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Changes in arousal influence cortical sensory representations, but
the synaptic mechanisms underlying arousal-dependent modula-
tion of cortical processing are unclear. Here, we use 2-photon
Ca’* imaging in the auditory cortex of awake mice to show that
heightened arousal, as indexed by pupil diameter, broadens
frequency-tuned activity of layer 2/3 (L2/3) pyramidal cells. Sen-
sory representations are less sparse, and the tuning of nearby cells
more similar when arousal increases. Despite the reduction in se-
lectivity, frequency discrimination by cell ensembles improves due to a
decrease in shared trial-to-trial variability. In vivo whole-cell record-
ings reveal that mechanisms contributing to the effects of arousal
on sensory representations include state-dependent modulation of
membrane potential dynamics, spontaneous firing, and tone-evoked
synaptic potentials. Surprisingly, changes in short-latency tone-evoked
excitatory input cannot explain the effects of arousal on the broadness
of frequency-tuned output. However, we show that arousal strongly
modulates a slow tone-evoked suppression of recurrent excitation
underlying lateral inhibition [H. K. Kato, S. K. Asinof, J. S. Isaacson,
Neuron, 95, 412-423, (2017)]. This arousal-dependent “network sup-
pression” gates the duration of tone-evoked responses and regulates
the broadness of frequency tuning. Thus, arousal can shape tuning via
modulation of indirect changes in recurrent network activity.
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Information processing in the sensory cortex is modulated by
changes in behavioral states such as those associated with
arousal, attention, or task engagement (1-4). Indeed, moment-to-
moment changes in arousal have strong effects on spontaneous
and stimulus-evoked firing activity in the primary visual (V1) (5-
12) and auditory (Al) cortex (13-15). Despite the potential for
arousal to regulate cortical sensory coding, the subthreshold syn-
aptic mechanisms by which changes in brain state influence sensory
representations and tuning properties are not well understood.

In recordings from head-fixed mice, changes in arousal are
typically assessed by measurements of pupil diameter or explor-
atory behavior, such as locomotion, with increases in pupil di-
ameter and bouts of running/walking indicating heightened
arousal (1). Interestingly, the transition from quiet wakefulness to
locomotion has different effects in the visual and auditory cortices:
walking/running increases stimulus-driven firing in V1 (5, 6, 8, 10,
16) while it is associated with a decrease in sensory-evoked firing
in Al (13-15). However, heightened arousal does not require
movement, and recent work suggests that motor feedback signals
to the sensory cortex modulate activity differently than arousal
tracked by pupillometry during quiet wakefulness (5, 13).

In this study, we use pupillometry and Ca®* imaging to study
how fluctuations in arousal in the absence of locomotion mod-
ulate frequency coding in Al of head-fixed mice. We show that,
despite a reduction in frequency selectivity, elevated arousal
improves frequency discrimination by L.2/3 pyramidal cells. In
vivo whole-cell current- and voltage-clamp recordings from 1.2/3
cells reveal how changes in membrane potential dynamics and
tone-evoked synaptic input contribute to this arousal-dependent
modulation of frequency representations.
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Results

We used transgenic mice expressing the Ca?* indicator GCaMP6s
[Emx-Cre;CamKII-tTA;Ai94(TITL-GCaMP6s)] (17) and 2-photon
imaging (950 nm) to study tone responses in Al L2/3 pyramidal
cells (n = 8 imaging fields, 5 mice). Prior to recording, head-fixed
mice were habituated to sitting quietly for prolonged time periods
(1 to 2 h) on a static platform. During imaging of Al in the right
hemisphere, mice sat on a passive treadmill that measured
movement while an IR camera simultaneously monitored the
pupil (illuminated by IR laser emission through the eye) of the
contralateral eye and blocks of pure tones (17 log spaced fre-
quencies, 2-40 kHz, 1 s duration, 3 s ITI, 60 dB) were delivered
to the contralateral ear (Fig. 14). During single imaging sessions,
pupil diameter (normalized to maximum pupil diameter) fluc-
tuated between constricted and dilated states (Fig. 1B). Under
our conditions, mice were predominantly stationary, and while
sporadic locomotion bouts were associated with maximally dilated
pupils, mice spent considerable time with pupils just as dilated
while stationary (Fig. 1 B and C). For all experiments (n = 8), we
excluded the small number of trials during locomotion and, thus,
limited our investigation to how arousal (indexed by pupil di-
ameter) modulated cortical activity.

