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Hematopoietic stem cells (HSCs) self-renew and generate all blood
cells. Recent studies with single cell transplants and lineage tracing
suggest that adult HSCs are diverse in their reconstitution and
lineage potentials. However, prospective isolation of these subpop-
ulations has remained challenging. Here, we identify Neogenin-1
(NEO1) as a unique surface marker on a fraction of mouse HSCs
labeled with Hoxb5, a specific reporter of long-term HSCs (LT-HSCs).
We show that NEO1+Hoxb5+ LT-HSCs expandwith age and respond
to myeloablative stress in young mice while NEO1−Hoxb5+ LT-HSCs
exhibit no significant change in number. Furthermore, NEO1+Hoxb5+

LT-HSCs are more often in the G2/S cell cycle phase compared to
NEO1−Hoxb5+ LT-HSCs in both young and old bone marrow.
Upon serial transplantation, NEO1+Hoxb5+ LT-HSCs exhibit myeloid-
biased differentiation and reduced reconstitution while NEO1−Hoxb5+

LT-HSCs are lineage-balanced and stably reconstitute recipients. Gene
expression analysis reveals erythroid and myeloid priming in the
NEO1+ fraction and association of quiescence and self-renewal–
related transcription factors with NEO1− LT-HSCs. Finally, trans-
planted NEO1+Hoxb5+ LT-HSCs rarely generate NEO1−Hoxb5+

LT-HSCs while NEO1−Hoxb5+ LT-HSCs repopulate both LT-HSC
fractions. This supports a model in which dormant, balanced
NEO1−Hoxb5+ LT-HSCs can hierarchically precede active, myeloid-
biased NEO1+Hoxb5+ LT-HSCs.
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The hematopoietic system is hierarchically organized into
distinct cell types and cellular states with unique functions

and regenerative potentials (1). Residing at the apex of this hi-
erarchy is the hematopoietic stem cell (HSC)—the cornerstone of
all blood and immune development, maintenance, and regener-
ation. HSCs have the unique ability to self-renew and give rise to
all major lineages of blood and immune cells throughout life.
Over the years, combinations of surface markers (2–6), reporter
genes (7–10), and other approaches (11, 12) have refined the
definition of mouse HSCs and enabled the purification of long-
term hematopoietic stem cells (LT-HSCs), a subset of HSCs ca-
pable of serially reconstituting irradiated recipients in a trans-
plantation model. Recently, we identified Hoxb5 as a specific
marker of LT-HSCs and generated a Hoxb5-mCherry reporter
mouse strain for the prospective isolation of these cells (8). We
demonstrated that the Hoxb5-mCherry reporter significantly
improves the precise isolation of serially transplantable LT-
HSCs compared to immunophenotypically defined HSCs
(phenotypic HSCs [pHSCs]). As previously shown, only 7% to
35% of pHSCs are Hoxb5-mCherry+, and the potential for long-
term multilineage reconstitution is restricted to this fraction (8).
Although mouseHoxb5+ LT-HSCs are multilineage-contributing,

self-renewing cells (8), the functional heterogeneity within this
compartment has not yet been characterized. Understanding
the composition of LT-HSCs may offer valuable insights into the

mechanism of HSC expansion with age, as well as the competition
of diverse HSCs for bone marrow niches (13, 14). On a per cell
basis, HSCs from older mice exhibit biased differentiation toward
myeloid lineages (15, 16). This trait, together with reduced stem
cell activity, may be potentially ascribed to weaker responses to
SDF-1 (14, 17) and poorer engraftability of HSCs in the G1
(18) and S/G2/M phases of the cell cycle (19). These aged HSCs
may arise from either the cell-intrinsic transition of balanced to
myeloid-biased LT-HSCs or the clonal expansion of preexisting
fractions of myeloid-biased LT-HSCs (13, 14, 16, 20, 21). Several
studies support the presence of preexisting myeloid-biased LT-
HSCs by demonstrating that myeloid-biased subpopulations of
LT-HSCs in young, healthy mice respond to environmental chal-
lenges, such as inflammation and infection (22, 23). Results from
lineage tracing with genetic barcodes (24, 25) and single cell
transplants of LT-HSCs also support the notion of inherent
functional diversity among LT-HSCs (26–28). However, these
studies did not identify markers to prospectively isolate distinct
subpopulations of HSCs. Other groups have found protein and
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genetic reporters, such as CD150 (20), CD41 (29), vWF (30), and
CD61 (22), that enrich for self-renewing lineage-biased subpopu-
lations of HSCs. However, these markers were shown to seg-
regate fractions of pHSCs, which contain both short-term
(transiently self-renewing), Hoxb5−, and long-term (continuously
self-renewing), Hoxb5+, HSCs. Our previous study showed that
Hoxb5− pHSCs are homogenously lymphoid-biased (8), but the
diversity of Hoxb5+ LT-HSCs has not yet been fully explored.
Therefore, we sought to interrogate the heterogeneity among
purified Hoxb5+ LT-HSCs and identify a strategy to prospec-
tively isolate these cells with phenotypic markers.
Here, we find that Neogenin-1 (NEO1), a transmembrane

receptor of the Ig family (31), is expressed on a fraction of mouse
Hoxb5+ LT-HSCs and decreases with differentiation. Although
NEO1 has been extensively investigated as a receptor for axon
guidance (32, 33), neuronal survival (34), skeletal myofiber dif-
ferentiation (35), intracellular iron homeostasis (36), mammary
epithelial development (37), and endothelial migration (38), its
expression in the bone marrow and association with LT-HSCs
has not yet been explored, apart from a few unpublished re-
ports (39–42). We find that NEO1+Hoxb5+ LT-HSCs represent
a myeloid-biased subset of LT-HSCs that responds to myeloa-
blative stress and expands with age. Contrastingly, NEO1−Hoxb5+

LT-HSCs exhibit greater reconstitution potential, balanced lineage
output, and a more quiescent cell cycle status compared to
NEO1+Hoxb5+ LT-HSCs. After transplant, NEO1−Hoxb5+ LT-
HSCs give rise to NEO1+Hoxb5+ LT-HSCs, but the reverse
transition is rarely observed. Therefore, we propose a model of
early long-term hematopoiesis in which balanced, quiescent LT-
HSCs self-renew and generate long-term myeloid-biased LT-HSCs
in response to stress and during the course of aging.

