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Abstract

Recent improvements in the speed and sensitivity of fMRI acquisition techniques suggest that fast 

fMRI can be used to detect and precisely localize sub-second neural dynamics. This enhanced 

temporal resolution has enormous potential for neuroscientists. However, physiological noise 

poses a major challenge for the analysis of fast fMRI data. Physiological noise scales with 

sensitivity, and its autocorrelation structure is altered in rapidly sampled data, suggesting that new 

approaches are needed for physiological noise removal in fast fMRI. Existing strategies either rely 

on external physiological recordings, which can be noisy or difficult to collect, or employ data-

driven approaches which make assumptions that may not hold true in fast fMRI. We created a 

statistical model of harmonic regression with autoregressive noise (HRAN) to estimate and 

remove cardiac and respiratory noise from the fMRI signal directly. This technique exploits the 

fact that cardiac and respiratory noise signals are fully sampled (rather than aliasing) when 

imaging at fast rates, allowing us to track and model physiology over time without requiring 

external physiological measurements. We then created a joint model of neural hemodynamics, and 

physiological and autocorrelated noise to more accurately remove noise. We first verified that 

HRAN accurately estimates cardiac and respiratory dynamics and that our model demonstrates 

goodness-of-fit in fast fMRI data. In task-driven data, we then demonstrated that HRAN is able to 

remove physiological noise while leaving the neural signal intact, thereby increasing detection of 

task-driven voxels. Finally, we established that in both simulations and fast fMRI data HRAN is 

able to improve statistical inferences as compared with gold-standard physiological noise removal 

techniques. In conclusion, we created a tool that harnesses the novel information in fast fMRI to 

remove physiological noise, enabling broader use of the technology to study human brain function.
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Introduction

Recent technological advances in fMRI have enabled neuroscientists to investigate brain 

function at a higher temporal resolution. In particular, the increasingly widespread use of 

ultra-high field magnets coupled with methods for simultaneous multi-slice (SMS) imaging 

offer enhanced sensitivity and an order of magnitude increase in the sampling frequency of 

fMRI measurements (Barth et al., 2016; Feinberg and Setsompop, 2013; Feinberg and 

Yacoub, 2012; Hennig et al., 2007; Larkman et al., 2001; Lin et al., 2006; Moeller et al., 

2010b, 2010a; Narsude et al., 2016; Setsompop et al., 2012, 2016; Zahneisen et al., 2011), 

enabling imaging of blood-oxygenation-level-dependent (BOLD) signals at rapid (repetition 

times (TR) <500 ms) timescales. Using fast fMRI, researchers have been able to detect and 

precisely localize neurally-driven activity on the order of hundreds of milliseconds (Lewis et 

al., 2016), investigate functional connectivity networks at higher frequencies than those 

conventionally examined (Boubela et al., 2013; Chen and Glover, 2015; Lee et al., 2013; Lin 

et al., 2015; Sahib et al., 2018; Trapp et al., 2018), and resolve variable temporal dynamics 

in the hemodynamic response function (Lewis et al., 2018; Lin et al., 2018; Smith et al., 

2012).

While fast fMRI offers enormous potential as a research tool, novel challenges also emerge 

in the analysis of rapidly acquired data (Chen et al., 2019). Fast (>0.1 Hz) neurally-driven 

BOLD signals are very low in amplitude, due to the filtering properties of the hemodynamic 

response (Bandettini, 2014; Dale, 1999; Lewis et al., 2016). These signals may therefore be 

obscured by physiological noise associated with rhythmic respiratory (~ 0.2 Hz) and cardiac 

(~ 1 Hz) activity, which are of much larger amplitude than the signal. Furthermore, 

physiological noise scales with the sensitivity of fMRI measurements (Hutton et al., 2011; 

Krüger and Glover, 2001; Triantafyllou et al., 2005). This relative increase in physiological 

noise limits the ability of fast fMRI to detect subtle changes in rapid, neurally-driven 

activity, as increasing sensitivity to these small neural signals will in turn also increase 

physiological noise. A related concern in fast fMRI analysis is the enhanced autocorrelation, 

which conventional models of fMRI are unable to account for (Bollmann et al., 2018; 

Corbin et al., 2018; Eklund et al., 2012; Mathiak et al., 2016; Olszowy et al., 2019). 

Incorrect models of the physiological noise (Chen et al., 2016; Chen and Glover, 2015; 

Hallquist et al., 2013; Lund et al., 2006; Murphy et al., 2009; Weissenbacher et al., 2009) or 

of the autocorrelation (Bollmann et al., 2018; Corbin et al., 2018; Eklund et al., 2012; 

Honari et al., 2019; Mathiak et al., 2016; Olszowy et al., 2019) can lead to important errors 

in interpretation of the fMRI signal, suggesting that unique analysis strategies are necessary 

for fast fMRI.

Numerous physiological noise removal techniques, designed for conventional fMRI, are 

currently widely used. These techniques can be broadly grouped into reference-based 
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models and data-driven approaches (for a more complete list see (Kasper et al., 2017). 

Reference-based models make use of external reference signals such as electrocardiography 

(EKG), pulse oximetry, and respiratory belts to estimate and remove physiological noise. For 

instance, the widely used algorithm RETROICOR estimates the phases of cardiac and 

respiratory periods from external reference signals relative to fMRI acquisition and models 

physiological noise using a Fourier expansion of the phases (Glover et al., 2000; Harvey et 

al., 2008). The external physiological recordings can also be used to model the cardiac and 

respiratory response functions, which are lower frequency fluctuations (Birn et al., 2008b, 

2008a, 2006; Chang et al., 2009; Chang and Glover, 2009). These techniques often perform 

very well – however, they require the collection of external signals, which can be technically 

difficult, particularly in patient populations, and prone to noise in an MR environment. In 

addition, these methods do not explicitly account for time-varying amplitude changes 

present in physiological noise signals, or the altered autocorrelation structure of fast fMRI.

Due to the added complexity of acquiring external physiological signals, many studies now 

employ data-driven approaches which estimate physiological noise from the fMRI data 

directly, often using component analysis techniques (Behzadi et al., 2007; Beissner et al., 

2014; Churchill and Strother, 2013; Perlbarg et al., 2007; Thomas et al., 2002). For example, 

CompCor estimates physiological noise regressors by applying principal component analysis 

on voxels with the highest temporal standard deviation or from anatomical regions with no 

assumed neurally-relevant signal, such as the cerebrospinal fluid (CSF) or white matter 

(Behzadi et al., 2007). While these techniques have improved detection of neurally-driven 

responses, they also come with limitations that can prove problematic in fast fMRI studies. 

Unlike model-based approaches which isolate physiological noise in specific frequency 

bands, the estimated physiological noise components from data-driven approaches are 

broadband. Particularly with the enhanced frequency resolution of fast fMRI, subtracting 

these broadband components from voxels across the brain may in fact introduce artifactual 

noise into frequency bands >0.1 Hz (Chen et al., 2017; Chen and Glover, 2015). Similarly, 

data-driven approaches are unable to account for the temporal lag of physiological noise 

across the brain as effectively as model-based approaches, which can limit their 

performance.

We hypothesized that fast fMRI could enable an alternative approach to physiological noise 

removal. Specifically, if the TR is sufficiently low (~<0.5s) then the fundamental frequencies 

of cardiac and respiratory activity can be sampled directly, rather than aliasing into lower-

frequency bands (Aslan et al., 2019). Fast fMRI data therefore contain new information - 

high amplitude and non-aliased physiological noise signals - that can in turn inform the 

noise removal technique. This additional information present in fast fMRI data could 

potentially be used to more accurately detect and model physiological noise.

An ideal noise removal technique would selectively remove the narrowband physiological 

noise while preserving the full spectrum of the neurally-driven BOLD signal. Lowpass 

filtering therefore cannot sufficiently remove these artifacts, as it would remove the fast 

neural signals as well. In addition, as illustrated in (Chen et al., 2019), simply notch filtering 

this quasi-periodic physiological noise may fail to remove higher order harmonics and can 

also remove neurally-relevant signals. Moreover, the data also contain background 
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autoregressive noise that should be accounted for. We therefore investigated whether a 

model-based approach could be derived from the fast fMRI data directly, which would 

obviate the need for external reference signals, account for the underlying neural signal and 

autocorrelation, and prevent artificial introduction of broadband noise components into the 

fMRI signal.

We aimed to develop a physiological noise removal algorithm that leverages the new 

information in fast fMRI to overcome these challenges. Our approach is based on a model of 

Harmonic Regression with Autoregressive Noise (HRAN) and estimates physiological noise 

directly from the fast fMRI data. Our technique also uses a general linear model, and can 

therefore be easily integrated with commonly used analysis streams in the fMRI community. 