We examined the influence of arousal by sorting tone trials by
the mean pupil diameter during the tone. While responses were
rarely observed when pupils were most constricted (1-20% of
maximal diameter), the same tones elicited robust responses as
pupil diameter increased (Fig. 1D). This reflects the fact that
both the amplitude and the reliability of tone-evoked responses
were strongly dependent on arousal. At best frequency ([BF], the
frequency eliciting the strongest response in each cell averaged
across all pupil diameters unless stated otherwise), the response
amplitude and trial-to-trial reliability increased more than 4-fold
(Friedman’s ANOVA, P < 0.001) when pupils were most dilated
[81-100% vs. 1-20% maximal diameter (Fig. 1E;)]. These
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Fig. 1.
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Arousal modulates frequency tuning of L2/3 pyramidal cells. (A) Experiment schematic. An IR camera records pupil size (Top Left) during imaging of

GCaMP6s-expressing neurons (Bottom Left). (B, Top) Tones presented during imaging. (B, Middle) Pupil diameter for 1 experiment. (B, Bottom) Simultaneous
recording of mouse velocity. (C) Summary of pupil diameters (n = 8 experiments) when mice were stationary (black) or walking (pink) shows that locomotion
only occurred during high arousal and mice were typically stationary. (D) A representative cell showing enhancement of tone-evoked responses as arousal
(pupil diameter) increases. Bold trace, average response. Colored bold traces indicate frequencies eliciting a significant response. Gray, individual trial. (E;)
Arousal increases the amplitude (filled circles) and reliability (open circles) of BF responses (n = 195 cells). (E,) Arousal increases percentages of tones evoking
significant responses (filled circles) and reduces lifetime sparseness (Sp) (1-Sp, open circles). (F) Arousal broadens frequency tuning curves. (Left) Average
tuning (n = 195 cells) during low (blue), moderate (green), and high (red) arousal aligned to low arousal BF. (Right) Low and high arousal curves scaled.
(Middle) Cumulative probability plots show no shift in BF (1-35% [Constricted] vs. 66—-100% [Dilated] maximum diameter, n = 119,186 cells). Error bars, SEM.

changes in response strength led to a marked increase (Fried-
man’s ANOVA, P < 0.001) in the broadness of frequency tuning of
individual cells: The number of tones eliciting significant responses
peaked at moderate arousal levels (41-60% of maximal pupil di-
ameter, Fig. 1E,). Similar results were obtained using lifetime
sparseness (18) (Friedman’s ANOVA, P < 0.001), a tuning mea-
sure that does not require thresholding (Fig. 1E). We examined
whether arousal modulates the shape of frequency tuning curves
by centering cell responses to their BF at low arousal (Fig. 1F).
Intriguingly, increases in arousal widened frequency tuning
curves (n = 119 cells; 2-way ANOVA, Pyrousal, Prequency, and
Pirousal-frequency interaction < 0.001) in an asymmetric fashion: re-
sponses to frequencies >BF were more strongly enhanced than
responses to frequencies <BF (low vs. high arousal post hoc
comparisons, P = 0.06 and <0.001 for —0.27 octaves and +0.27
octaves from BF, respectively). Despite arousal-dependent changes
in the symmetry of tuning curves, the BF of individual cells
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remained constant (Kolmogorov—-Smirnov test, P = 0.94, Fig. 1F).
These results indicate that arousal strongly shapes the strength of
tone-evoked responses and broadens frequency tuning in L.2/3.

We next considered how arousal-dependent changes in pyrami-
dal cell response properties contribute to sensory representations in
Al. Consistent with the increases in response strength and tuning
broadness, the fraction of cells responding to tones increased with
arousal (Friedman’s ANOVA, P < 0.001, Fig. 2 A and B). These
results indicate that arousal shapes the relative sparseness of sen-
sory representations at the population level.

How do arousal-related changes in sensory representations
impact the ability of the pyramidal cell population to discriminate
frequencies? At face value, the reduction in sparseness of activated
cells and broadening of frequency tuning should increase overlap
in cell ensembles activated by different frequencies. This implies
that increased arousal would degrade rather than improve fre-
quency discrimination. To address this, we analyzed interneuronal
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Fig. 2.

