Ryp3 heterodimer [39], but the motif recognized by Ryp4 remains unknown. 

Nonetheless, the Ryp proteins form an interlocking network of transcription factors that 

regulate each other and common target genes important for yeast-phase growth and 

virulence. It is likely that the Ryp factors act in a positive-feedback loop at 37°C such that 

they accumulate and enable yeast-phase growth [39].

Work in Histoplasma and Aspergillus showed that the Velvet domain contained in Ryp2 and 

Ryp3 is a DNA-binding domain, and that Velvet family proteins can form homo- and 

heterodimers. [39,50]. Interestingly, there are two other Velvet proteins in Histoplasma, but 

whether they interact with Ryp2 and/or Ryp3 is unknown. Knockdown of the Velvet protein 

Vea1 results in the inability to make mating structures (cleistothecia) in Histoplasma. 

Additionally, silencing of Vea1 resulted in an accelerated switch from yeast to hyphae at 

room temperature, as well as failure to switch back to the yeast form when these mutant 

hyphae were transitioned back to 37°C growth. These data suggest that Vea1 may reinforce 

yeast-phase growth, although unlike ryp2 and ryp3 mutants, the Vea1-silenced strains were 

not locked in the hyphal form [51].
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Regulatory circuits that drive hyphal growth

To fully understand how temperature regulates dimorphism, it is necessary to investigate 

both the pathways that drive yeast-phase growth in response to 37°C, as well as those that 

promote hyphal growth in response to room temperature. Presumably there may also be 

mechanisms that dampen yeast-phase growth at room temperature and inhibit hyphal growth 

at 37°C. Furthermore, the identification of regulators whose expression is sufficient to 

suppress the wild-type morphology program and instead drive the opposing program 

provides important insight into the gene circuits that control morphology. For example, the 

putative developmental regulator WET1 is a hyphal-specific gene that shows translational 

repression in yeast cells. Ectopic expression of WET1 at 37°C is sufficient to promote 

inappropriate hyphal growth, indicating that restricting the expression of WET1 in wildtype 

cells is critical for maintenance of the yeast program [41]. How mis-expression of Wet1 

disrupts the normal yeast program is unknown.

Given the complexity of hyphal growth, there are likely to be genes that are required for 

proper hyphal morphology. The hyphal-specific gene MS8 was shown to be required for the 

normal morphology of hyphal cells: disruption of MS8 has no phenotype at 37°C but, at 

room temperature, the mutant displays aberrant, “zigzag” hyphae and colonies with altered 

morphology, size, and pigment [52]. The biochemical function of MS8 is unknown.

Much like the identification of the Ryp genes, genetic approaches are yielding insight into 

the pathways that drive hyphal growth in response to lower temperature. One pilot screen to 

identify yeast-locked mutants has been performed, resulting in identification of the signaling 

mucin Msb2 as required for hyphal growth [53]. Orthologs of the transmembrane protein 

Msb2 have been studied in Saccharomyces cerevisiae and Candida albicans, in which it 

stimulates a number of signaling pathways, including the high osmolarity glycerol (HOG) 

pathway in response to osmotic stress, as well as the filamentous growth pathway in 

response to nutrient limitation [54–61]. Unlike the Ryp transcription factors, which are 

required both for yeast-phase morphology and the majority of the gene expression program 

of cells grown at 37°C, Msb2 is required for hyphal formation in Histoplasma, but 

dispensable for the vast majority of the room temperature transcriptional program. 

Specifically, there are ~1870 genes that are differentially expressed by wild-type hyphae at 

room temperature, and most of these are also expressed by msb2 mutant yeast at room 

temperature [53]. Notably, approximately 165 genes fail to be induced in the msb2 mutant at 

room temperature, thereby defining a compact Msb2 regulon of “filament-associated” genes 

whose expression correlated with the ability to undergo hyphal growth. This gene set 

includes orthologs of a MAP kinase (Hog2) and an APSES transcription factor (Stu1). Like 

Msb2, Hog2 and Stu1 are required for efficient hyphal formation at room temperature, and 

ectopic expression of Stu1 is sufficient to drive hyphal formation even at 37°C in both wild-

type cells and the msb2 mutant [53]. These data are consistent with a previous observation 

that Stu1 is required for the formation of some hyphal cell types and normal mycelia [62]. 

Since Msb2 is required for transcriptional induction of Hog2 and Stu1 at room temperature, 

these data suggest that Msb2 may trigger filament formation by signaling through Hog2 and 

Stu1.
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Opposing regulatory pathways control dimorphism in response to 

temperature

The Msb2 regulon also has implications for the yeast-phase expression program. 

Interestingly, of the ~1100 yeast-specific genes whose expression is reduced as yeast cells 

transition from 37°C to room temperature and undergo hyphal morphogenesis, there are 40 

genes whose expression is inappropriately maintained in the yeast-locked msb2 mutant at 

room temperature. These genes include previously identified virulence factors and their 

expression is particularly interesting since it seems to be uncoupled from temperature but 

linked to yeast-phase morphology [53]. Notably, this set of 40 genes is enriched for direct 

transcription targets of the Ryp proteins, suggesting that the Ryp proteins are present in the 

msb2 mutant even at room temperature. Rodriguez et al. confirmed that whereas the 

abundance of Ryp proteins at room temperature is markedly decreased in wild-type cells, it 

is maintained even at room temperature in the msb2 mutant. These data indicate that the 

Msb2 pathway is required to inhibit Ryp accumulation at room temperature. Conversely, at 

37°C, the Ryp3 transcription factor associates with the upstream region of the MSB2 gene 

and turns down its expression [39,53], indicating that the Ryp circuit antagonizes the Msb2 

pathway at high temperature. Thus Histoplasma transitions between two different states in 

response to temperature by means of opposing regulatory pathways (Figure 3) [53]. Future 

work will elucidate the mechanisms that allow temperature to toggle the morphology switch 

in favor of the Ryp pathway at 37°C or the Msb2 pathway at room temperature.

Conclusions

Genomic and genetic approaches have yielded molecular insight into how temperature 

regulates morphology and virulence in Histoplasma. Several key molecular regulators that 

control dimorphism have been identified, and future work is likely to reveal key 

thermosensors whose activity and/or accumulation are intrinsically responsive to 

temperature. Ultimately, the decision to switch between yeast and hyphal forms is critical for 

survival in the environment and in the mammalian host. Thus it is highly likely that multiple, 

redundant mechanisms integrate a number of key signals to robustly determine the optimal 

morphology and expression program for a given environment.
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Figure 1. Histoplasma morphology is regulated by temperature.
Schematic (A) and microscopy image (C) of conidiating hyphae growing at room 

temperature. Schematic (B) and microscopy image (D) of yeast cells growing at 37°C.
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Figure 2. Conditions and genes that drive phase-specific morphology.
Top panels identify conditions and genes that promote hyphal growth. Bottom panels 

identify conditions and genes that promote yeast-phase growth.
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Figure 3. The Msb2 and Ryp pathways oppose each other to regulate morphology in response to 
temperature.
As described in the text, the Msb2 and Ryp pathways are mutually antagonistic. The Msb2 

pathway predominates at room temperature and the Ryp pathway predominates at 37°C.
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