We first constructed a mathematical basis for fast fMRI data and defined the physiological 

and autoregressive noise parametrically. Next, we used efficient likelihood-based regression 

techniques to estimate the fundamental physiological frequencies from physiologically noisy 

regions of the brain. With these determined frequencies, our method estimates both the 

physiological and autocorrelated noise in addition to the neurally-relevant signal in each 

voxel or region of interest (ROI), and selectively removes the physiological noise. To assess 

our model performance, we constructed simulated datasets to show that our technique can 

accurately detect physiological noise in the presence of autoregressive noise, and can 

effectively remove it even when its phase and amplitude is time-varying. Finally, we applied 

our technique to fast fMRI data collected in a visual task, compared its performance to other 

gold standard physiological noise removal techniques, and found that our approach enables 

improved statistical inferences.

Methods

Model Motivation and Structure

In conventional fMRI, physiological noise resulting from cardiac and respiratory cycles is 

aliased into the same band as the neurally-relevant signals, due to the slow (< 0.5 Hz) 

sampling rate. In contrast, the temporal resolution of fast fMRI (> 2-3 Hz) allows direct 

observation of the fundamental respiratory frequency and its lower harmonics (e.g. ~0.25 

Hz, 0.5 Hz, 0.75 Hz) and the fundamental cardiac frequency (e.g. ~1 Hz), although its 

harmonics may alias (e.g. 2 Hz, 3 Hz). For example, the spectrogram of the 4th ventricle 

obtained during a resting-state scan of fast fMRI (Experiment A, TR = 0.367s) shows high-

power activity in typical respiratory and cardiac frequency bands (Fig 1A). The EKG and 

respiratory belt data show the high-power oscillations seen in the spectrogram have the same 

period as respiratory and cardiac cycles (Fig 1B). In data acquired from a separate subject at 

higher sampling rates (Experiment B, TR=0.227s), spectrograms of three different brain 

regions show that the physiological noise varies spatially (as observed from the differences 

in signal across the spectrograms) and temporally (as observed from the differences in signal 

within each spectrogram) (Fig 1C); however, the fundamental physiological frequencies and 

overall harmonic structure are preserved.

These observations suggest that physiological noise in fast fMRI may be modeled by an 

appropriately designed harmonic regression model. For a given time segment t1, t2, …, tT of 
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length T we model the physiological noise related to cardiac activity c = [ct1, ct2, …, ctT]′ 
and respiration r = [rt1, rt2, …, rtT]′ as:

cti
=

k 1

K
(Ack

cos(kωcti) Bck
sin(kωcti))

rti
=

l 1

L
(Arl

cos(lωrti) Brl
sin(lωrti))

Where cti and rti are the cardiac and respiratory noise at time ti respectively. In this model, 

ωc is the fundamental cardiac frequency, Ack and Bck define the amplitude and phase of the 

k’th harmonic of cardiac activity, and K specifies the number of cardiac harmonics. 

Similarly, ωr is the fundamental frequency of respiration, Arl and Brl define the amplitude 

and phase of the l’th harmonic of respiratory activity, and L specifies the number of 

respiratory harmonics.

In addition to the physiological noise, the fMRI data may consist of low frequency drift, 

neurally-relevant signals, and un-modeled activity, typically represented using an 

autoregressive (AR) process.

To model the drift d = [dt1, dt2, …, dtT]′ in the fMRI signal, we use a linear term:

dti
= μ0 + μ1ti

Where dti is the linear drift at time ti with coefficients μ0 and μ1.

To model the neurally-relevant signals n = [nt1, nt2, …, ntT]′, we use a standard fMRI 

approach and convolve the applied neural stimulus with a hemodynamic response function 

(HRF):

nti
= κ

k 1

T
s(ti tk)h(tk)

Where nti is the neurally-relevant signal at time ti, s is the applied neural stimulus, h is the 

chosen HRF, and κ is a weighting coefficient.

Finally, we use an AR process to capture the remaining elements of the fMRI signal that we 

have not explicitly modeled, which may include spontaneous, un-modeled neural activity 

(Bianciardi et al., 2009; Bollmann et al., 2018). An AR(1) process can sufficiently explain 

any un-modeled activity in conventional fMRI (Purdon and Weisskoff, 1998; Woolrich et al., 

2001; Worsley et al., 2002). However, in fast fMRI, even with physiological noise 

correction, a higher order AR process or more elaborate model is required to fully explain 
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the data (Bollmann et al., 2018; Corbin et al., 2018). We therefore model the remaining 

fMRI signal ε = [εt1, εt2, …, εtT]′ as:

εti
=

p 1

P
αpεti − p + ηti

ηti
𝒩(0, σ2)

Where εti depicts an autoregressive process of order P (which may be greater than one) at 

time ti, αp is the autoregressive coefficient at lag p, and ηti is Gaussian noise with a mean of 

zero and variance σ2. Alternatively stated, ε can be represented as a vector of Gaussian noise 

with a mean of zero and covariance Q(α, σ2), where Q(α, σ2) is the AR covariance matrix 

associated with parameters α = [α1, α2, …, αP] and σ2.

Gathering all of these components of our model together, we can represent the data segment 

y = [y1, y2, …, yT]′ (e.g. from a voxel or region of interest) as the sum of cardiac noise c, 

respiratory noise r, drift d, neurally-relevant signal n, and autoregressive noise ε.

y = c + r + d + n + ε

We can also rewrite this model compactly using matrix notation. We specify a matrix Z(ωr, 
ωc) and parameter vector β as:

Z(ωr, ωc) =

1 t1
1 t2
⋮ ⋮
1 tT

d
j 1
T

s(t1 t j)h(t j)

j 1
T

s(t2 t j)h(t j)

⋮

j 1
T

s(tT t j)h(t j)

n

cos(ωct1) … sin(Kωct1)

cos(ωct2) … sin(Kωct2)

⋮ ⋱ ⋮
cos(ωctT) … sin(KωctT)

c
cos(ωrt1) … sin(Lωrt1)

cos(ωrt2) … sin(Lωrt2)

⋮ ⋱ ⋮
cos(ωrtT) … sin(LωrtT)

r

β = μ0 μ1 κ Ack
…Bck

Arl
…Brl

′

such that our full model becomes:

y(ωr, ωc, β, α, σ2) = Z(ωr, ωc)β + ε

Our model specifies a parametrically defined basis for the physiological noise that is 

separable from the remaining components of the fMRI signal. Importantly, our model also 

allows for time and frequency overlap between physiological sources of noise (represented 
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by the harmonic regression) and any un-modeled, spontaneous neural activity (represented 

by the autoregressive noise), which prevents over-estimation of the physiological noise and 

preserves the underlying fMRI signal.

Estimating parameters with cyclic descent algorithm

In order to estimate and remove the physiological noise, we must estimate the parameters 

ωr, ωc, β, α, and σ2 defined in our model. Our model consists of harmonic regression with 

autoregressive noise, for which parameter estimation methods using maximum likelihood 

techniques have been developed and implemented in a wide variety of models, including 

ballistocardiogram artifacts (Krishnaswamy et al., 2016), two-photon calcium imaging data 

(Malik et al., 2011), and circadian rhythms (Brown et al., 2004; Brown and Schmid, 1994). 

In particular, (Krishnaswamy et al., 2016) employ an efficient cyclic descent algorithm that 

addresses the specific challenges of our parameter estimation. First, the cyclic descent 

algorithm handles the non-linearity resulting from the unknown physiological frequencies 

ωr and ωc through sequential minimizations (Krishnaswamy et al., 2016). Second, the 

algorithm uses a local likelihood framework to accommodate time-varying parameter 

estimates (e.g. variable amplitude or frequency of respiration over time) (Krishnaswamy et 

al., 2016).

Here, we adapt the approach taken by (Krishnaswamy et al., 2016) to 1) estimate the 

physiological frequencies from a manually defined brain region with high physiological 

noise and 2) use the estimated physiological frequencies to regress out physiological noise in 

each voxel. The implementation of our model and algorithm, which we refer to as Harmonic 

Regression with Autoregressive Noise (HRAN), is described below. Step 1 is performed 

once to estimate physiological frequencies, and Step 2 involves fitting the model across 

voxels and time windows.

Estimating physiological noise—First, we select an anatomically defined brain region 

known to manifest high levels of physiological noise (e.g. the ventricles, see “Physiological 

ROI selection”), from which we will estimate the physiological frequencies. We advance 

through the extracted data in moving time windows, to account for variable physiological 

frequencies over time. For a given time window (which in our experiments ranged from 24s 

– 45s, see “Time window selection”) we assume a constant cardiac and respiratory 

frequency. As in (van der Meer et al., 2016), we also apply a Hann window to each data 

window (see “Time window selection”).

To estimate the cardiac and respiratory frequencies in each windowed data segment y of 

length T, we generate matrices Z(ωr, ωc) by iterating through a range of physiologically 

plausible frequencies and generating regressors for each cardiac and respiratory frequency 

pair. For example, ωr may range from .15 Hz - .35 Hz (9-21 breaths per minute), and ωc 

may range from .8 - 1.6 Hz (48-96 beats per minute). For each Z(ωr, ωc), we then determine 

the negative log likelihood in a particular time window using a recursive fitting procedure.