Elevated arousal decreases sparseness of tone representations and improves frequency discrimination via modulation of noise correlations. (4) In-

creased arousal results in more tone-responsive cells. Responsive cells color coded by BF within the same field at different levels of arousal. Nonresponsive
cells, gray. (B) Summary of tone responsiveness (n = 8 fields). (C;) Increased arousal results in broader r;ign, distributions and narrower rpqise distributions (C5,
n = 4,938 cell pairs). (D;) Arousal differentially modulates g, (black) and rooise (gray). (D) For the majority of cell pairs (n = 3,086), arousal increases r;igna
and decreases roise- (D3) The opposite relationship can also be observed (n = 1,852). (E) Nonlinear classifier analysis reveals that arousal-dependent increases
in decoding accuracy are due to changes in rnoise. Filled circles, rpoise intact. Open circles, rpoise removed. Error bars, SEM.

correlations that contribute to population coding: signal correlations
("signa1)» @ measure of tuning similarity between pairs of neurons and
noise correlations (r,0ise), @ measure of how much the trial-to-trial
response variability of a pair of neurons is correlated (19, 20).
Consistent with previous studies in the auditory cortex (21-24),
MEAn Zigna and 7y, values were small and positive (7 = 4,938 cell
pairs, 8 experiments, Fig. 2 C and D;). Interneuronal correlations
were significantly modulated by arousal (Fig. 2C, 2-way ANOVA,
P, arousals P correlationss and P, interaction <0001) Across all cells, Tsignal
increased markedly as pupils became more dilated (Fig. 2D;). This
indicates that the tuning of pyramidal cells became more similar as
arousal increased, consistent with the notion that elevations in
arousal could degrade frequency discrimination. However, 7,ise fell
as arousal increased (Fig. 2D;). Previous work has established that
reducing 7,05 Should enhance sensory discrimination when cell
pairs exhibit more similar tuning but impair discrimination when

25306 | www.pnas.org/cgi/doi/10.1073/pnas.1911383116

tuning becomes dissimilar (19, 20, 24-26). Intriguingly, we found
that arousal-dependent changes in i Were highly selective: 7pise
decreased specifically in cell pairs that became more similarly tuned
(increase in 7ggnar) as arousal increased (2-way ANOVA, Prousais
P, correlationss and P, interaction < 0.001, Flg 2D2)- In contrast, r, noise in-
creased specifically for cell pairs in which elevated arousal led to a
reduction in 7gna (2-Way ANOVA, P,rusals Pinteraction < 0.001, and
P orretations = 0.066, Fig. 2D3). Together, these relationships between
Tsignal and Tnoise predict that increases in arousal should enhance
frequency discrimination by L.2/3 cell populations.

To investigate the net effect of arousal on frequency dis-
crimination, we used a nonlinear classifier (K-nearest neighbors’,
Materials and Methods). To specifically investigate the contribu-
tion of arousal-dependent changes in noise correlations to fre-
quency encoding, the temporal order of responses was shuffled
such that noise correlations were abolished while the frequency
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identity for each tone trial remained unchanged. As expected, the
decoder performed above chance level (5.9%) independent of
arousal for both the unshuffled and the shuffled datasets. More
importantly, decoding accuracy improved significantly (Fig. 2F)
only when the data were unshuffled (2-way ANOVA with post hoc
multiple comparisons, Paousal, Pdataset < 0.001, and Pipgeraction =
0.127). Thus, changes in noise correlations play an important role
in improving frequency discrimination as arousal increases.