Results
Neogenin-1 Marks a Subpopulation of Mouse Hoxb5+ LT-HSCs and
Human HSCs. Functional heterogeneity within Hoxb5+ LT-HSCs
is poorly understood. To identify surface candidates that frac-
tionate Hoxb5+ LT-HSCs, we first pattern-searched 64 microarray
expression profiles of 23 distinct mouse hematopoietic cell types
(43) for 1) genes annotated to code for cell surface proteins (Gene
Ontology [GO] Biological Process: 0009986) and 2) genes spe-
cifically expressed in HSCs compared to downstream cell types
(Fig. 1A and Dataset S1). We found several known HSC-specific
markers, including Robo4 (44), Slamf1 (5), Ly6a (2), Vwf (30),
TEK (45), and a member of the Gpcr5 family (46), validating the
utility of our approach. We also identified several markers of
HSCs that have not been previously reported (Fig. 1A). Among
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Fig. 1. Identification of Neogenin-1 (NEO1) as a unique surface marker on mouse hematopoietic stem cells (HSCs). (A and B) In silico screen to identify unique
surface markers on HSCs from 64 microarray expression profiles of 23 distinct mouse hematopoietic cell types. (A) Heat map showing normalized gene
expression of gene ontology-annotated (GO: 0009986) surface markers across different hematopoietic compartments; 186 surface markers expressed on HSCs
and 23 phenotypes categorized as “HSC,” “MPP,” “Early progenitors,” “Late progenitors,” “Myeloid,” and “Lymphoid” are displayed (Dataset S1). Genes are
ordered from top to bottom by log2 fold enrichment in HSCs compared to downstream cells, and the top most enriched genes (>2 log2 fold enrichment) are
highlighted in a box. For further details, seeMaterials and Methods. (B) Bar plots showing normalized gene expression of Neo1 across the cell type categories
shown in A. Statistical significance was calculated by unpaired, 2-tailed Student’s t test between “HSC” and each cell type. ****P < 0.0001. (C and D) Flow
cytometry analysis of NEO1 surface expression in the 2-mo-old mouse bone marrow (n = 5 mice). (C) Contour plots with outliers showing the gating scheme
for early progenitors, MPPb, MPPa, pHSCs, Hoxb5− ST-HSCs, and Hoxb5+ LT-HSCs (Top) and the corresponding surface expression of NEO1 for select populations
(Bottom). Colors correspond to populations shown. Goat IgG isotype control for fluorescence staining with goat anti-mouse/human NEO1 antibody is highlighted
in orange (Bottom). (D) Bar plots showing the percent of NEO1+ cells for each cell type gated in C. Statistical significance was calculated by a paired, 2-tailed
Student’s t test between “Hoxb5+ LT-HSC” and each cell type. Bar plots in this figure indicate mean ± SD.
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the top 3 most enriched surface markers on HSCs, Neogenin-1
(Neo1) was more highly expressed on HSCs compared to the
other 2 candidates (Fig. 1 A and B). Single-cell RNA sequencing
(scRNA-seq) data of hematopoietic stem and progenitor cells
validated the enriched expression of Neo1 in LT-HSCs compared
to downstream short-term HSCs (ST-HSCs) and progenitors (SI
Appendix, Fig. S1). Neo1 was also expressed on subsets of bone
marrow stromal and endothelial cells and demarcated the contours
of trabecular bone (SI Appendix, Fig. S2), suggesting its expression
is not restricted to hematopoietic cells in the bone marrow.
We next used flow cytometry to measure the relative pro-

tein levels of NEO1 on the surface of 2- to 3-mo-old early
hematopoietic progenitors, multipotent progenitor subset A
(MPPa), multipotent progenitor subset B (MPPb), phenotypic
HSCs defined as Lin−c-KIT+SCA1+CD48−FLK2−CD150+CD34−

(hereafter referred to as pHSCs), and 2 populations among
pHSCs, including Hoxb5+ LT-HSCs and Hoxb5− ST-HSCs (Fig.
1C and SI Appendix, Fig. S3). Consistent with its gene expression,
the relative protein levels of NEO1 and the frequency of NEO1+

cells progressively decreased with differentiation. NEO1+ cells
comprised a significantly higher fraction of Hoxb5+ LT-HSCs
compared to downstream cells (Fig. 1 C and D). NEO1 was also
expressed on a fraction of long-term reconstituting Lin−CD34+

CD38−CD45RA−CD90+ HSCs from human bone marrow (47),
although NEO1 enrichment in human HSCs was diminished
compared to that observed in mouse HSCs (SI Appendix,
Fig. S4).

NEO1+Hoxb5+ LT-HSCs Selectively Expand with Age and Respond to
Myeloablative Stress in Young Mice. Previous studies have shown
that a subpopulation of pHSCs expands with age (20, 27) and
responds to environmental challenge (22, 23). However, the ef-
fect of aging and stress on Hoxb5+ LT-HSCs and their subpopu-
lations has not yet been evaluated. To that end, we first measured
the number and frequency ofHoxb5+ LT-HSCs (Fig. 2 A–C and SI
Appendix, Fig. S5) and NEO1+ and NEO1− fractions (Fig. 2 D–F
and SI Appendix, Fig. S5) in 2-, 5-, 13-, and 22-mo-old bone
marrow. Consistent with the overall expansion of pHSCs (SI
Appendix, Fig. S5 A and B), we observed that the total numbers
of Hoxb5+ LT-HSCs and Hoxb5− ST-HSCs were significantly
increased (Fig. 2 B and C and SI Appendix, Fig. S5 C–E). The
frequency of Hoxb5+ LT-HSCs among pHSCs, although on
average higher in bone marrow from older (13-mo-old and 22-mo-
old) than younger (2-mo-old and 5-mo-old) mice, was highly var-
iable in aged mice (Fig. 2A and SI Appendix, Fig. S5C).
Despite the variable expansion of Hoxb5+ LT-HSCs, the fre-

quency of NEO1+ cells among Hoxb5+ LT-HSCs progressively
increased with age in a consistent manner (Fig. 2D and SI Ap-
pendix, Fig. S5F). At all ages, NEO1 expression was significantly
higher inHoxb5+ LT-HSCs compared toHoxb5− ST-HSCs, except
at 22 mo, when NEO1 was similarly high in Hoxb5+ and Hoxb5−

(SI Appendix, Fig. S5I). Fewer than 20% of Hoxb5+ LT-HSCs
in 2-mo-old mice expressed surface NEO1 while more than
80% of 22-mo-old Hoxb5+ LT-HSCs were NEO1+ (Fig. 2D and
SI Appendix, Fig. S5F). However, while the number of NEO1+

cells per million whole bone marrow cells increased with age (Fig.
2E and SI Appendix, Fig. S5G), the number of NEO1−Hoxb5+