Specifically, we apply the same Hann window we applied to the data segment to the design 

matrix Z(ωr, ωc), and compute the generalized least squares estimate as:
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β (ωr, ωc) = (Z(ωr, ωc)′Q(ωr, ωc)−1Z(ωr, ωc) + W (ωr, ωc)−1)−1
Z(ωr, ωc)′Q(ωr, ωc)−1y

where β(ωr, ωc) is the amplitude estimate, Q(ωr, ωc)−1 is the inverse AR covariance estimate 

initialized as the identity matrix ITxT, and W(ωr, ωc) is an estimate of the prior covariance 

computed using the multitaper power spectrum. W(ωr, ωc) is defined as a diagonal matrix 

with the difference in power at the given physiologic frequency and its harmonics in each 

column and a moving average of the multitaper power spectrum. Including an estimate of 

the prior covariance W(ωr, ωc) helps to guide the first few iterations of the cyclic descent as 

Q(ωr, ωc)−1 is estimated.

Next, we compute the residual of the generalized least squares estimation, which is our 

estimate of the autoregressive noise:

ε(ωr, ωc) = y − Z(ωr, ωc)β(ωr, ωc)

Using the Burg algorithm, a recursive set of operations that minimize the least squares 

forward-backward prediction error, we can estimate α(ωr, ωc) and α2(ωr, ωc) (Box et al., 

2008; Kay, 1988) from ε(ωr, ωc). Levinson-Durbin recursions can then be used to efficiently 

compute the inverse AR covariance matrix Q(ωr, ωc)−1, which can be made increasingly 

computationally efficient through block multiplication (Box et al., 2008; Kay, 1988; 

Krishnaswamy et al., 2016; Malik et al., 2011).

The generalized least squares estimate is then recomputed, informed with the inverse AR 

covariance matrix Q(ωr, ωc)−1, and the Burg algorithm and Levinson-Durbin recursions are 

once again used to estimate the autoregressive parameters from the residual. This process is 

cycled until subsequent σ2(ωr, ωc) converge to within .01%. At this point, the weighted mean 

square error ST(ωr, ωc) is computed as:

ST(ωr, ωc) = y − Z(ωr, ωc)β(ωr, ωc) ′Q(ωr, ωc)−1 y − Z(ωr, ωc)β(ωr, ωc)

and the negative log likelihood of the selected parameters (in particular, ωr and ωc) is 

computed as:

−log(L(ωr, ωc, β, α, σ2 | y))∝Tlog(σ2) − log( |Q−1| ) + ST /σ2

This negative log likelihood is computed for each pair of physiologically plausible ωr and 

ωc (i.e. for each of the Z(ωr, ωc) matrices we generated) for a given data window. Then, the 

negative log likelihood is minimized to determine the optimal ωr and ωc for the given data 

window. This cyclic descent algorithm is then repeated across the subsequent, overlapping 
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Hann time windows to determine the optimal physiological frequencies in each window 

across time.

Removing physiological noise—As noted earlier, the physiological frequencies are 

conserved throughout the brain (Fig 1). Therefore, the full cyclic descent algorithm only 

needs to be completed once to identify ωr and ωc. Once these quantities are known, the 

parameter estimation becomes linear and far more computationally efficient as a sequential 

optimization is no longer required (Malik et al., 2011). As a result, once the physiological 

frequencies are determined we can efficiently remove physiological noise from each voxel 

by performing the same moving-windowed, recursive fitting procedure in each voxel, 

thereby accounting for phase and amplitude variation across the brain. This fitting approach 

parallels how noise is removed in a GLM if an autoregressive model has also been included 

(for example, with RETROICOR, HRV, or RVT). However, a distinction is that we calculate 

these model fits in sliding windows to also allow for varying dynamics over time.

Specifically, for a given time window in a given voxel, we can determine the maximum 

likelihood estimate of beta β(ωr, ωc) using recursive fitting as described above. We can then 

remove the physiological noise (associated with specific columns in Z(ωr, ωc)) from that 

particular data segment as:

y − Zp(ωr, ωc)βp(ωr, ωc)

where ωr and ωc have been previously determined, Zp(ωr, ωc) contains the subset of 

columns in Z(ωr, ωc) associated with physiological noise, and βp(ωr, ωc) is the amplitude 

associated with each respective column Zp(ωr, ωc). This method can be efficiently applied 

on a voxel-to-voxel basis to account for spatial and temporal variations in amplitude and 

phase of physiological noise. Notably, we also obtain an estimate of the drift, neural signal, 

and autoregressive noise for each time window and each voxel. In this study, we choose to 

only remove the physiological noise and keep the estimated autoregressive noise and drift 

terms in the data. However, one could also choose to remove the estimated autoregressive 

noise and drift at this step, for instance, if they wished to obtain white residuals.

Simulated Data

In order to test the ability of HRAN to estimate and remove physiological noise, we created 

two simulated time series of 300s with TR=0.250s.

The first simulated data set, used to test whether HRAN can track physiological noise 

frequencies, depicts a region of interest with high physiological noise (e.g. the ventricles). It 

consists of (a) respiratory noise simulated as a sinusoid centered at 0.3 Hz and its first 

harmonic at 0.6 Hz with variable amplitude (ranging from 3 to 16 arbitrary units) and 

frequency (ranging from 0.27 to 0.33 Hz) over time, (b) cardiac noise simulated as a 

sinusoid centered at 1 Hz with variable amplitude (ranging from 2 to 8 arbitrary units) and 

frequency (ranging from 0.92 to 1.08 Hz) over time, and (c) AR(1) background noise (with 

alpha = 0.9, sigma squared = 5).
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The second simulated data set, used to test performance of HRAN in detecting neural 

signals, depicts a region of interest with neurally-relevant activity (e.g. visual cortex), 

represented by a 0.1 Hz sinusoid (with amplitude 25 arbitrary units) and the same AR(1) 

background noise as the first simulation. It also contains simulated physiological noise of the 

same amplitude and frequency as in the first simulation, but with the cardiac noise phase 

shifted by 90 degrees.

Data Acquisition

Study participants—We analyzed data collected from three separate experiments. The 

first two experiments were performed at Massachusetts General Hospital. All subjects 

provided informed written consent and all experimental procedures were approved by the 

Massachusetts General Hospital Institutional Review Board. We analyzed one subject 

collected as part of a previous study that acquired long-duration resting state data 

(Experiment A) and four subjects performing a visual task (Experiment B). Of these five 

subjects, three identified as female and two identified as male, with an age range of 22-27.

The third experiment (Experiment C) was performed at Boston University. All subjects 

provided informed written consent and all experimental procedures were approved by the 

Boston University Institutional Review Board. Four subjects were enrolled (one identified as 

female, three identified as male), with an age range of 25 – 32.

Data acquisition

Experiment A – resting-state data: In Experiment A, we analyzed a long duration resting-

state scan with external physiological recordings in one subject, which enabled us to assess 

how well HRAN was able to estimate the physiological frequencies over a large time range.

The subject was imaged in a 3T Prisma scanner with a 64-channel head coil, with the neck 

channels turned off (remaining=48 channels). An initial anatomical multi-echo MPRAGE 

scan was acquired (van der Kouwe et al., 2008) with 1 mm isotropic resolution. Functional 

imaging consisted of a single-shot gradient echo blipped-CAIPI SMS EPI (Setsompop et al., 

2012). The resting-state functional scan was acquired with a TR of 0.367s, 2.5mm isotropic 

resolution, TE=32 ms, multiband factor=8, FOV=230×230, shift factor=FOV/4, flip 

angle=35°, VERSE factor=1, no in-plane acceleration, number of slices=40, and number of 

repetitions = 8000. External physiological recordings included EKG and a respiratory belt, 

as well as electroencephalography recorded for a separate study. Physiological recordings 

were acquired at 1000 Hz, synchronized with the scanner, and downsampled to 200 Hz prior 

to analysis.

Experiment B – 7T visual task: In Experiment B, we analyzed data from four subjects who 

were presented with visual stimuli to determine whether HRAN was able to improve 

detection of visually-responsive voxels in 7T data acquired without physiological 

recordings. The visual stimuli consisted of flickering radial checkerboards with sinusoidally 

varying luminance contrast. The oscillation frequency was fixed within each run, and varied 

from 0.1 to 0.3 Hz across runs (as in (Lewis et al., 2018, 2016)). A red dot was also located 

at the center of the checkerboard and changed brightness according to a uniform distribution. 

Agrawal et al. Page 10

Neuroimage. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Subjects were instructed to press a button when they observed this brightness change to 

ensure they remained attentive.

Imaging was performed in a 7T Siemens scanner with a custom-built 32-channel head coil. 

An initial anatomical multi-echo MPRAGE scan was acquired (van der Kouwe et al., 2008) 

with 0.75 mm isotropic resolution. Each functional run lasted 254 s and used a TR of 0.227s, 

2 mm isotropic resolution, TE=24ms, multiband factor=3, FOV=240x240, shift 

factor=FOV/3, flip angle=30°, VERSE factor=1, R=2 acceleration, number of slices=15, and 

number of repetitions = 1119. Due to the limited field of view, the functional acquisition was 

positioned along the calcarine sulcus to target primary visual cortex, using the anatomical 

image for guidance. A whole brain reference scan with the same slice orientation as the 

functional runs was also performed to assist with registration of functional scans to 

anatomical scans. No external physiological data were acquired.