We next used whole-cell recording to measure how arousal
impacts subthreshold activity in L2/3 cells. Studies in many cor-
tical areas indicate that spontaneous membrane potential (V)
dynamics are influenced by brain state (reviewed in ref. 1). In-
deed, during low to moderate arousal, current-clamp recordings
revealed large-amplitude low-frequency (2-10 Hz) 1/, fluctua-
tions that were attenuated at high levels of arousal (Fig. 3. 4; and
A5). Both I}, SD and low-frequency oscillations (2-10 Hz power)
diminished during high arousal (» = 10, Friedman’s ANOVA,
P = 0.025 and 0.020, respectively, Fig. 345), consistent with
previous studies tracking locomotion or pupil diameter in V1
and Al (7, 8, 10, 11, 14). Similar to deep layer neurons in Al
(14), mean V,, was slightly more hyperpolarized during moderate
arousal (n = 26, Friedman’s ANOVA, P = 0.019, Fig. 34,).
Despite the similarity in mean V5, during the lowest and highest
levels of arousal, the rate of spontaneous spiking steadily de-
clined as arousal increased (n = 18, 7 whole-cell and 11 cell-
attached recordings, Friedman’s ANOVA, P = 0.005, Fig.
34,). Together, these findings are consistent with the idea that

low arousal is associated with high 1, variability and slow syn-
chronized cortical activity while high arousal enforces low vari-
ability, suppression of slow rhythms and fewer spontaneous
spikes (1, 5, 7, 15).

In agreement with recent work characterizing lateral inhibition
in Al (27), tones (100-200 ms) at “preferred” frequencies
evoked short-latency excitatory postsynaptic potentials (EPSPs)
while distal (“nonpreferred”) frequencies evoked a slow hyper-
polarization (Fig. 3B). Interestingly, the time course of responses
to preferred tones was arousal dependent. Averaging responses
during low arousal revealed that the short-latency EPSP was
curtailed by membrane hyperpolarization (Fig. 3B). During
higher arousal, although the early amplitude of the EPSP slightly
increased, the EPSP duration was markedly prolonged. For
responses at nonpreferred frequencies, the tone-evoked hy-
perpolarization was strongly suppressed as arousal increased
(Fig. 3B). Given the small change in the early EPSP, the most
parsimonious explanation for the increased duration of pre-
ferred responses is the suppression of the overlapping slow
hyperpolarization.

We quantified arousal-dependent changes in tone-evoked re-
sponses across cells by aligning responses to each cells’ BF (Fig.
3C;). On average, increases in arousal were associated with
modest increases in EPSP peak amplitude (n = 15, 2-way
ANOVA, Pfrequency < 0.001, Parousal = 0.033, and Piperaction =
0.994, Fig. 3C,). However, arousal had a strong effect on the
response integral and duration of tone-evoked EPSPs. During
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Elevated arousal reduces membrane potential variability, spontaneous firing, and lateral inhibition. (A;, Top) Current-clamp recording of membrane

potential (V,,,) in a representative L2/3 cell. Asterisks mark truncated action potentials. (Middle) V,, SD (purple) and 2-10 Hz power (green) over 1 s intervals.
(Bottom) Pupil diameter. (A,) Expansion of areas marked in A;. (A3) Summary showing that as arousal increases, 2-10 Hz power (open circles) and SD (filled
circles) decrease. (A;) Summary showing that spontaneous firing decreases as arousal increases (filled circles, n = 19). Mean V,, is most hyperpolarized during
moderate arousal (open circles, n = 30 cells). (B) Responses to a preferred (Top) and nonpreferred (Bottom) tone (black bar) during different arousal levels in a
representative cell. Gray, subset of single trials. Bold, mean response. Dashed line, baseline V,,. (C;) Average responses to tones aligned to BF of each cell
during low (blue), moderate (green), and high (red) arousals (n = 15 cells). Dashed line, baseline V,,. (C;) Arousal causes a modest increase in EPSP peak
amplitude. (C3) Responses shift from net hyperpolarization to net depolarization for tones >BF. (C;) Arousal-dependent suppression of lateral inhibition

increases EPSP duration. Error bars, SEM.
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low arousal, tone-evoked hyperpolarization was most prominent
during BF tones (frequencies with the strongest early EPSP) and
those of higher frequencies. As arousal increased, suppression of
the slow hyperpolarization shifted the integrated responses from
net hyperpolarization to net depolarization (2-way ANOVA,
Pfrequency = 0.458, Parousal < 0.001, and Pimeraction = 0.943, Flg:
3C;) and EPSP duration was prolonged (2-way ANOVA, Pre.
quency = 0.303, Pyrousat < 0.001, and Pineraction = 0.806, Fig. 3C,).
Interestingly, the differences in response integral and EPSP
duration between low and high arousal states were largest for
frequencies >BF (Fig. 3 C; and Cy). Together, these results in-
dicate that arousal can regulate response strength by reducing a
form of lateral inhibition that limits the duration of tone-evoked
synaptic excitation.