LT-HSCs did not significantly change (Fig. 2F and SI Appendix,
Fig. S5H). This suggests that the NEO1+ fraction selectively
expands among Hoxb5+ LT-HSCs in the bone marrow while
the number of NEO1−Hoxb5+ LT-HSCs remains stable with age.
We next evaluated the response of Hoxb5+ LT-HSCs and the

NEO1+ and NEO1− subpopulations to myeloablative stress at
different ages. The 4-mo-old and 16- to 18-mo-old mice were
treated with 150 mg/kg 5-fluorouracil (5-FU), and their bone
marrow was analyzed 5 d posttreatment when HSC proliferation is
maximum (48) (Fig. 2G). While the frequency of Hoxb5+ and
Hoxb5− cells among pHSCs did not change, irrespective of age

(Fig. 2H), a significantly higher percentage of Hoxb5+ LT-HSCs
were NEO1+ than NEO1− after treatment in 4-mo-old mice (Fig.
2I and SI Appendix, Fig. S6A). This selective response, however,
was absent in 16- to 18-mo-old mice. As shown previously (48), the
expression of c-KIT inHoxb5+ LT-HSCs after 5-FU treatment was
significantly decreased in both 4-mo-old and 16- to 18-mo-old mice
(SI Appendix, Fig. S6B).

NEO1+Hoxb5+ LT-HSCs Are More Proliferative than NEO1−Hoxb5+

LT-HSCs in Young and Old Mice. We next asked whether the dif-
ference in expansion of NEO1+ versus NEO1− Hoxb5+ LT-HSCs
during aging and in response to myeloablative stress can be par-
tially explained by differences in proliferation (49). To address this,
we measured the percent of each cell population in different
phases of the cell cycle, including G0, G1, and G2/S by KI-67 and
DAPI staining at both 2 to 3 mo of age and 12 to 14 mo of age
(Fig. 3 and SI Appendix, Fig. S7). Consistent with previous reports
(50), 12- to 14-mo-old HSCs were more often in G0 compared to
2- to 3-mo-old HSCs, suggesting increased exhaustion and senes-
cence with age in the absence of leukemia (Fig. 3 and SI Appendix,
Fig. S7). In support of the limited expansion of Hoxb5+ LT-HSCs
among pHSCs with age, we did not observe significant differences
in G0, G1, or G2/S status between Hoxb5+ LT-HSCs and Hoxb5−

ST-HSCs (Fig. 3 A–C and SI Appendix, Fig. S7). NEO1+ and
NEO1− Hoxb5+ LT-HSCs also did not differ in the proportion of
G0 cells in both 2- to 3-mo-old and 12- to 14-mo-old bone marrow
(Fig. 3D and SI Appendix, Fig. S7)
However, NEO1+Hoxb5+ LT-HSCs were significantly more

often in G2/S compared to NEO1−Hoxb5+ LT-HSCs in both young
and old bone marrow (Fig. 3F and SI Appendix, Fig. S7). More-
over, in the young bone marrow, there was a significantly
smaller percentage of NEO1+Hoxb5+ LT-HSCs in G1 compared
to NEO1−Hoxb5+ LT-HSCs (Fig. 3E and SI Appendix, Fig. S7).
Taken together, this suggests that NEO1+Hoxb5+ LT-HSCs are
more proliferative, which may partially contribute to their selective
expansion during aging and in response to myeloablative stress in
the young.

NEO1 Marks a Less Regenerative, Myeloid-Biased Fraction of Hoxb5+

LT-HSCs. Given the aging and cell cycle differences between
NEO1+ and NEO1− Hoxb5+ LT-HSCs, we next evaluated their
reconstitution potential and lineage output by 10-cell transplants
into congenic irradiated primary recipients (Fig. 4A). Over the
course of 16 wk, the percent of total chimerism among peripheral
blood that was donor-derived was similar between NEO1+ and
NEO1− Hoxb5+ LT-HSC transplants (Fig. 4B). The frequency of
Lin−c-KIT+SCA1+ (KLS) cells in the bone marrow 16 wk post-
transplant was also comparable between the conditions (SI Ap-
pendix, Fig. S8). However, among all donor-derived peripheral
blood, NEO1+Hoxb5+ LT-HSCs gave rise to a higher percentage
of granulocytes and monocytes (myeloid) and a lower percentage
of B and T cells (lymphoid) compared to NEO1−Hoxb5+ LT-HSCs
(Fig. 4 C and D).
To evaluate the long-term reconstitution potential and sta-

bility of lineage bias, we serially transplanted 1,000 donor-
derived KLS cells from primary recipients into congenic irra-
diated secondary hosts (Fig. 4A). Although KLS cells from
both donors repopulated all major lineages in secondary hosts,
NEO1−Hoxb5+-derived cells exhibited significantly higher re-
constitution compared to NEO1+Hoxb5+-derived cells (Fig.
4E). Moreover, as during primary transplant, NEO1+Hoxb5+-
derived cells maintained significant bias toward granulocytes
and monocytes and away from B and T cells compared to
NEO1−Hoxb5+-derived cells. (Fig. 4 F and G). This suggests
that both myeloid-biased and balanced phenotypes are long-
term maintained after secondary transplantation.
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Transcriptional Programs Recapitulate Functional Differences between
NEO1+ and NEO1−Hoxb5+ LT-HSCs. We next sought to understand
the transcriptional programs that drive the observed functional
differences between NEO1+ and NEO1− Hoxb5+ LT-HSCs. We
isolated 250 to 500 NEO1+Hoxb5+ and NEO1−Hoxb5+ cells from
female, 8- to 12-wk-old Hoxb5-mCherry mice and performed
low-input full-length RNA sequencing using the Smart-seq2 pro-
tocol (51, 52) (Fig. 5A). Paired gene expression comparison of the
2 populations identified 1,036 differentially expressed genes (false
discovery rate [FDR] P-adjusted < 0.1) (Fig. 5B, SI Appendix, Fig.
S9A, and Dataset S2) (53). Genes implicated in activation, cell
cycle, and differentiation, such as Fanca, Fancb, andMycn (54, 55),
were enriched in NEO1+Hoxb5+ LT-HSCs while genes involved in
anti-redox (e.g., Sod1) (56) and regulation of stem cell potency
(e.g., Klf4 and Malat1) (57, 58) were enriched in NEO1−Hoxb5+