Experiment C – 3T visual task with isometric force hold: In Experiment C, we collected 

data from four subjects at 3T replicating the visual experimental paradigm of Experiment B, 

but with a) an additional task designed to alter physiology, b) external physiological 

recordings, and c) different TRs in order to compare HRAN with other physiological 

removal techniques. First, one localizer run was performed with the identical stimulus 

paradigm of Experiment B and used to identify visually-responsive voxels. For each 

subsequent run, subjects were also instructed to perform an isometric hand grip of a force 

gauge half-way through the run (signaled by the red dot at the center of the checkerboard 

turning blue).

Imaging was performed on a 3T Prisma scanner with a 64-channel head coil, with the neck 

channels turned off (remaining=48 channels). An initial anatomical multi-echo MPRAGE 

scan was acquired (van der Kouwe et al., 2008) with 1 mm isotropic resolution. The 

functional scans were acquired with TRs of 0.347s, 0.520s, and 0.720s for 254s, with 2.5mm 

isotropic resolution, TE=30ms, multiband factor=2, FOV=190x190, shift factor=FOV/3, 

VERSE factor=1, no in-plane acceleration, and number of slices=10. For each TR (.347s, .

520s, and .720s), the flip angles were 37°, 49°, and 56° respectively. As in Experiment B, a 

whole brain reference scan with the same slice orientation as the functional runs was also 

performed to assist with registration of functional scans to anatomical scans. External 

physiological recordings included pulse oximetry and a respiratory belt (BIOPAC) recorded 

at 2000 Hz. One subject had slightly longer runs (an additional 45, 20, and 10 volumes at 

each respective TR) and these additional images were excluded to maintain consistent 

analysis across subjects.

Data Analysis

fMRI preprocessing and statistical analysis—All fMRI data was first slice time 

corrected using FSL 5.0.11 (fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and motion corrected using AFNI 

(https://afni.numh.nih.gov/) (Cox J.S., 1996) using the middle frame in the time series as the 

reference. The data were then smoothed in FSL using a 5mm full-width-at-half-maximum 

Gaussian kernel. Functional runs were registered to the anatomical image using boundary-

based registration (Greve and Fischl, 2009). Anatomical segmentations were generated 
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automatically from the anatomical image using Freesurfer (Fischl, 2012). Anatomical 

regions of interest (e.g. primary visual cortex) for each run were then extracted from the 

automatic segmentation, and transformed to each individual subject’s native space. All 

subsequent analyses were performed within the individual subject space. Additional 

analyses (including implementation of HRAN) were performed in MATLAB 9.5 (2018b).

For analysis of Experiment B data, the initial thirty seconds (132 volumes) and final thirty 

seconds (132 volumes) of each run were excluded. The first thirty seconds were excluded as 

our analysis used oscillating stimuli to induce a neural signal with a known frequency, and 

we therefore restricted our analysis to the time expected to contain this induced oscillation 

(i.e. after the large onset transient subsided), as in (Lewis et al., 2016). The final thirty 

seconds were excluded as motion artefact was present in a handful of our subjects in a subset 

of runs towards the end of the run, likely related to fatigue from multiple runs of the visual 

stimulus, and we opted to slightly truncate the runs to consistently remove this issue. To 

examine visual-evoked activation of individual voxels, a general linear model (GLM) was 

implemented in FSL consisting of a sine function and cosine function at the stimulus 

frequency. The GLM was then solved in FSL using the default settings for pre-whitening, a 

high-pass filter of 100s, and a voxel-wise corrected significance threshold of .05. Each 

subject had one localizer run with a stimulus frequency of 0.1 Hz, which was used to create 

a region-of-interest (ROI) for comparison of activation across stimulus frequencies. The ROI 

was defined as voxels that were anatomically located in primary visual cortex, based on the 

Freesurfer segmentation, and exhibited a significant F-test of the neural regressors in the 

localizer run. To compare activation maps with and without physiological noise regression, 

the median z-score was computed across all voxels in this ROI for each run, and a Wilcoxon 

signed-rank test of the median z-scores was performed across runs. Three runs spanning a 

broad stimulus frequency range were analyzed for each subject leading to a total of 12 runs.

For analysis of Experiment C data, the initial thirty seconds of each run were excluded to 

examine the steady-state responses (86 volumes for TR=0.347s, 58 volumes for TR=0.520s, 

42 volumes for TR=0.720s). All other analysis steps were identical to the analysis of 

Experiment B, including an initial run with a stimulus frequency of 0.1 Hz for each subject 

to create an ROI of task-responsive voxels in visual cortex, and the comparison of median z-

scores for each of the physiological noise removal methods using the Wilcoxon signed-rank 

test across runs. With a TR of 0.347s, one run was collected for Subject 1, and six runs were 

collected for Subjects 2-4. The pulse oximeter fell off for the second subject during the first 

run, so no analysis of these physiological recordings were performed for this subject. With a 

TR of 0.520s, one run was collected for Subject 1 and two runs were collected for Subjects 2 

– 4. With a TR of 0.720s, one run was collected for each subject.

Physiological recordings analysis—To assess whether our model accurately estimates 

model parameters (in particular, heart rate and respiration rate), we collected simultaneous 

external physiological recordings in Experiment A and Experiment C. We computed heart 

rate using the algorithm presented in (Barbieri et al., 2004), which treats heart beats as a 

point process and therefore overcomes challenges of using moving window or instantaneous 

estimate approaches. As a similar technique does not exist for respiration, we computed 

respiration rate as the reciprocal of the time interval between subsequent breaths.
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To obtain RETROICOR regressors in Experiment C, we processed our external 

physiological recordings using the PhysIO Toolbox (Kasper et al., 2017).

Model order selection—Our model requires specification of the following three 

parameters: the number of cardiac harmonics K, the number of respiratory harmonics L, and 

the AR order P. These parameters can be defined separately for estimating the physiological 

frequencies from a region of interest with high physiological noise (Kfreq, Lfreq, Pfreq), and 

for physiological noise regression throughout the brain (KZ, LZ, PZ).

In the majority of fast fMRI scans, only the fundamental cardiac frequency and the 

fundamental respiratory frequency along with its lower harmonics can be observed directly 

(Fig 1A). With this in mind, we specify Kfreq = 1 and Lfreq = 1 in Experiment A and 

Experiment C, which are appropriate model orders in general. However, we note that with at 

least one subject in Experiment B (7T, TR=0.227s) both a second cardiac harmonic and 

interaction effect between cardiac and respiratory activity are discernible (Fig 1C). While we 

could similarly set Kfreq = 1 and Lfreq = 1, the enhanced physiological noise provides 

additional information to improve parameter estimates. Therefore, we specify Kfreq = 2 and 

Lfreq = 1 for Experiment B, and include interaction terms as described in (Harvey et al., 

2008):

x =
m 1

M
(Dmsin(Axm

ωct Bxm
ωrt) Emcos(Axm

ωct Bxm
ωrt) Fmsin(Axm

ωct Bxm
ωrt) Gmcos

(Axm
ωct Bxm

ωrt))

where x = [x1, … xT] is the sum of the interaction effects, Axm and Bxm are integers less 

than or equal to the number of cardiac harmonics (K) and the number of respiratory 

harmonics (L), Dm, Em, Fm, and Gm define the amplitude and phase of the interaction 

effects, and M is the order of the interaction terms. For all experiments, we specified Pfreq = 

1 as we found changing Pfreq did not greatly affect physiological frequency estimates (Fig 

S3 A–B).

Given prior literature (Bollmann et al., 2018; Chen et al., 2019; Harvey et al., 2008) and 

using the Bayesian Information Criterion (BIC) as a guide (see Supplemental Information), 

we specified Kz = 3, Lz = 2, and included no interaction terms for all experiments to capture 

higher order harmonics of the cardiac and respiratory noise without overfitting our signal. 

As suggested by the BIC, we specified Pz = 2 for all experiments.

Physiological ROI selection—Many anatomically defined brain areas are known to 

manifest high levels of physiological noise, including the ventricles, white matter, and 

brainstem, and individuals may manifest varied levels of physiological noise in each region. 

We used Freesurfer (Fischl, 2012) to generate anatomical segmentations, and for all subjects 

estimated physiological noise from either the ventricles (left lateral ventricle, right lateral 

ventricle, 3rd ventricle, or 4th ventricle) or white matter ROIs, depending on which regions 

were included in our acquisition window (which had a limited field of view). We chose the 

Agrawal et al. Page 13

Neuroimage. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ventricles and white matter, and not the brainstem, because they are less likely to contain 

neurally-relevant signals, which may impact our estimates of the physiological noise. In 

these analyses, the size of these ROIs ranged from a couple dozen voxels (e.g. using the 4th 

ventricle) to a few thousand voxels (e.g. using white matter). In general, estimating 

physiological noise from ROIs as compared with single voxels is beneficial as averaging 

across voxels enhances the relative proportion of physiological to thermal noise 

(Triantafyllou et al., 2005); however, one could estimate physiological noise from any single 

voxel (including voxels with neural activity if this is appropriately modelled), as long as 

inspection verified that the voxel contained large-amplitude physiological noise.