What accounts for the arousal-dependent changes in tone-
evoked synaptic potentials? To address this question, we used
voltage clamp to isolate excitatory postsynaptic currents (EPSCs)
in L2/3 cells (Vyoa = =70 mV, near the reversal potential for
inhibition set by our internal solution). Under resting conditions,
cells received high-frequency barrages of spontaneous EPSCs
(Fig. 44). On individual trials, preferred tones evoked transient
EPSCs locked to tone onset (ON response). During low arousal,
transient ON responses were immediately followed by a sus-
tained suppression of spontaneous EPSCs. When trials were
averaged, this resulted in a slow outward current (relative to
baseline). We have recently shown (27) that this reflects a re-
duction in ongoing recurrent activity, “network suppression
(NS),” underlying an unconventional form of lateral inhibition
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that shapes frequency tuning. Indeed, during low arousal, NS was
strongest at nonpreferred frequencies (Fig. 4 A and E;). Thus,
the slow tone-evoked hyperpolarization in current-clamp re-
cordings is due to a suppression of recurrent excitation rather
than direct synaptic inhibition (27). Intriguingly, while early ON
responses were only slightly modulated, NS was strongly atten-
uated when arousal increased (Fig. 4 4 and C-E). This loss of NS
led to an increase in duration of ON responses (Fig. 44). These
results suggest that NS limits the strength of tone-evoked exci-
tation in an arousal-dependent manner.

One explanation for the arousal-dependent attenuation of NS
is that elevated arousal itself suppresses spontaneous excitation.
In other words, during high arousal, there might be less synaptic
input to suppress. We, thus, examined the relationship between
arousal and spontaneous activity. Consistent with membrane
voltage recordings, barrages of large-amplitude EPSCs during
low arousal became desynchronized when arousal increased (Fig.
4 By and B;). Although this led to a marked change in current
variability (Friedman’s ANOVA, P < 0.001), total current (mean
I,,,) remained constant (Friedman’s ANOVA, P =0.223, and n =
14 cells, Fig. 4 B; and B,). Thus, while excitatory input was more
variable on a moment-to-moment basis during low arousal, the
net amount of ongoing synaptic excitation remained the same as
arousal increased. This indicates that arousal-dependent changes
in NS cannot be due to changes in the available amount of
recurrent excitation.

Given that inhibitory interneurons are highly interconnected
with recurrent excitatory circuits, changes in NS should also
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Fig. 4. Arousal modulates network suppression underlying lateral inhibition. (A) EPSCs in response to a preferred (Top) and nonpreferred (Bottom) tone
during different arousal levels from 1 cell. Gray traces, subset of single trials. Bold traces, average. Dashed line, baseline. (B) Loss of network suppression is not
due to less spontaneous excitation. (B;) Current (=70 mV) and pupil diameter from 1 cell show a decrease in current variability during increased arousal. (B,)
Expansion of periods marked by small bars in B;. (B3) All points histogram of current (20 s) from B;. (B,) Increases in arousal decrease current variability (/, SD)
while mean current is unchanged (n = 14 cells). (C) Arousal modulates EPSCs and IPSCs similarly. (C;) Averaged tone-evoked EPSCs and IPSCs from the same cell
during different arousal states. (C,) Absolute charge above (below) baseline for IPSCs (EPSCs) during different arousal levels (n = 35 tone responses at each
arousal level, 12 cells, *P = 0.010 and 0.048, respectively, paired t test). (D) EPSC onset (ON) responses in C;) peak during moderate arousal. (D;) Normalized
ON responses aligned to BF (n = 16 cells). (D) Summary of all significant ON responses recorded at each arousal level shows that ON component increased
from low to moderate arousal and then decreased during high arousal (*P < 0.003, paired t test, and n = 32 frequencies, 16 cells). (E) NS of EPSCs (in C;) was
biased to high frequencies and decreased monotonically with increasing arousal. (E;) Normalized NS aligned to BF (n = 16 cells). (E;) Summary of significant
responses shows that NS steadily decreased with increases in arousal (*P < 0.001, paired t test, and n = 27 frequencies, 11 cells). Error bars, SEM.
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impact tone-evoked synaptic inhibition (27). We, thus, compared
the effect of arousal on tone-evoked EPSCs (V01 = =70 mV)
and inhibitory postsynaptic currents (IPSCs, Vo = +20 mV,
near the reversal potential for excitation) in the same cells (n =
12). Tone-evoked NS of IPSCs mirrored suppression of EPSCs
(Fig. 4C;). Moreover, arousal-dependent changes in the strength
of tone-evoked excitation and inhibition (total charge below and
above baseline, respectively) scaled such that the relative balance
of excitation/inhibition remained constant (1.38- and 1.40-fold
changes from low to high arousal states for IPSCs and EPSCs,
respectively, Fig. 4C5).