LT-HSCs (Fig. 5B). Gene set enrichment analysis (GSEA) (59)
and a hypergeometric test with gene ontology (GO) biological

processes (60, 61) revealed that the driving differences (FDR <
0.05, P value < 0.05) between NEO1+ and NEO1− cells were cell
cycle and ribosomal RNA expression (Fig. 5C and SI Appendix,
Fig. S9B).
We next searched for the expression of lineage-specific tran-

scripts that may indicate signs of early myeloid and lymphoid
priming in LT-HSCs. Among the genes significantly enriched in
NEO1+ compared to NEO1− Hoxb5+ LT-HSCs, we found several
myeloid genes, such as Lrg1, lineage-related transcription factors,
such as Meis2, Hoxb6, and Cebpe (Fig. 5E), and platelet genes,
such as Vwf, Clu, and Selp (Fig. 5F). We also found that NEO1+

LT-HSCs were significantly enriched (Q < 0.05) for previously
reported gene signatures of megakaryocyte progenitors (MkPs)
and preerythrocyte colony-forming units (preCFU-E) (SI Ap-
pendix, Fig. S9C) (30). Moreover, the gene expression signature
of NEO1+Hoxb5+ LT-HSCs significantly aligned with expression
profiles of previously reported myeloid-biased LT-HSCs (Fig. 5 D,
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Fig. 2. NEO1+Hoxb5+ LT-HSCs selectively expand during aging and respond to myeloablative stress in young mice. (A–C) Frequency and number of Hoxb5+ LT-
HSCs and Hoxb5− ST-HSCs at 2 (n = 7 mice), 5 (n = 7 mice), 13 (n = 6 mice), and 22 (n = 9 mice) months of age. (A) Percent of cells among pHSCs that are Hoxb5+

(orange) and Hoxb5− (green). Statistical significance was calculated using an unpaired, 2-tailed Student’s t test between 2 mo and each time point. ns, non-
significant; P ≥ 0.05. (B) Number of Hoxb5+ LT-HSCs per million WBM cells. Statistical significance was calculated using an unpaired, 2-tailed Student’s t test
between 2 mo and 22 mo of age. *P < 0.05. (C ) Number of Hoxb5− ST-HSCs per million WBM cells. Statistical significance was calculated using an
unpaired, 2-tailed Student’s t test between 2 mo and 22 mo of age. ***P < 0.001. (D–F ) Frequency and number of NEO1+ and NEO1−Hoxb5+ LT-HSCs at 2
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Top) while NEO1− LT-HSCs were enriched for the balanced LT-
HSC signature (Fig. 5 D, Bottom). Altogether, these data suggest
that LT-HSCs may sample regions of the transcriptome associated
with their lineage fate decisions.
We also compared NEO1+ and NEO1− Hoxb5+ LT-HSC gene

expression with respect to known stemness-associated genes.
Overall, NEO1+Hoxb5+ LT-HSCs had higher expression of known
stem-related genes, including Ctnnal1 (9), Fgd5 (7), Bmi1 (62),
Gprc5c (46), and Slamf1 (CD150) (5) (SI Appendix, Fig. S9D), the
latter of which was confirmed by flow cytometry (SI Appendix, Fig.
S10). This suggests that, although previously identified stemness
genes enrich for a self-renewing phenotype, their expression may
also be associated with myeloid bias.
Finally, we searched for transcription factors (TFs) associated

with NEO1+ and NEO1− Hoxb5+ LT-HSCs using predicting as-
sociated transcription factors from annotated affinities (PASTAA).
Among the 38 TFs significantly enriched in NEO1+Hoxb5+ LT-HSCs,
we found TFs associated with leukemogenesis, such as CDX1/
2 (63, 64), aging and inflammation, such as NF-κB (65), and
regulators of myeloid differentiation, such as PU.1 and SMAD1
(66, 67) (Fig. 5G, SI Appendix, Fig. S11, and Dataset S3). Several
gene sets of BMP, TGF-β, and SMAD signaling were enriched

in NEO1+, and this was also confirmed by intracellular fluorescence-
activated cell sorting (FACS) for pSMAD1/5/9 (Fig. 5H and SI
Appendix, Fig. S11B). On the other hand, NEO1−Hoxb5+ LT-HSCs
were enriched in TFs associated with maintenance of HSCs, such
as GABPα/β (68), primitive hematopoiesis, such as PITX2 (69),
resistance to oxidative stress, such as FOXO1 (70), and regulators
of quiescence, such as HES1 and HIF1α (71, 72) (Fig. 5G, SI Ap-
pendix, Fig. S11A, and Dataset S3). Interestingly, SP1, a TF up-
stream of CDX genes (63, 73)—the TFs enriched in NEO1+Hoxb5+

LT-HSCs—was found to be uniquely associated with NEO1−Hoxb5+

LT-HSCs (Fig. 5G, SI Appendix, Fig. S11A, and Dataset S3).
Notably, these TFs were mutually exclusive between NEO1+ and
NEO1− Hoxb5+ LT-HSCs.

Lineage-Balanced NEO1−Hoxb5+ LT-HSCs Outcompete NEO1+Hoxb5+

LT-HSCs in Reconstitution and Reside at the Apex of Hematopoiesis.
To directly compare the relative fitness of NEO1+ and NEO1−

Hoxb5+ LT-HSCs, we cotransplanted 200 cells from each fraction
with host supporter cells into irradiated 2- to 3-mo-old congenic
recipients (Fig. 6A). Donor origin was distinguished by CD45.2 and
EGFP expression using Hoxb5-mCherry and CAG-EGFP;Hoxb5-
mCherry mice (Fig. 6A). In order to eliminate any strain-specific
biases, NEO1+ and NEO1− Hoxb5+ LT-HSCs were isolated from
both strains and reciprocally transplanted into recipient mice
(Fig. 6A). Unlike the primary transplants above, NEO1−Hoxb5+

LT-HSCs exhibited significantly higher reconstitution potential
compared to NEO1+Hoxb5+ LT-HSCs in the cotransplantation
setting (Fig. 6B). This suggests that NEO1−Hoxb5+ LT-HSCs
are more fit to reconstitute young recipients compared to
NEO1+Hoxb5+ LT-HSCs.
Cotransplantation also confirmed that NEO1+Hoxb5+ LT-HSCs

contribute significantly more to granulocytes and monocytes
(myeloid) and less to B and T cells (lymphoid) compared to
NEO1−Hoxb5+ LT-HSCs (Fig. 6 C and D). We also quantified
platelet fractions among EGFP+ donors. Relative platelet
contribution from NEO1+Hoxb5+ was not significantly differ-
ent from NEO1−Hoxb5+ donors during the first 16 wk post-
transplant but significantly increased among NEO1+Hoxb5+-derived
peripheral blood (PB) at 20 wk posttransplant (Fig. 6E).
Finally, we also measured the composition of LT-HSCs between