Time window selection—HRAN requires specification of a moving time window. In 

general, we found that with shorter TRs we are able to use smaller time windows (e.g. closer 

to 24s) without a reduction in accuracy, and with longer TRs larger time windows (e.g. 

closer to 45s) may lead to slightly improved performance. However, these parameters are 

subject to not only TR, but also individual physiology and experimental condition. For 

example, if a subject is performing a task with behavioral state changes, like sleep, a shorter 

time window may be important to capture transient physiological dynamics. While the 

length of these time windows may be optimized for a particular experiment, we found that 

parameter estimates were fairly consistent across window lengths (Fig S3 C–F). We selected 

a 30 s window for Experiment A (TR=0.367s), a 24s moving time window for Experiment 

B, (TR=0.227s) and windows of lengths 30s, 36s, and 45s for each of the respective TR’s in 

Experiment C (TR=0.347s, TR=0.520s, TR=0.720s). For all experiments, we specified a 

75% overlap of Hann windows. The windows are overlapping and tapered to prevent 

artificial “jumps” that may occur in non-tapered, sequential windows (Figure S4).

Physiological frequency range—HRAN requires specification of the expected cardiac 

and respiratory frequency ranges. These values may be set broadly as ranging from cardiac 

frequencies = [40…120] bpm and respiratory frequencies = [8…24] bpm to capture large 

variations in physiology across the population, or could be set based on the individual 

subject’s estimated heart rate and respiration rate. We visually inspected spectrograms of the 

ventricles and estimated the mean heart rate and respiration rate from these spectrograms, if 

they could be sampled directly. We then initialized the physiological frequency ranges as the 

mean heart rate +/− 12 and the mean respiration rate +/− 6, which allowed for more 

computationally efficient frequency estimation. For higher TRs (0.520s, 0.720s), a broader 

range of 40 – 120 bpm and 8 – 24 bpm were used for cardiac and respiratory frequencies 

respectively.

Spectral Analysis—All power spectra and spectrograms were computed using the 

Chronux toolbox (chronux.org) (Bokil et al., 2010) using five tapers and three tapers 

respectively. A moving window of 60s was used for Experiment A, and 30s moving 

windows were used for both Experiment B and C.

Comparison to other physiological noise methods—In simulated data, we 

compared HRAN performance with a simulated reference-based model approach (which we 

term simRETROICOR) and a simulated data-driven approach (which we term simPCA). For 
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simRETROICOR, we modeled the physiological noise as a Fourier expansion of the 

simulated cardiac and respiratory frequencies (with 1 cardiac term and 2 respiratory terms as 

in the simulation) and used a GLM to remove the estimated physiological noise. This 

approach is similar to that of RETROICOR, and models a best-case scenario with perfect 

estimation of the cardiac and respiratory signals from the external recordings. For simPCA, 

we first replicated the simulated physiological noise region ten times with added white noise 

(to reflect, for example, individual voxels of the ventricles). We next performed principal 

component analysis (PCA) on these ten simulated physiological noise voxels, incorporated 

the first three principal components into a design matrix, and used GLM to remove them 

from our simulated data. This approach is similar to many data-driven approaches, which 

use component analysis on physiologically noisy voxels to estimate individual physiological 

noise components.

In Experiment C, we compared HRAN to widely used physiological noise regression 

techniques in fast fMRI data. We implemented RETROICOR with our acquired external 

physiological reference signals and the PhysIO toolbox (Kasper et al., 2017). In both HRAN 

and RETROICOR, we used 3 cardiac terms, 2 respiratory terms, and no interaction terms. 

We also implemented a data driven approach modeled after aCompCor (Behzadi et al., 

2007), which we simply term anatomical PCA (aPCA). First, we extracted masks of white 

matter and cerebrospinal fluid (including the ventricles), eroding by one voxel. For each 

voxel in this mask, we detrended the functional time series by removing the mean and linear 

drift and normalized the variance by dividing the time series by the temporal standard 

deviation. We then examined the correlation between the voxel time series and our neural 

regressors (consisting of a sine and cosine at the stimulus frequency). If either correlation 

had a p-value less than 0.2, we excluded the voxel. We conducted PCA using singular value 

decomposition on all voxels that satisfied the above criteria and selected the first five 

principal components from white matter and the first five principal components from CSF as 

physiological regressors. For HRAN, RETROICOR, and aPCA, we removed the estimated 

physiological noise from each voxel before performing statistical analysis in FSL.

Results

HRAN accurately estimates cardiac and respiratory dynamics and explains fast fMRI data

We first validated that our model is able to provide faithful estimates of the fundamental 

cardiac and respiratory frequencies directly from the fast fMRI signals, without requiring 

external physiological recordings. In resting-state data in which heart rate and respiratory 

rate varied over time, we used HRAN to estimate the physiological frequencies from the 4th 

ventricle (Fig 3A). We found that these estimated physiological frequencies accurately 

tracked the heart rate and respiration rate computed from simultaneously collected EKG and 

respiratory belt data (Fig 3B). In particular, our model estimates of heart rate and respiration 

were each within the range of the heart rate and respiration rate obtained from external 

recordings in 96% of analyzed time windows (n = 100 thirty-second windows). Furthermore, 

the median root-mean-squared-error (RMSE) of our model estimates and the heart rate and 

respiration rate obtained from physiological recordings were 2.8 bpm (+/− standard error of 

0.27) and 2.0 bpm (+/− standard error of 0.14) respectively. These errors in our model 
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estimates are similar to the median RMSE of the heart rate and respiration rate obtained 

from physiological recordings with their averages in a given time window, which were 2.7 

(+/− standard error of 0.10) and 1.7 (+/− standard error of 0.09) respectively, suggesting that 

the errors reflect the variability of cardiac and respiratory activity within the time window. 

These results demonstrate that HRAN can be used to determine cardiac and respiratory 

frequencies directly from fast fMRI data, without requiring external reference signals.

Given this accurate estimation of physiological frequencies, we next examined how well our 

full model (including physiological noise, drift, autoregressive components, and neural 

signal) fits fast fMRI data. Assessing the goodness-of-fit of our model is critical to ensure 

that we do not underestimate or overestimate the physiological noise, along with the 

autoregressive components, thereby leaving correlated noise in the residuals and skewing 

statistical inferences. This step is especially important for fast fMRI data, where both the 

autocorrelation structure and magnitude of physiological noise vary substantially across 

voxels. For example, the power spectra of a white matter voxel, a grey matter neocortical 

voxel, and a brain stem voxel (Fig 4A) in a run from Experiment B manifested a variable 

number of physiological harmonics of differing amplitude and low-frequency correlated 

noise, and our model must be able to accommodate these differences.

To confirm that HRAN explains data across voxels, we performed HRAN and checked 

standard goodness-of-fit criteria in one run acquired with our shortest TR (Experiment B). 

We first calculated the normalized cumulative periodogram (NCP) of the estimated HRAN 

components in each voxel. The NCP depicts the cumulative power at each frequency – for 

example, ideal white noise contains equal power at each frequency and would therefore 

increase linearly across all sampled frequencies (Fig 4B). NCP demonstrated that the white 

matter voxel was relatively similar to white noise, the grey matter voxel contained a 

combination of both low frequency and physiological noise, and the brainstem voxel was 

dominated by physiological noise (Fig 4B). Notably, the residuals of HRAN in each of these 

voxels lay within a 95% confidence interval of ideal white noise, indicating that the residuals 

of our model do not significantly differ from white noise. Furthermore, we created a 

quantile-quantile plot of each of the residuals which demonstrate that they are approximately 

normally distributed (Fig 4C). These two findings suggest that HRAN is able to 

appropriately model the data in each voxel, despite their differing ratios of physiological and 

correlated noise.

We computed the NCP across all brain voxels and found that the residuals lie within the 

95% confidence interval of pure white noise in 84% of all voxels (N = 72,358), 92% of 

neocortical white matter voxels (N = 17,013, Fig 4L), and 78% of neocortical grey matter 

voxels (N= 18,066) using an AR(2) model as indicated by the BIC (Fig 4D) (see Model 

Order Selection). We also increased the AR order until the residuals remained within the 

95% confidence interval of ideal white noise and found that with an AR(3) model, HRAN 

residuals remained within the 95% confidence of ideal white noise in 97% of all voxels, 

98% of neocortical white matter voxels, and 97% of neocortical grey matter voxels.
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Taken together, these results suggest that HRAN is able to 1) accurately estimate the cardiac 

and respiratory frequencies from fast fMRI data directly and 2) satisfy goodness-of-fit 

criteria in voxels with varied physiological noise and autocorrelation structure.