We next considered how arousal modulated the tuning of
tone-evoked excitation. Overall, short-latency ON responses
were largest during moderate arousal (n = 16 cells, Fig. 4 D; and
D,). However, changes in arousal did not have an obvious impact
on ON response tuning (2-way ANOVA, Ppequeney < 0.001,
Parousal = 0.236, and Pipteraction = 0.585). In contrast, increases in
arousal led to a stronger monotonic attenuation of tone-evoked
network suppression (2-way ANOVA, Pfrequency, Parousal < 0.002,
and Piperaction = 0.539, Fig. 4 E; and E,). Furthermore, the
arousal-dependent change in NS appeared tuned to frequencies >BF.
This reflects the fact that NS itself is biased to high frequencies
(27). Together, these results indicate that, while arousal weakly
modulates short-latency excitation, it has a strong impact on tone-
evoked responses via regulation of an indirect form of inhibition
that gates recurrent excitation.

Discussion

In this study, we used pupillometry, Ca®" imaging, and in-
tracellular recording in stationary mice to investigate arousal-
related changes in frequency-tuned activity in Al. Imaging
activity evoked by pure tones in L2/3 pyramidal cells revealed
that arousal-dependent increases in response amplitude and re-
liability decreased the sparseness of cortical tone representations.
Consistent with these changes, signal correlations increased with
arousal indicating greater overlap in the frequency-tuning curves
of cells across the cortical population. Despite this increase in
tuning similarity, elevated arousal improved frequency discrimi-
nation by cell ensembles due to a reduction in noise correlations
(shared trial-to-trial variability). Similar to previous studies (1, 7,
11, 14), increases in arousal caused a shift in spontaneous synaptic
activity: slow (2-10 Hz) bursts of excitatory input gave way to
steady desynchronized input. Slow oscillations in spontaneous ac-
tivity can be correlated between nearby cells as well as across wide
areas of the sensory cortex (28). Therefore, we think it likely that
the arousal-dependent shift in membrane dynamics is largely re-
sponsible for the reduction in noise correlations underlying
improved frequency discrimination.

Increases in arousal were associated with a reduction in fre-
quency of spontaneous action potentials, raising the possibility that
the changes in sensory representations we observed simply reflect
an enhanced signal-to-noise-ratio (SNR). Indeed, the arousal-
dependent increase in response strength and reliability as well as
the reduction in sparseness could be due to an improved SNR.
However, increases in arousal also broadened frequency-tuning
curves of individual cells due to a stronger enhancement of
frequencies >BF. Thus, while changes in SNR are likely to con-
tribute to modulation of cortical tone representations, SNR alone
cannot explain the effects of arousal on frequency tuning.

We used current- and voltage-clamp recordings to examine
how arousal-dependent changes in tone-evoked subthreshold
activity could modulate tuning properties. Interestingly, con-
ventional short-latency tone-evoked synaptic excitation was af-
fected by arousal in a nonmonotonic fashion. Transitions from
low to moderate arousals led to a modest increase in the strength
of short-latency evoked EPSCs, however, response strength
subsequently declined during high arousal. Activity evoked by
complex sounds in deep layers of Al is similarly found to be
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maximal during moderate arousal (14). Nonetheless, the small
arousal-related increases in conventional short-latency synaptic
input seem insufficient to account for the strong changes in ac-
tivity observed with Ca®* imaging.