NEO1+ and NEO1−-derived bone marrow in the cotransplantation
setting. Both NEO1+ and NEO1− Hoxb5+ cells produced on
average equal numbers of Hoxb5+ LT-HSCs per million bone
marrow cells (SI Appendix, Fig. S12) and, among Hoxb5+ LT-
HSCs, more NEO1+ than NEO1− Hoxb5+ cells (Fig. 6F). How-
ever, NEO1+Hoxb5+ cells produced significantly fewer NEO1−Hoxb5+

cells compared to NEO1−Hoxb5+ cells (P = 0.006). This suggests
limited transition from NEO1+ to NEO1− while NEO1−Hoxb5+

cells are capable of giving rise to high percentages of both
populations (Fig. 6F). Therefore, NEO1−Hoxb5+ LT-HSCs likely
precede NEO1+Hoxb5+ LT-HSCs in the differentiation hierarchy
(Fig. 6G).

Discussion
Previously, we showed that phenotypic HSCs (pHSCs) are vari-
able in their reconstitution potential and that Hoxb5 expression
distinguishes long-term from short-term repopulating HSCs (8).
While Hoxb5− pHSCs were unable to repopulate secondary
recipients and were homogeneously lymphoid-biased, Hoxb5+

pHSCs serially reconstituted recipients and exhibited variable
contribution to hematopoietic lineages. Therefore, we sought
to understand the diversity of self-renewing HSCs in the mouse
bone marrow using Hoxb5 as a reporter to mark long-term
HSCs (LT-HSCs).
To accomplish this, we screened gene expression profiles for

candidate surface markers that are strictly enriched in HSCs
and stratify Hoxb5+ LT-HSCs into subpopulations. We identified
Neogenin-1 (Neo1; NEO1) as a transmembrane receptor specifically
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Fig. 3. NEO1 marks a more proliferative fraction of LT-HSCs. (A–F) Cell cycle
analysis of 2- to 3-mo-old (n = 10mice) and 12- to 14-mo-old (n= 10mice) LT-HSC
fractions with KI-67 and DAPI staining. mos., months. (A–C) Percent of Hoxb5+

LT-HSCs orHoxb5− ST-HSCs in (A) G0, (B) G1, and (C) G2/S in 2- to 3-mo-old and 12-
to 14-mo-old mouse bone marrow. Statistical significance was calculated using
an unpaired, 2-tailed Student’s t test. ns, nonsignificant; P ≥ 0.05. (D–F) Percent
of NEO1+ or NEO1− Hoxb5+ LT-HSCs in (D) G0, (E) G1, and (F) G2/S in 2- to 3-mo-
old and 12- to 14-mo-old mouse bone marrow. Statistical significance was
calculated using an unpaired, 2-tailed Student’s t test. ns, nonsignificant; P ≥
0.05, *P < 0.05, **P < 0.01. All bar plots in this figure indicate mean ± SD.
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expressed on a subfraction of Hoxb5+ LT-HSCs. We found
that, while both NEO1+ and NEO1− Hoxb5+ LT-HSCs are long-
term repopulating and multilineage-contributing LT-HSCs,
NEO1+Hoxb5+ LT-HSCs are more myeloid-biased and less pro-
ductive in secondary transplants compared to NEO1−Hoxb5+ LT-
HSCs. We show that NEO1+ cells comprise a minor fraction of
Hoxb5+ LT-HSCs in young mice that progressively expands
with age and represents >80% of 22-mo-old Hoxb5+ LT-HSCs.
This expansion can be partially explained by the higher fre-
quency of NEO1+Hoxb5+ in the G2/S cell cycle phase compared to
NEO1−Hoxb5+ LT-HSCs. We also observed increased response of
NEO1+Hoxb5+ LT-HSCs to myeloablative stress, although only in
young mice. Given that several candidate ligands of NEO1 (e.g.,
BMPs, Netrin-1, Rgma, Rgmb, Rgmc, and Cdon) (31, 74) are also
expressed by mesenchymal and endothelial cells in the bone mar-
row, we speculate that both aging and response to myeloablative
stress in young may be regulated by the relative availability of these
key factors. Relatedly, the absence of NEO1 response in aged may
be due to various cell-intrinsic or niche-related changes with age
(13–16) that diminish the differentiation potential of NEO1− to
NEO1+ or expansion of NEO1+ cells.
Although the function of NEO1 in LT-HSCs remains elusive,

our analysis of lineage-specific transcripts and TFs provides
some important clues to the molecular drivers of these differ-
ent cell states. Firstly, from gene expression analysis (Fig. 5 and
SI Appendix, Figs. S9 and S11), we find that the NEO1+Hoxb5+

LT-HSCs are associated with myeloid-related TFs (e.g., PU.1,
SMAD1, and NF-κB) (65–67) and several lineage-specific
transcripts (e.g., Meis2, Hoxb6, and Cebp). These lineage-
related programs are reduced or absent in the transcriptomes of
NEO1−Hoxb5+ LT-HSCs. This suggests that, while NEO1−Hoxb5+

LT-HSCs remain undecided, downstream NEO1+Hoxb5+ LT-
HSCs start exploring myeloid fate decisions by expressing
lineage-related TFs and transcripts. On the other hand, many
of the TFs found to be associated with NEO1−Hoxb5+ LT-HSCs
(e.g., PITX2, FOXO1, GABPα/β, HES1, and HIF1α) (68–72) are
involved in early development, antioxidation, quiescence, self-
renewal, or maintenance of HSCs. This is in line with a model
in which NEO1−Hoxb5+ LT-HSCs precede NEO1+Hoxb5+