HRAN accurately removes time-varying physiological noise in simulated data

We next examined whether HRAN could accurately remove physiological noise while 

preserving neural signal in a simulated dataset. A challenge for many physiological noise 

removal methods is that the amplitude and frequency of respiratory and cardiac signals are 

often not stable throughout a run, but rather vary dynamically over time. We therefore 

included variable amplitude and frequency noise in this simulation, to create a difficult test 

case for each method.

First, we generated simulated fast fMRI data with cardiac and respiratory noise of variable 

amplitude and frequency, representing the ventricles. We then simulated cortical fMRI data 

as a neurally-driven oscillation at 0.1 Hz contaminated with physiological noise. Notably, 

the physiological noise in the simulated cortex has the same amplitude and frequency as in 

the simulated ventricles; however, the phase of the cardiac noise is shifted, representing 

temporal delays of physiological noise across the brain which are often present in real data.

To test the performance of our method, we used HRAN to estimate the physiological 

frequencies from the simulated ventricle data, and then regress out the physiological noise 

from the simulated cortex data. We also compared HRAN to (a) a simulated reference-based 

modeling approach, in which the frequencies are known (due to external reference signals) 

but the amplitude remains constant (simRETROICOR), and (b) a simulated data-driven 

approach, in which principal component analysis is used to estimate and remove the 

physiological noise from the data directly (simPCA).

Visual examination of the cleaned simulated spectrograms demonstrated that HRAN was the 

most effective in removing the simulated physiological noise (Fig 5A). The de-noised 

simRETROICOR spectrogram contained high amplitude physiological noise not only when 

the original signal had relatively high amplitude physiological noise, but also when the 

original signal had relatively low amplitude physiological noise. A time-series plot of 

simulated physiological noise with the estimated physiological noise from simRETROICOR 

overlaid shows that the method overestimated the physiological noise in the original signal 

when it had low amplitude (Fig 5B). This resulted in the artificial introduction of noise into 

these segments (Fig 5A,C). In fact, by examining only the de-noised data one is unable to 

discern whether the residual physiological noise results from failure to remove high 

amplitude physiological noise present in the original data or its artificial introduction. These 

challenges arise because simRETROICOR assumes a fixed amplitude of cardiac and 

respiratory noise across time, which, especially in longer duration scans, may not hold true.

While the simPCA approach successfully removed the simulated respiratory noise, the 

cardiac noise, which was phase-shifted relative to the simulated ventricle data, was still 

present (Fig 5A,C). This PCA-based approach is unable to account for the phase difference 

between the cardiac noise in the two simulated data sets, and is therefore unable to 

successfully remove the physiological noise. Furthermore, because the estimated 
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components are broadband, the structure of the background AR noise was also affected. 

Unlike model-based methods, estimated regressors derived from component analysis based 

approaches depend on the timeseries from which they are extracted, and therefore do not 

necessarily generalize across the brain.

Conversely, HRAN was able to accurately estimate the amplitude and frequency changes of 

the physiological noise (Fig 5A–C). As a result, HRAN was most effective in removing the 

physiological noise from the simulated neurally-relevant activity, reducing the root mean 

squared error of the original data by 86% (9.42 to 1.34), a 64% improvement compared to 

simRETROICOR (1.34 vs 3.70), and an 80% improvement compared to simPCA (1.35 vs 

6.74). These simulations therefore demonstrate that HRAN can accurately model and 

remove physiological noise in multiple challenging settings: when the amplitude and 

frequency of the noise vary over time, and when the phase of the noise varies over space.

HRAN improves detection of stimulus-driven neural activity

After confirming that HRAN can accurately detect and remove physiological noise in 

simulated data, we examined whether it was able to improve statistical detection of task-

related activity in a fast fMRI experiment. In Experiment B, we presented subjects with 

visual stimuli oscillating at specific frequencies (ranging from 0.1 to 0.3 Hz). We selected an 

ROI that was within primary visual cortex and driven by the lowest frequency stimulus (0.1 

Hz), which elicited the largest amplitude fMRI response, in order to identify a region that is 

expected to exhibit task-driven signals. In this ROI, we compared the median change in z-

scores with and without physiological noise removal using HRAN. By selecting our ROI in 

a run with a higher signal-to-noise ratio without any noise removal, we prevented bias in the 

ROI selection due to the performance of any particular cleaning method.

We found that even in this visual task known to evoke a strong response, HRAN increased 

the median z-scores in the ROIs as compared with no physiological noise removal (Fig 6A, 

median change of 0.10, Wilcoxon signed rank, p < 0.002). Notably, a median-increase in z-

scores of these task relevant voxels does not necessarily imply appropriate physiological 

noise removal. In fact, if one were to simply bandpass filter the data around the frequency of 

interest, this would also result in an overall increase in z-scores, but would remove much 

more of the signal than just the physiological noise. We therefore also examined spectral 

content of the fMRI signals. Spectrograms (Fig 6B,C) and power spectra (Fig 6 D,F) of two 

example runs suggested that HRAN was able to selectively remove the respiratory and 

cardiac noise from the signal, including their harmonics, despite the variations in amplitude 

and frequency across time (particularly the respiration). Importantly, in both runs the 

background power spectra were kept intact, suggesting that HRAN also preserved the 

neurally-relevant signal as well as the autoregressive noise, and did not introduce additional 

noise into the original data.

These results suggested that HRAN was able to successfully estimate and remove 

physiological noise in fast fMRI data, thereby improving detection of task-driven voxels. 

Furthermore, HRAN was particularly effective in improving the z-scores at faster stimulus 

frequencies, which have lower amplitude neural signals and in turn lower overall z-scores, 
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indicating that HRAN would be beneficial for single-subject imaging of fast BOLD 

dynamics or more complex cognitive studies seeking to characterize relatively small effects.

HRAN performs as well as gold-standard physiological noise removal methods without 
requiring external physiological recordings

We next designed an experiment (Experiment C) to compare HRAN with other widely used 

physiological noise removal approaches: RETROICOR (which we take as gold standard due 

to its accurate noise estimation from external physiological recordings) and an anatomical 

PCA based approach (aPCA), where physiological noise components were estimated using 

principal component analysis on the CSF and white matter. In the experiment, subjects 

viewed an oscillating visual stimulus (as in Experiment B). Halfway through each run, 

subjects performed an isometric hand grip, maintaining force for the second half of each run. 

An isometric hand grip is known to induce a greater afterload on the heart, or increase 

systemic vascular resistance, which may impact heart rate and cerebral blood flow (Lilly, 

2011). Therefore, this experiment contains a task-driven response (induced by the visual 

stimulus) with time-varying physiological noise (induced by the hand grip).

The task elicited both the expected stimulus-driven response and dynamic physiological 

noise over time (Fig 7A). The spectrograms and power spectra suggested that both HRAN 

and RETROICOR effectively accounted for the physiological noise (Fig 7A,B), whereas 

aPCA had mixed results. Specifically, aPCA removed a substantial amount of the low-

frequency components present in the signal, but also introduced high-frequency noise which 

obscured the cardiac and respiratory peaks (Fig 7A,B). Inspecting the time series further 

demonstrated this high-pass filtering and introduction of high-frequency noise in aPCA, 

while both HRAN and RETROICOR tracked the original signal well (Fig 7C).

We found that all physiological noise removal methods increased the median z-scores in the 

majority of runs. In particular, HRAN increased the median z-score in 12/13 runs (median 

change of 0.216, Wilcoxon signed rank, p = .001), RETROICOR increased the median z-

score in 11/13 runs (median change of 0.023, Wilcoxon signed rank, p = 0.049), and aPCA 

increased the median z-score in 10/13 runs (median change of 0.278, Wilcoxon signed rank, 

p = 0.048). However, this performance of aPCA was not consistent across stimulus types. 

Notably, aPCA manifested the greatest increase in z-scores only in the lower stimulus 

frequencies, and actually decreased the z-score when higher stimulus frequencies were 

presented, whereas HRAN and RETROICOR increased the z-scores for both low and high 

stimulus frequencies (Fig 8B).

Notably, it is possible that these observed increases in z-scores may have resulted from the 

removal of variance in the fMRI signal that is not directly related to physiological noise. To 

characterize how well each method selectively removed physiological noise, we examined 

the average difference in power spectra before and after physiological noise removal across 

runs for each subject (Fig 8C–F). We expected that successful physiological noise removal 

techniques would manifest a power difference only in physiological frequency bands, 

leaving the rest of the signal intact.
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We found that both HRAN and RETROICOR effectively removed physiological noise in 

distinct frequency bands associated with cardiac and respiratory activity (as indicated by the 

negative differences in power), while preserving neural signal. A notable exception was 

present in one subject (Fig 8E), where increased noise was present in the first harmonic of 

respiration. We found that this increased noise was related to a low frequency component 

present in only one of the RETROICOR regressors, which may have resulted from irregular 

breathing patterns that can lead to sub-optimal fitting. On the other hand, aPCA primarily 

removed low frequency noise, and though it also demonstrated relative reductions of noise in 

the cardiac and respiratory frequency bands, it was with a background of overall increased 

high-frequency noise. This high-pass filtering effect likely contributed to the observed 

increase in z-scores at lower stimulus frequencies, while the broadband noise may have 

impeded detection of more rapid neurally-driven responses (Fig 8B). In other words, 

although aPCA increased the z-scores in a majority of runs, this result may have been driven 

by the reduction of variance at lower frequencies (<0.1 Hz) rather than removal of noise in 

respiratory and cardiac frequency bands.

