Skip to main content
. 2019 Dec 11;11:387–399. doi: 10.2147/NSS.S220716

Table 5.

Performance of Personalized and Generalized Sleep-Wake States Predictors Averaged Over All Participants Across All Studies Combined. In Each Column, tThe Boldface Number(s) Indicate(s) the Highest Value Obtained for the Corresponding Metric

Classifier Personalized Approach Generalized Approach
ACC SN SP MCC AUC ACC SN SP MCC AUC
NB 0.75 0.74 0.74 0.38 0.83 0.75 0.69 0.77 0.36 0.83
RLR 0.86 0.29 0.98 0.36 0.82 0.86 0.26 0.99 0.35 0.83
RF 0.85 0.45 0.93 0.40 0.81 0.86 0.41 0.96 0.41 0.80
AB 0.86 0.46 0.95 0.44 0.80 0.87 0.37 0.98 0.45 0.85
XGB 0.86 0.45 0.95 0.45 0.84 0.87 0.38 0.98 0.45 0.85

Notes: © 2018 IEEE. Reprinted, with permission, from Khademi A, El-Manzalawy Y, Buxton OM, Honavar V. Toward personalized sleep-wake prediction from actigraphy. In 2018 IEEE EMBS International Conference on Biomedical and Health Informatics, BHI 2018 (Vol. 2018-March, pp. 414-417). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/BHI.2018.8333456.45

Abbreviations: NB, Naive Bayes; RLR, regularized logistic regression; RF, random forest; AB, adaptive boosting; XGB, extreme gradient boosting; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under curve.