LT-HSCs. Interestingly, we found that the NEO1−Hoxb5+

LT-HSCs are associated with SP1, an early TF that targets and
activates CDX genes (63, 73)—the same CDX genes that are as-
sociated with NEO1+Hoxb5+ LT-HSCs in our PASTAA analysis.
Therefore, one may hypothesize that SP1 activation of CDX genes
may be involved in directing the differentiation of NEO1− to
NEO1+ Hoxb5+ LT-HSCs. Given Neogenin-1 is expressed in var-
ious cell types in the niche and multiple tissues of the body, cell
type-specific and conditional knockout of NEO1 in HSCs will be
crucial to determine the function of this protein in hematopoiesis.
Several previous studies have used single cell transplants to

describe HSC heterogeneity and the existence of different lineage-
primed states. Single cell HSC transplants by Dykstra and
colleagues described 2 fractions of long-term self-renewing
HSCs, “α cells” and “β cells,” which were myeloid-biased and
lineage-balanced, respectively (26). Yamamoto and colleagues
also have demonstrated the presence of myeloid-restricted pro-
genitors with long-term repopulating activity (MyRPs) that are
derived directly from balanced HSCs and expand with age (27, 28).
While single HSC transplants evidenced the presence of balanced
and myeloid-biased LT-HSCs, these studies did not identify sur-
face or transcriptional markers to distinguish these populations.
We have demonstrated a strategy for the prospective isolation of
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balanced and myeloid-biased LT-HSCs using Neogenin-1 and
Hoxb5. The functional potential of NEO1+ and NEO1− Hoxb5+

LT-HSCs matches the characteristics of the myeloid-biased and
balanced LT-HSC fractions previously predicted by single cell
transplants (26–28).
Other markers and approaches have also been proposed to

enrich for myeloid-biased HSCs. For example, our group and
others previously showed that high CD150 surface expression
enriches for myeloid-biased HSCs (20, 75). KLS cells with the
capacity to rapidly efflux Hoechst dye (i.e., lower side-population,
or lower-SPKLS cells) also exhibit biased differentiation to myeloid
lineages (11, 12). However, the association of CD150 and rapid
dye efflux capacity with myeloid bias was not evaluated in highly
purified long-term repopulating cells. In fact, these previous

studies found that the CD150high compartment, although uni-
formly self-renewing, contains various distinct HSC cell types
with unique lineage potentials. We found that, among CD150high

cells, NEO1+Hoxb5+ LT-HSCs are akin to the previously de-
scribed “myeloid-predominant” long-term reconstituting cells
(LTRCs) while NEO1−Hoxb5+ LT-HSCs resemble the “balanced”
LTRCs (75). Consistently, we found that NEO1+Hoxb5+ LT-HSCs
indeed express higher CD150 (SI Appendix, Fig. S10), validating
our initial attempts to prospectively isolate myeloid-biased HSCs
(20). Additional work is needed to evaluate whether differences in
dye efflux capacity can also distinguish NEO1+ and NEO1−

Hoxb5+ LT-HSCs.
CD41 has also been suggested to mark myelo-erythroid HSCs

(29) although it likely separates different fractions. CD41− HSCs
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are lymphoid-biased and proliferative while NEO1−Hoxb5+

LT-HSCs are balanced and quiescent. The vWF reporter mouse is
another system used to isolate platelet-biased and myeloid-biased
HSCs (30). However, like the CD41− HSCs, vWF− HSCs are
lymphoid-biased HSCs that are phenotypically distinct from the
balanced, quiescent NEO1−Hoxb5+ cells identified in this study.
Finally, CD61 was recently described as a surface marker on myeloid-
biased LT-HSCs that respond to inflammatory stress and expand
with age (22). The CD61+ and CD61− LT-HSCs are transcrip-
tionally similar to NEO1+ and NEO1− Hoxb5+ LT-HSCs,
suggesting that these markers may capture similar cell types (Fig.
5D). Leveraging combinations of both surface markers will likely
improve the purification of balanced LT-HSCs from lineage-
biased LT-HSCs.
Our results bring to question the hierarchical relationship

between lineage-primed and balanced LT-HSCs. Previous trans-
plantation studies suggest some degree of plasticity between LT-
HSC fractions with different differentiation potentials (11, 26).
Our cotransplantation experiment indicates that NEO1−Hoxb5+

LT-HSCs are likely upstream of NEO1+Hoxb5+ LT-HSCs, as
NEO1−Hoxb5+ LT-HSCs produced NEO1+Hoxb5+ LT-HSCs,

while conversion of NEO1+Hoxb5+ LT-HSCs to NEO1−Hoxb5+

HSCs was rare. The few instances of NEO1+Hoxb5+ donors pro-
ducing NEO1−Hoxb5+ LT-HSCs may be attributable to sorting
impurity among the 200 cells that were injected. This is also con-
sistent with our gene expression and cell cycle analysis demon-
strating that NEO1+Hoxb5+ LT-HSCs are more often cycling
compared to NEO1−Hoxb5+ cells (76). Moreover, NEO1−Hoxb5+

LT-HSCs contributed more to total hematopoiesis in secondary
transplants and cotransplants compared to NEO1+Hoxb5+ LT-
HSCs. Therefore, our data suggest that balanced quiescent LT-
HSCs precede myeloid-biased LT-HSCs during differentiation,
corroborating a recent study showing that myeloid-biased MyRPs
are derived from balanced HSCs (27, 28). These results are also in
agreement with the hierarchical model proposed with CD150
expression (20, 75). Both NEO1+ and NEO1− Hoxb5+ LTHSCs
are contained within CD150high cells that give rise to downstream
CD150med/low cells. However, initial studies did not evaluate the
heterogeneity within CD150high cells. We find that, among
CD150high cells, NEO1 expression is highly correlated with CD150
expression (SI Appendix, Fig. S10). These findings contrast with
the view that vWF+ and CD41+ platelet/myeloid-biased cells
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reside at the apex of the hematopoietic hierarchy (29, 30). More-
over, our transplantation data support a hybrid between the
previously proposed “clonal succession” and “clonal diversity”
models (11), in that there likely exist stable lineage-biased LT-
HSCs that succeed highly potent, lineage-balanced LT-HSCs.
Additional work will also be required to not only verify the hi-

erarchical relationship between NEO1−Hoxb5+ and NEO1+Hoxb5+

LT-HSCs but also to delineate the differentiation path those
distinct LT-HSC fractions follow to generate various blood cells.
Our studies suggest that NEO1−Hoxb5+ LT-HSCs likely precede
NEO1+Hoxb5+ LT-HSCs hierarchically (Fig. 6G); nevertheless,
experiments like a single cell transplant are necessary to confirm
that notion. Also, we suspect that balanced NEO1−Hoxb5+ LT-
HSCs contribute to myeloid lineage through a NEO1+Hoxb5+

LT-HSC intermediate. However, it is unclear whether NEO1−Hoxb5+

LT-HSCs require the NEO1+Hoxb5+ intermediate state or
can independently produce lineage progenitors through alter-
native routes. Moreover, it remains to be answered whether
all NEO1+Hoxb5+ LT-HSCs are derived from NEO1−Hoxb5+