These results demonstrated that HRAN can selectively remove physiological noise as 

effectively as the gold standard technique, RETROICOR, but without requiring external 

reference signals.

HRAN performance at lower sampling rates

While we have shown that HRAN performs well at TRs where respiratory and cardiac 

frequencies can be unambiguously identified, we next aimed to determine how HRAN 

performs when these physiological signals are aliased. For example, a TR of 0.500s is 

required to track a typical heart rate of 60bpm (or 1 Hz), but it is not clear how HRAN 

estimates would vary if the subject’s heart rate increased slightly above the Nyquist limit. In 

Experiment C, we also collected runs with TRs of 0.520s and 0.720s with external 

physiological recordings to investigate whether HRAN could correctly identify the 

fundamental physiological frequencies at lower sampling rates.

In one run, we observed that the heart rate varied from slightly below highest observable 

frequency (58 bpm with a TR of .520s) at 53 bpm to well above it at 71 bpm (Fig 9A). We 

found that while HRAN could not track these heart rate dynamics directly, the aliased 

cardiac estimates from HRAN accurately tracked the aliased heart rate. As expected, HRAN 

was not able to distinguish between the true heart rate and aliased heart rate as the fast fMRI 

data lack sufficient information; however, HRAN was able to successfully account for and 

remove the aliased cardiac noise in the fast fMRI data (Fig 9B). In other words, because the 

cardiac noise aliased into a distinct frequency band, HRAN was able to appropriately 

estimate and remove the noise despite not sampling it directly. We compared HRAN (using 

only 1 cardiac term and 1 respiratory term as higher harmonics may not be correctly 

determined) with RETROICOR (using 3 cardiac terms and 2 respiratory terms), and found 

that both HRAN and RETROICOR removed physiological noise from the ROI in visual 

cortex (Fig 9B,C) and improved the median z-score in this ROI as compared with no 

physiological regression (no physiological regression: 6.36, HRAN: 6.53, RETROICOR: 

6.47). In the five runs we collected with TR = 0.520s, HRAN improved the z-score in 5/5 

Agrawal et al. Page 20

Neuroimage. Author manuscript; available in PMC 2021 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cases with a median increase of 0.16 and RETROICOR improved the z-score in 4/5 cases 

with a median increase of 0.02.

With a TR of 0.720s the highest observable frequency is much lower (42 bpm), and the 

cardiac noise may alias more broadly across sampled frequencies. For example, in one run 

the heart rate varied from 52 bpm to 78 bpm, and aliased into the respiratory frequency 

range (Fig 9D). HRAN was therefore unable to distinguish between cardiac and respiratory 

frequencies (as seen by the HRAN respiratory estimates tracking the heart rate, and HRAN 

cardiac estimates tracking the respiration). As a result of the aliasing, HRAN lacked a 

defined cardiac frequency range and essentially treated any oscillatory signal in the 

ventricles as physiological noise. In a separate run, the cardiac noise aliased into a distinct 

frequency band, and therefore HRAN was able to accurately estimate the cardiac and 

respiratory frequencies from the aliased signal (Fig 9F).

In the three runs we collected with a TR of 0.720s, we found that HRAN was able to remove 

noise in similar frequency bands as RETROICOR (Fig 9E,G), and both HRAN and 

RETROICOR improved the z-scores in all three cases with a median increase of 0.62 and 

0.57 respectively. However, these results must be interpreted with caution as it is possible 

that HRAN (like conventional data-driven methods) may have also removed noise not 

directly associated with cardiac and respiratory activity. Together, these results suggest that 

HRAN may be useful even at slightly higher TRs which cannot directly resolve 

physiological frequencies, but must be applied more carefully.

Discussion

We created a model of harmonic regression with autoregressive noise to estimate and 

remove physiological noise in fast fMRI. Our model determines the fundamental cardiac and 

respiratory frequencies from the fMRI data directly, and removes the physiological noise 

from neurally-relevant signals and autocorrelated noise without requiring external 

physiological recordings.

Before performing any inference with our model, we first confirmed that our model 

sufficiently explains fast fMRI data. Importantly, we achieved a balance between model 

complexity and goodness-of-fit using standard model comparison criteria as a guide and 

validating that the residuals were not biased to any particular frequency (Fig 3,4,S1). While 

we found the specified model orders (i.e. the number of cardiac terms, the number of 

respiratory terms, and autoregressive order) were sufficient to explain fast fMRI data across 

a wide range of acquisition parameters (e.g. field strengths of 3T and 7T, TRs of 0.227s to 

0.720s), they can also be adapted depending on experimental paradigm, preprocessing, and 

acquisition. For example, we focused on visual cortex, but studies investigating regions 

known to manifest higher levels of physiological noise, such as the brainstem, may choose 

to include higher physiological harmonics or interaction terms (Harvey et al., 2008). 

Similarly, we did not incorporate realignment regressors into our estimates of physiological 

noise, which may help to account for respiratory artifacts related to motion (Bollmann et al., 

2018; Fair et al., 2018). Our data were also smoothed, which amplified the magnitude of the 

signal and physiological noise, relative to thermal noise. Unsmoothed data may create a 
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more distinct separation of optimal AR orders between tissue type (Bollmann et al., 2018), 

and reduce the detection of the higher physiological harmonics. Our model is therefore able 

to perform well across a wide range of conditions, and can adapt as investigators continue to 

expand the capabilities of fast fMRI.

Another important aspect of HRAN is that although it estimates physiological noise from the 

data, it is a model-based approach designed specifically for fast fMRI. In particular, it avoids 

removing neural signals at high (>0.15 Hz) frequencies, preserving information that may be 

of interest in fast fMRI studies (Fig 6–8). Recent studies have discovered neurally-driven 

signals an order of magnitude larger than predicted by the canonical hemodynamic response 

function up to 0.75 Hz (Lewis et al., 2016) and high-frequency fMRI signals have also been 

reported in the resting state (Lee et al., 2013); therefore, approaches to remove physiological 

noise that also remove signal or enhance noise in these higher frequency bands may not be 

appropriate for fast fMRI. For example, while temporal low-pass filtering removes non-

aliased physiological noise, it also removes all fast neurally-driven signals. In addition, as 

suggested by previous work (Chen et al., 2017), we found that data-driven methods in fast 

fMRI often estimate broadband physiological noise regressors which are driven by low-

frequency components. Regressing these components across the brain introduced high 

frequency noise into the data and obscured detection of the faster neural signals. Notably, 

our tested data-driven method, aPCA, does lead to an improvement in z-scores at lower 

stimulus frequencies. However, as evident from the difference in power spectra in Fig 8, the 

improvement in z-scores is not related to physiological noise removal, but rather is related to 

removal of variance in the signal not associated with physiological noise (in this particular 

case, high-pass filtering). Given that z-scores improve with removal of any non-task-related 

variance, we recommend examining the power spectra before and after physiological noise 

removal as an effective quality control measure to ensure proper physiological noise 

removal. Certain pre-processing steps including pre-whitening, filtering, manual 

classification, or even performing HRAN on the estimated physiological regressors could 

help to prevent this introduction of noise, but come with their own challenges (Bright et al., 

2017; Carp, 2013; Chen et al., 2017; Hallquist et al., 2013). Unlike data-driven methods, 

model-based approaches are informed with biological intuition about the properties of the 

noise. Therefore, they selectively remove physiological noise in distinct frequency bands and 

preserve the higher-frequency signals, which is important as these low-amplitude, high-

frequency signals can overlap with the physiological frequency range.

While HRAN was most effective at TRs where physiological noise is sampled directly, we 

found that it also was able to remove physiological noise in longer TR scans in which the 

cardiac rhythm was aliased (Fig 9). In fact, in this undersampled case HRAN is similar to 

many data-driven approaches which estimate physiological noise from anatomically defined 

regions, except with the additional constraint that the noise must be periodic. As a result, at 

longer TRs HRAN has the potential to introduce noise into the data, for example, if the 

physiological frequencies are estimated inaccurately. This limitation could be overcome if 

external physiological recordings are collected by combining RETROICOR with HRAN. 