We show here and in recent work in awake mice (27) that
nonpreferred tones can evoke a pure inhibitory response due to a
slow suppression of ongoing recurrent synaptic excitation. This
network suppression relies on cortical somatostatin-expressing
interneurons and provides an unconventional form of lateral
inhibition (27). Recent work in V1 indicates that surround sup-
pression also reflects a reduction in total network input due to
somatostatin interneurons (29). Here, we show that NS is
strongest during low arousal and becomes progressively weaker
as arousal increases. Furthermore, the arousal-dependent loss of
NS at preferred frequencies leads to an increase in duration of
tone-evoked responses. Intriguingly, NS occurs preferentially for
tones >BF (27). Although the reasons for this asymmetry are yet
to be established, the net effect of the strong reduction in NS by
arousal is a preferential change in synaptic responses to high-
frequency tones. This asymmetry in NS is likely to account for
why increases in arousal broaden frequency tuned L2/3 cell
output with a high-frequency bias.

Materials and Methods

Mice [8-16 wk old, Emx1-Cre (Jackson Laboratories No. 05638), Ai94(TITL-
GCaMPs)-D;CaMK2a-tTA (Jackson Laboratories No. 024115) or wild-type
C57BI6] were housed with a 12:12 h reversed light cycle. Experiments were
performed during the dark period. All procedures were in accordance with
protocols approved by the University of California San Diego Institutional Ani-
mal Care and Use Committee and guidelines of the National Institutes of Health.

Surgical Preparation. For imaging, mice were anesthetized with isoflurane
and received dexamethasone (2 mg/kg, i.m.). A custom head bar was glued to
the skull, muscle overlying the right auditory cortex was removed, and a
craniotomy (~2 x 3 mm) was performed over the auditory cortex, leaving the
dura intact. A glass window was placed over the craniotomy and secured
with dental acrylic. Mice received baytril (10 mg/kg) and buprenorphine
(0.1 mg/kg) before returning to their home cages. Mice were habituated to
sitting quietly while head fixed for 2-7 d (2 h/day) before imaging.

For electrophysiology, 1-3 d after head-bar implantation and habituation to
head fixation, mice were anesthetized with isoflurane, and the skull above A1
identified by intrinsic imaging (30) was thinned using a drill. During thinning,
the skull was flushed with cold artificial cerebrospinal fluid ([aCSF], [in milli-
moles] 142 NaCl, 5 KCl, 10 glucose, 10 Hepes, 3.1 CaCl,, 1.3 MgCly, pH 7.4, 310
mOsm). After thinning, mice received dexamethasone (2 mg/kg) and re-
covered in their home cage for >2 h. Immediately prior to recording, a well
filled with aCSF was constructed around the recording site, a small (<0.3 mm)
craniotomy was performed in the thinned skull, and the dura removed.

Pupillometry and Locomotion Tracking. The eye contralateral to imaging or
recording was monitored via a camera (BFLY-U3-0552M-CS, Point Gray). For
electrophysiology experiments, an IR LED was used to visualize the pupil in
the presence of weak ambient illumination (473 nm). Locomotion was
monitored by a passive treadmill fitted with a rotary encoder (Janelia). Pupil
measurements and velocity were acquired using open-source software
(Bonsai, http:/bonsai-rx.org/). Pupil diameter values were smoothed using a
moving average filter (1 s). Locomotion epochs (nonzero velocity for >0.5 s)
were excluded from analysis. Pure tones were delivered via a calibrated free-
field speaker (ES1, TDT) directed to the ear contralateral to imaging or re-
cording. Tones were generated by software (BControl; http://brodylab.org)
running on MATLAB (MathWorks) communicating with a real-time system
(RTLinux).