LT-HSCs. To fully reveal the hierarchical order and sequence
of differentiation events, single cell tracking experiments will
be required. Critically, our experimental results are based on the
behavior of cells upon transplantation into young, irradiated mice.
A recent study using individually barcoded HSCs showed that
lineage biases are more pronounced after transplantation into le-
thally irradiated mice compared to unirradiated or anti-c-KIT–
depleted syngeneic mice (24). This suggests that posttransplant
lineage bias may be either due to plasticity in lineage output or the
selective engraftment of preexisting HSC subsets. Therefore, it will
be important to evaluate the potential and hierarchical relation-
ship between NEO1+ and NEO1−Hoxb5+ LT-HSCs during in situ,
unperturbed hematopoiesis with in vivo lineage tracing. This will
likely require the identification of a surrogate positive marker for
NEO1−Hoxb5+ LT-HSCs or a dual reporter system that labels both
Hoxb5 and Neo1 expressing cells.
Furthermore, we note that comparing NEO1+ and NEO1−

fractions within pHSCs without gating Hoxb5+ LT-HSCs may
mislead the significance of NEO1 to separate myeloid-biased from
balanced cells. The vast majority of NEO1− cells among pHSCs
are short-term, lymphoid-biased Hoxb5− ST-HSCs (8) that far
outnumber the long-term, balanced NEO1−Hoxb5+ LT-HSCs
we find in this study. NEO1 is also rarely expressed in Hoxb5−

downstream cells and bone marrow niche cells, and its functional
role in these populations has not been evaluated in this study.
The functional differences between NEO1+ and NEO1− Hoxb5+

LT-HSCs may be influenced by intrinsic programs, external cues,
or both. As NEO1 is a receptor to many known ligands, ongoing
studies are evaluating the role of the bone marrow niche and
particular ligands to NEO1 in influencing lineage bias and stem
cell maintenance.
Finally, our antibody against NEO1 also marked subpopula-

tions of human HSCs, MPPs, and LMPPs, suggesting that NEO1
may also associate with functionally distinct cell types in human
HSC biology. Further evaluation of NEO1 function in mouse
and human bone marrow cells may offer insights into evolu-
tionarily conserved mechanisms of lineage bias during long-term
hematopoiesis.
Taken together, we have identified a marker on the surface of

Hoxb5+ LT-HSCs, Neogenin-1, that enables the separation of
myeloid-biased LT-HSCs from quiescent, balanced LT-HSCs with
the highest long-term repopulation potential. Our findings reveal a
previously undescribed layer of functional heterogeneity among
strictly defined functional LT-HSCs and enable the precise and
prospective study of LT-HSCs and their fractions.

Materials and Methods
A full description of experimental materials and methods is provided in SI
Appendix, Supplementary Materials and Methods.

Mice. The 2- to 3-mo-old female Hoxb5-mCherry mice (MGI:5911679; avail-
able through RIKEN BioResource Research Center: RBRC09733) were used
as donors (CD45.2) for transplant experiments, bulk RNA sequencing, and
intracellular FACS analysis of pSMAD. Additionally, 2- to 3-mo-old CAG-
EGFP;Hoxb5-mCherry mice (in-house colony) were used for cotransplant
assays. The 2- to 3-mo-old female B6.SJL-Ptprca Pepcb/BoyJ mice (The Jackson
Laboratory) were used as recipients (CD45.1) for transplant experiments
and for supporter bone marrow. The 4-mo-old and 16- to 18-mo-old fe-
male Hoxb5-mCherry mice were used for experiments with 5-fluorouracil.
Five-, 13-, and 22-mo-old female Hoxb5-mCherry mice were used for ag-
ing analysis. The 2- to 3-mo-old and 12- to 14-mo-old female Hoxb5-
mCherry mice were used for cell cycle analysis. The 2- to 3-mo-old C57BL/6J
female mice (The Jackson Laboratory) were used for fluorescent-minus-one
(FMO) controls for Hoxb5-mCherry expression.

Gene Expression Profiles of Mouse Hematopoietic Cells. All microarray data
used in this study are accessible through the Gene Expression Commons
platform (https://gexc.riken.jp) and the Gene Expression Omnibus (GEO) ac-
cession number, GSE34723. We analyzed 64 microarray gene expression pro-
files (GEPs) of 23 distinct mouse hematopoietic cell types (Dataset S1) for
surface markers enriched in HSCs compared to downstream progeny. GEPs
were normalized against a large common reference of >11,939 Affymetrix
Mouse Genome 430 2.0 microarrays as described before (43). For each gene,
the probeset with the largest dynamic range was selected and transformed to
percentile ranks (range: –100% to +100%) based on its relative expression to
the reference. Genes were further subset based on 2 main criteria: 1) positive
percentile expression in HSCs and 2) annotation as a cell surface protein based
on GO:0009986, leaving 186 gene candidates. Fold-change enrichment in HSCs
was calculated as the average percentile rank for each gene among HSCs di-
vided by the average percentile rank for that gene across all other cells.

Mouse Hematopoietic Stem Cell Isolation by Flow Cytometry. For bone
marrow isolation, tibia, femur, and pelvis were dissected, crushed with mortar
and pestle in FACS buffer (2% fetal bovine serum [FBS] in phosphate-buffered
saline [PBS] with 100 U/mL DNase), and the supernatant was collected. For
whole bone marrow (WBM) isolation, red blood cells were depleted with ACK
(ammonium-chloride-potassium) lysis buffer by incubating at room tempera-
ture for 10 min and Fc-blocked by incubating with rat IgG (LifeSpan BioSci-
ences) for 10 min. For c-KIT+ cell isolation, samples were Fc-blocked with rat
IgG for 10 min, incubated in c-KIT magnetic beads (Miltenyi) with 100 U/mL
DNase, and MACS-isolated using LS magnetic columns (Miltenyi) as per the
manufacturer’s protocol.

Samples for mouse HSC isolationwere stained with amixture of antibodies
against lineage markers: i.e., CD3, Gr-1, CD11B, B220, and TER119 (AF700),
c-KIT (APC-Cy7), SCA-1 (PE-Cy7), CD48 (BV711), FLK2 (PerCP-Cy5.5), CD150
(BV421 or APC), CD34 (primary: biotin; secondary: Strep-BUV737), and NEO1
(primary: goat anti-mouse/human [cat. no. AF1079; R&D]; secondary: donkey
anti-goat IgG [H+L] cross-absorbed AF488-conjugated; negative control:
normal goat IgG). Although the antibody to NEO1 is polyclonal, results were
consistent across multiple reagent lots and experiments. Antibody-labeled
cells were shown to express higher NEO1 mRNA compared to unlabeled
cells (SI Appendix, Fig. S9A). Primary and secondary antibody incubations
were 20 to 30 min each with a 5-min wash step in between. Catalog number,
concentrations, and clone information are provided in Dataset S4.