Specifically, the estimated physiological regressors in RETROICOR could be incorporated 

into the cyclic descent algorithm to ensure that physiological frequencies were accurately 

tracked (even if undersampled in the fMRI), the amplitude was allowed to vary, and the 
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autocorrelated noise was appropriately accounted for. Alternatively, a slice-based approach 

as in (Aslan et al., 2019) could potentially be used to sample the physiological noise. A 

second limitation is that HRAN does not currently model low-frequency changes in 

respiratory volume or heart rate variability (Birn et al., 2008b, 2008a, 2006; Chang et al., 

2009; Chang and Glover, 2009). Future work could examine how to incorporate these 

variables into HRAN, either through direct measurements, or through exploring whether 

these low-frequency fluctuations may in fact be captured by the dynamic amplitude 

measures fit with HRAN in each time window. A related limitation of HRAN is that it 

assumes fixed parameters for a given time window, but physiological frequencies and 

amplitude can vary even within a time window. In addition, HRAN assumes a periodic 

structure to the physiological noise. While this prevents the artificial introduction of noise 

potentially seen in data-driven approaches, it also limits the potential ability of HRAN to 

remove physiological noise that deviates from the model. State-space approaches, such as 

DRIFTER (Särkkä et al., 2012), are better able to accommodate these dynamic changes, and 

could perhaps be integrated with HRAN to optimally account for temporally and spatially 

varying physiological and autocorrelated noise in fast fMRI. Finally, HRAN currently 

estimates noise parameters from each voxel independently, though a regularization 

procedure as in (Purdon et al., 2001) could be implemented to produce smoother noise 

estimates.

In conclusion, we harnessed the enhanced information in fast fMRI to estimate and remove 

physiological noise directly from the data, while preserving the underlying signal. Notably, 

the faster signals detectable in fast fMRI overlap with physiological noise, and the statistical 

structure of the noise is altered, making accurate noise removal particularly important -- 

especially in patient populations or long duration scans where physiological noise may be 

variable, and external physiological recordings are difficult to collect. We demonstrate that 

while analysis of fast fMRI data poses novel challenges, it also contains unique and 

meaningful information, and our technique could be broadly useful for future studies that 

aim to examine and exploit this abundance of new information in fast fMRI signals. The full 

software is available at https://github.com/LewisNeuro/HRAN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Physiological noise sampled directly in fast fMRI.
Unlike conventional fMRI, physiological noise can be resolved without aliasing in fast 

fMRI. (A) A spectrogram of the 4th ventricle from a subject in Experiment A shows high 

power oscillations in the cardiac (red arrow) and respiratory (blue arrow) frequency range. 

(B) A zoomed-in time series from (A) (black rectangle) shows that the high-power 

oscillations correspond to cardiac (red) and respiratory (blue) cycles obtained from external 

physiological recordings. (C) Spectrograms from ROIs in Experiment B manifest the 

harmonic structure of the physiological noise. In the right lateral ventricle (left) one 

respiration term (blue arrow), two cardiac terms (red arrow), and one interaction term 

(purple arrow) are observed. These components are also present to varying degrees in 

pericalcarine cortex (middle) and the thalamus (right).
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Figure 2: Cyclic Descent Algorithm.
HRAN uses an efficient cyclic descent algorithm to estimate model parameters. First, a 

windowed data segment y is selected from a physiological noise ROI (e.g. the ventricles). 

Second, windowed design matrices Z are generated by iterating through physiologically 

plausible cardiac and respiratory frequencies. Third, β^ for a given data segment y and 

design matrix Z is computed using Generalized Least Squares. Fourth, α^ and σ^2 are 

determined using the Burg Algorithm and Levinson Durbin Recursion on the residuals. 

Steps three and four are cycled until σ^2 converges, and the likelihood for the given 
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parameters is computed. Finally, the likelihood is optimized across all tested physiological 

frequencies, yielding estimates of the fundamental cardiac and respiratory frequencies.
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Figure 3: HRAN accurately estimates physiological frequencies.
Estimates of cardiac and respiratory frequencies derived from fast fMRI data using HRAN 

track estimates derived from external physiological reference signals. (A) A spectrogram of 

the 4th ventricle from a subject in Experiment A. The 4th ventricle was used to generate 

estimates of the fundamental physiological frequencies (white dots). (B) These estimated 

cardiac (red dots) and respiratory (blue dots) frequencies correspond to the heart rate 

obtained from EKG (red line) and respiratory rate obtained from a respiratory belt (blue 
line).
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Figure 4: HRAN explains fast fMRI data across tissue type.
HRAN satisfies goodness-of-fit criteria across voxels with varied noise properties. (A) The 

power spectra of three exemplar voxels are shown from a subject in Experiment B: a cortical 

white matter voxel (left), a cortical grey matter voxel (middle), and a brainstem voxel (right). 
Each voxel manifests differing levels of physiological and autocorrelated noise. (B) The 

normalized cumulative periodograms (NCP) demonstrate that the residuals (grey line) in 

each voxel lie within a 95% confidence interval of ideal white noise (dashed black lines). (C) 

Quantile-quantile plots show that the residuals are also approximately normally distributed. 
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(D) Goodness-of-fit criteria were similarly examined across the brain, and histograms of all 

voxels (left), cortical grey matter voxels (middle), and cortical white mater voxels (right) 
demonstrate that HRAN satisfies goodness-of-fit criteria across the majority of voxels in the 

brain.
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Figure 5: HRAN removes simulated physiological noise with variable amplitude and frequency.
Each row displays the results of physiological noise removal using a different technique 

(row 1 no physiological noise removal, row 2 HRAN, row 3 simRETROICOR, and row 4 
simPCA). Spectrograms of the simulated data with each of the physiological noise removal 

methods performed are shown in (Column A). The simulated physiological noise (black 
lines) and estimated physiological noise using each method (colored lines) are displayed in 

(Column B). The simulated data with physiological noise removed using each method 

(colored lines) are displayed on top of the simulated neural signal (black dashed lined) in 
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(Column C). HRAN effectively accounts for and removes the physiological noise from the 

simulated data (second row). As simRETROICOR cannot accommodate variations in 

amplitude, physiological noise is both left in and introduced into the simulated data (third 
row). While the simPCA approach accounts for amplitude variations, it is unable to address 

the 90° phase delay of the cardiac noise and leaves it in the simulated data (fourth row).
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Figure 6: HRAN improves detection of task-driven voxels.
(A) As compared with no physiological regression, HRAN increases the median z-scores of 

anatomically and functionally defined ROIs in visual cortex across four subjects and twelve 

runs. Autoregressive noise was not removed. (B, C) Spectrograms of this ROI are shown 

with and without physiological noise removal in two exemplar runs, demonstrating that 

respiratory and cardiac frequencies are selectively removed. (D, F) Power spectra in these 

two exemplar runs further illustrates that these physiological peaks are removed, while the 

signal and background noise is preserved. (E, G) Maps of the differences in z-scores in each 
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voxel of an example slice with and without HRAN, showing broad increases in statistical 

detection of activation across the visual cortex when HRAN is applied.
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Figure 7: Comparison of noise removal methods in one subject.
HRAN removes physiological noise while preserving fMRI signal. (A) Spectrograms of the 

ROI in one run from Experiment C (Subject 4) show that cardiac noise is appropriately 

removed by HRAN and RETROICOR, but not by aPCA. (B) Power spectra of the same ROI 

show that HRAN and RETROICOR account for time-varying physiological noise, while 

aPCA removes low-frequency noise and introduces high-frequency noise. (C) Timeseries of 

the ROI demonstrate that HRAN and RETROICOR track the original data, whereas aPCA 

introduces substantial high-frequency fluctuations.
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Figure 8: Comparison of noise removal methods across subjects.
HRAN selectively removes physiological noise and improves z-scores across stimulus 

frequencies. (A) Median z-scores across the ROI with no physiological noise removal 

(black), HRAN (purple), RETROICOR (green), and aPCA (orange) across all subjects. 

Stimulus frequency is jittered for display. At lower stimulus frequencies aPCA demonstrates 

the greatest increase in z-scores, but at higher stimulus frequencies only HRAN and 

RETROICOR improve detection. (B) Average difference of median z-scores with each 

method and no physiological regression grouped by stimulus frequency: low frequency 
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(<0.17 Hz, n = 7 runs) and high frequency (>0.17 Hz, n = 6 runs). Error bars depict standard 

error. (C-F) Difference in mean power spectra between each physiological noise removal 

method and no physiological noise removal in the ROI. Negative values indicate that power 

at that frequency has been reduced (or noise has been removed), and positive values indicate 

that power has been increased (or noise has been introduced). Shading represents the 

standard deviation across runs for each subject. One run was collected for Subject 1, and six 

runs were collected for Subjects 2-4.
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Figure 9: Performance of HRAN varies with TR and physiology.
HRAN may be effective even if fMRI data is sampled below the Nyquist frequency, though 

to a limited extent. (A) With TR = .520s, the respiratory frequencies estimated by HRAN 

(blue dots) track the respiration rate obtained using external recordings (blue line), though 

the cardiac estimates (dark red dots) do not always track the heart rate (dark red line) 

directly; however, the aliased HRAN cardiac estimates (light red dots) track the aliased heart 

rate (light red line). (B-C) Power spectra and spectrograms of the ROI demonstrate removal 

of physiological noise. Neurally-relevant peaks indicated by arrows. (D,F) The cardiac 
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frequencies may alias into respiratory frequency bands and limit HRAN estimation, or into a 

distinct frequency band where HRAN still performs well (examples have TR = .720s). (E,G) 

Power spectra demonstrate removal of the physiological noise to varying degrees. Neurally-

relevant peaks indicated by arrows.
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