In Vivo Two-Photon Ca®* Imaging. Imaging was performed within 2 to 3 wk of
window implantation. Imaging fields were within A1 determined from in-
trinsic signal imaging. GCaMP6s was excited at 950 nm (Mai Tai, Newport),
and images (512 x 512 pixels covering ~500 x 500 um) were acquired at 28.4 Hz
with a 16x objective (Nikon) using a commercial microscope (B-scope, Thorlabs)
and Scanlmage4. Images were acquired 120-250 pm below the dura, and
lateral motion was corrected using a phase correlation algorithm (https:/
github.com/cortex-lab/Suite2P).
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Imaging Analysis. Responses were classified as significant if P < 0.005 (Wilcoxon
rank sum test) for >85% of trial-pooled timepoints over any continuous
0.5 s window during the 1 s tone, compared to a trial-pooled 1 s period
preceding the tone. Cells were responsive if responses to, at least, 2 tones
in, at least, 2 of 5 arousal levels (bin size 20% from 0 to 100% pupil max)
were significant. Response strength was measured as the dF/F integral of
the mean response of each cell during each arousal state, normalized to
low arousal (1-20% pupil max). Reliability was measured as the mean pairwise
trial-by-trial Pearson’s correlation coefficient of responses during each arousal

2 b Ja-um

/| = N
j=1LN

where r; was the response peak amplitude of the cell to tone j, and N was the
total number of tones.

Total correlations (sum of signal and noise correlations) were quantified
using a trial-by-trial response vector (dF/F integral during the tone) for each
arousal level for each cell (31). To calculate rygnai, the temporal order of each
cell's responses to repeated presentations of each tone were shuffled,
abolishing noise correlations while maintaining trial-by-trial stimulus iden-
tity. Total and signal correlations were obtained by calculating Pearson’s
correlation coefficients for the unshuffled and shuffled response vectors,
respectively, of cell pairs from the same experiment. A noise correlation
value for each cell pair from each experiment was obtained by subtracting
their signal correlation value from their total correlation value. To de-
termine if arousal modulates rygise in a rsigna-related manner, mean noise
correlations were calculated separately for cell pairs with signal correlations
that increased (slope > 0) or decreased (slope < 0) with arousal.

For the nonlinear classifier, a population response matrix was created from
the trial-by-trial responses for all cells of each experiment. The response
matrices for a subset of randomly selected trials (75% of total) were used to
train a K-nearest neighbors’ classifier (k = 10 trials; standardized Euclidean
distance metric) before testing the performance of the classifier on the
remaining 25% of trials (100 iterations).

Whole-cell recording. Recordings were made using the blind technique (32).
Current-clamp recordings used pipettes filled with internal solution containing

state. Lifetime sparseness was (1 - { { > rj/N
j=1,N
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(in millimoles) 130 Kgluconate, 5 NaCl, 10 Hepes, 12 Na-phosphocreatine,
0.2 EGTA, 3 Mg-ATP, and 0.2 Na-GTP (pH 7.2, 305 mOsm). Voltage-clamp
recordings used pipettes filled with (in millimoles) 130 Csgluconate, 10 Hepes,
5 TEA-Cl, 12 Na-phosphocreatine, 0.2 EGTA, 3 Mg-ATP, and 0.2 Na-GTP (pH
7.2, 310 mOsm). Series resistance (R, < 50 MOhms) was continuously moni-
tored for stability. Recording depth (226 + 11.3 pm from pia, n = 31) was
determined from the micromanipulator z axis readout (MP-285, Sutter In-
strument). Recordings were made with a Multiclamp 700A (Molecular De-
vices), digitized at 5-20 kHz, and acquired using AxoGraph. Potentials were
not corrected for the liquid junction potential (~15 mV).

Responses were sorted by pupil diameter during the tone (1-35%, 36—
65%, and 66-100%), averaged (>5 trials) for each frequency, and baselined
to tone onset. Cells were rejected if no ON response was >30 pA or >2 mV
(voltage and current clamps, respectively). For current-clamp recordings,
integral and peak amplitudes were measured 10-200 ms posttone onset.
EPSP duration was measured at 25% of the peak. BF was the frequency with
fastest EPSP onset (slope). In voltage-clamp recordings, ON response was
measured as charge in a window of 20-30 ms posttone onset. NS was cal-
culated as charge below baseline 75-125 ms posttone onset. Excitatory /n,
was measured relative to the most positive current value during each re-
cording. Excitatory (inhibitory) charge above the baseline was calculated as
the charge 10-100 ms posttone onset which was below (above) the baseline
holding current. EPSC BF was determined from the peak amplitude of the
response within 50 ms of tone onset. Cell responsiveness was determined
with a Wilcoxon signed-rank test (x = 0.01).

Data Availability. All data discussed in the paper will be made available
to readers upon request.
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