Flow cytometry and cell sorting were performed on the BD FACSAria and
BD LSRFortessa. Gating strategy for the different populations is shown in SI
Appendix, Fig. S3. Either 7-AAD or DAPI was used as a viability dye for dead
cell exclusion, depending on the assay. All cells were suspended in FACS
buffer (2% FBS in PBS) on ice unless otherwise indicated.

Methods for cell cycle and pSMAD analysis are described in detail in SI
Appendix, Supplementary Materials and Methods.

Myeloablative Stress with 5-Fluorouracil. The 4-mo-old and 16- to 18-mo-old
female Hoxb5-mCherry mice were injected once with 150 mg of 5-FU (Sigma-
Aldrich) per kg body weight from a stock solution of 10 mg/mL in PBS (48).
Bone marrow populations were isolated and analyzed 5 d after treatment as
described above. Notably, given the up-regulation of CD11B in HSCs post-
treatment with 5-FU (48), the antibody to CD11B was omitted from the
lineage staining panel.

Transplantation Assays. The 2- to 3-mo-old female B6.SJL-Ptprca Pepcb/BoyJ
(CD45.1) recipient mice were lethally irradiated at a single dose of 9 Gy. For
reconstitution assays, 10 NEO1+Hoxb5+ or NEO1−Hoxb5+ LT-HSCs were iso-
lated from donor CD45.2+ Hoxb5-mCherry mice (MGI:5911679) as described in
Mouse Hematopoietic Stem Cell Isolation by Flow Cytometry and coinjected
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with 2 × 105 recipient whole bone marrow cells in 200 μL of PBS with 2% FBS
into the retroorbital venous plexus. For secondary transplants, 1,000
CD45.2+ Lin−cKIT+SCA1+ (KLS) cells were isolated by flow cytometry and
transplanted together with 2 × 105 recipient (CD45.1) whole bone marrow
cells into lethally irradiated recipient CD45.1+ mice as described above. For
cotransplantation assays, 200 NEO1+ and NEO1− Hoxb5+ LT-HSCs were iso-
lated from either CD45.2+ Hoxb5-mCherry mice (MGI:5911679) or an in-house
strain of CD45.2+ CAG-EGFP;Hoxb5-mCherry mice and transplanted into le-
thally irradiated recipient CD45.1+ mice at a split dose of 9 Gy with a 4-h in-
terval. Any strain-specific bias was controlled for by transplanting the same
condition from both strains (e.g., in one experiment, NEO1+ Hoxb5+ LT-HSCs
were isolated from Hoxb5-mCherry mice and in another from CAG-
EGFP;Hoxb5-mCherry mice). In all cases, recipients with lower than 1% to-
tal chimerism were considered failed transplantations and excluded from
analysis.

Peripheral Blood Analysis for Chimerism. Peripheral blood collections for as-
sessment of donor chimerism were performed at 4, 8, 12, and 16 wk after
primary and secondary transplantations and 8, 12, 16, and 20 wk after
cotransplantations. At each time point, 50 to 100 μL of blood was collected
from the retroorbital venous plexus using heparinized capillary tubes (Fisher
Scientific) and added to K2/EDTA-coated MiniCollect tubes (Greiner Bio-One).
Red blood cells were depleted with 2 rounds of ACK lysis buffer by incubating
at room temperature for 5 min each. Cells were then washed with cold PBS.
Cells were Fc-blocked with rat IgG (LifeSpan BioSciences) and stained with
5 μg/mL rat anti-mouse antibodies (catalog nos., concentrations, and clones are
provided in Dataset S4) to CD45.1, CD45.2, CD11B, GR1, B220, CD3, and, only in
the cotransplantation assay, CD41. Then 7-aminoactinomycin D (7-AAD; BD
Bioscience) was added for live and dead cell discrimination.

Additional information on how chimerism was calculated for reconstitution
and cotransplantation experiments is provided in SI Appendix, Supplementary
Materials and Methods.

RNA Sequencing. For RNA sequencing experiments, 250 to 500 cells from 2
pooled mice per sample were sorted directly into 100 μL of lysis buffer (Buffer
RL), and RNA was isolated with the Single Cell RNA Purification Kit (Norgen
Biotek Corp.) according to the manufacturer’s protocol. RNA quality was
measured by capillary electrophoresis using the Agilent 2100 Bioanalyzer with
Nano mRNA assay at the Stanford Protein and Nucleic Acid (PAN) Facility.

Libraries were prepared using the Smart-seq2 protocol by Picelli et al. (51)
with minor modifications (see SI Appendix, Supplementary Materials and
Methods for more details). Ten samples were sequenced with 151 bp paired-
end reads on a single lane of NextSeq 500 (Illumina, San Diego, CA) at the
Stanford Functional Genomics Facility.

After sequencing, bcl2fastq2 v2.18 (Illumina) was used to extract the data
and generate FASTQ files for each sample by using unique barcode combi-
nations from the Nextera preparation. Raw reads were trimmed for base call
quality (PHRED score ≥21) and for adapter sequences using Skewer v0.2.2
(77). Trimmed reads were then aligned to the mouse genome assembly
(mm10) from the University of California, Santa Cruz (http://genome.ucsc.
edu) using STAR v2.4 with default setting (78).

Methods for RNA-seq data analysis are described in detail in SI Appendix,
Supplementary Materials and Methods, and raw and processed data are
available in the GEO database under accession no. GSE130504 (52).

Statistics. Statistical significance between 2 groups was determined using a
paired or unpaired Student’s t test, as appropriate. For comparison of 2
groups across multiple time points, statistical significance was determined
using a 2-way ANOVA using the groups and time points as factors. Multiple
hypothesis correction was applied to gene expression comparisons using the
Benjamini–Hochberg procedure. Results with P-adjusted < 0.1 were consid-
ered significant. Data analyses were performed with R 3.5.1, Prism v7
(GraphPad Software, Inc.) and FlowJo v10 (FlowJo, LLC). The investigators
were not blinded to allocation during experiments and outcome assessment.
No sample-size estimates were performed to ensure adequate power to
detect a prespecified effect size.
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